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Abstract
Kinase inhibitors have emerged as effective cancer therapeutics in a variety of human cancers.
Glioblastoma (GBM), the most common malignant brain tumor in adults, represents a compelling
disease for kinase inhibitor therapy because the majority of these tumors harbor genetic alterations
that result in aberrant activation of growth factor signaling pathways. Attempts to target the Ras—
Phosphatidylinositol 3-kinase (PI3K)—mammalian Target of Rapamycin (mTOR) axis in GBM
with first generation receptor tyrosine kinase (RTK) inhibitors and rapalogs have been
disappointing. However, there is reason for renewed optimism given the now very detailed
knowledge of the cancer genome in GBM and a wealth of novel compounds entering the clinic,
including next generation RTK inhibitors, class I PI3K inhibitors, mTOR kinase inhibitors
(TORKinibs), and dual PI3(K)/mTOR inhibitors. This chapter reviews common genetic alterations
in growth factor signaling pathways in GBM, their validation as therapeutic targets in this disease,
and strategies for future clinical development of kinase inhibitors for high grade glioma.

1 Introduction
Gliomas represent a spectrum of primary brain tumors which are classified by the World
Health Organization (WHO) into low grade and high grade tumors based on the degree of
tumor cell proliferation, cellular atypia, and microvascular proliferation (Louis et al. 2007).
The median survival for patients with GBM has remained below 2 years despite
multimodality therapy, including surgery, radiation, chemotherapy (Stupp et al. 2005), and
most recently the anti-VEGF antibody bevacizumab (Friedman et al. 2009; Kreisl et al.
2009a). The term “low-grade” glioma (WHO grade II) refers to a group of tumors with
histopathologically less aggressive features. However, many patients with these tumors also
succumb to their disease within 3–10 years due to tumor “transformation” to an anaplastic
glioma (WHO grade III) or GBM (WHO grade IV). GBMs that have evolved from a
clinically overt, low-grade precursor lesion are referred to as “secondary” GBMs in contrast
to de novo or “primary” GBMs. Primary and secondary GBMs differ substantially in their
molecular pathogenesis (Lai et al. 2011; Ohgaki and Kleihues 2007).
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The histopathological appearance of GBM is particularly diverse and has earned it the
moniker “multi-forme” (multiformis [Latin]: many shapes) (Louis et al. 2007). This
morphological heterogeneity of GBM is often viewed as a reflection of the exceptional
genetic heterogeneity of this cancer. Recent genomic studies provide a perhaps more
encouraging view of GBM with a finite number of highly recurrent gene copy number
alterations (Beroukhim et al. 2009) and missense mutations (TCGA 2005; Parsons et al.
2008). Genome wide RNA expression profiling identifies distinct disease subgroups
(Phillips et al. 2006) each of which is enriched for particular mutations (Verhaak et al.
2010).

One key result of the extensive profiling of human glioma samples (Beroukhim et al. 2007;
Kotliarov et al. 2006; McLendon et al. 2008; Misra et al. 2005; Parsons et al. 2008) is the re-
appreciation that nearly all human GBMs harbor genetic alterations in three “core”
pathways, namely the RTK/RAS/PI3K signaling axis, the p53-ARF-MDM2/MDM4
pathway, and the RB-CDK4-INK4A pathway. Many of the genetic lesions most consistently
found in human tumors have been shown to cooperate in glioma formation in mice (Chow et
al. 2011; Reilly et al. 2000; Zheng et al. 2008; Zhu et al. 2005a) and represent the currently
most “actionable” drug targets (Fig. 1). This chapter highlights genetic alterations in growth
factor signaling pathways in GBM and discusses new directions to develop kinase inhibitors
as glioma therapeutics. Our comments largely focus on the adult patient population as
genetic alterations (Bax et al. 2010; Paugh et al. 2010) and considerations regarding clinical
drug development differ considerably for pediatric glioma patients.

2 Mutations in Growth Factor Receptors
Receptor tyrosine kinases (RTKs) are proteins which transmit signals from the cell surface
to the nucleus and participate in most fundamental aspects of cell growth, survival,
differentiation, and metabolism. Signaling through RTKs is initiated by ligand binding and
terminated by receptor internalization from the cell surface, dissociation of the receptor-
ligand complex, receptor dephosphorylation, and degradation of the receptor protein
(Lemmon and Schlessinger 2010). The RTK family of proteins includes the epidermal
growth factor receptor family (EGFR, HER2, ERBB3, and ERBB4), the platelet-derived
growth factor receptor family (PDGFR-α and PDGFR-β), the MET receptor tyrosine kinase,
the Vascular-Endothelial Growth Factor Receptor family (VEGFR1/FLT1, VEGFR2/KDR/
FLK1, and VEGFR3/FLT4), and others. Many human cancers harbor mutations in RTKs
which relieve auto-inhibitory constraints on the kinase activity or impair the downregulation
of the ligand-activated receptor protein (Blume-Jensen and Hunter 2001). Within the RTK
family, mutations in the genes encoding EGFR, PDGFR-α, and MET are the most common
in high grade gliomas (Table 1 and Fig. 2).

2.1 Epidermal Growth Factor Receptor (EGFR)
Genetic alterations that result in uncontrolled EGFR kinase activity were amongst the first to
be associated with human cancer (Gschwind et al. 2004). A number of alterations involving
the EGFR gene have been described in GBM. These include: (a) EGFR gene amplification
in ~40% of primary GBMs (Libermann et al. 1985; Wong et al. 1987); extra gene copies
reside on double-minutes and are easily detected by fluorescence-in situ hybridization
(FISH) (Jansen et al. 2010); (b) In-frame deletions affecting the 5′ end of the EGFR gene
(Malden et al. 1988; Yamazaki et al. 1988); these are found mostly, but not exclusively, in
tumors with EGFR gene amplification. The most common EGFR variant IIII (or EGFRvIII)
is a deletion of exons 2–7, resulting in an 801 amino acid in-frame deletion within the EGFR
extracellular domain (Sugawa et al. 1990). The EGFRvIII mutant does not bind the ligands
EGF or TGF-α, but is constitutively active (Ekstrand et al. 1994); (c) truncations affecting
the C-terminus of the EGFR protein. These alterations are seen in 15–25% of high grade
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gliomas with EGFR gene amplification (Ekstrand et al. 1992; Eley et al. 1998; Frederick et
al. 2000). The EGFR C-terminus encodes receptor portions that are required for ligand-
induced receptor internalization (Chen et al. 1989; Decker et al. 1992) and (d) missense
mutations in the EGFR extracellular domain in about 10% of primary GBMs (Lee et al.
2006b).

Most EGFR alterations found in human GBM have been shown to represent gain-of-
function events. Expression of a truncated EGF receptor lacking the extracellular ligand
binding domain induces transformation of immortalized rodent fibroblasts (Haley et al.
1989). Expression of the EGFRvIII mutant enhances the tumorigenicity of GBM cells
(Nishikawa et al. 1994) and is able to transform mouse NIH-3T3 fibroblasts in the absence
of ligand (Batra et al. 1995). In mice, low grade oligodendrogliomas develop when the
retroviral oncogene v-erb-B, encoding a truncated version of EGFR (Schatzman et al. 1986),
is expressed under the control of the S100β promoter (Weiss et al. 2003). Expression of the
EGFRvIII mutant is not sufficient to induce glioma formation in mice but cooperates with
mutant H-RAS or inactivation of CDKN2A in glioma formation (Bachoo et al. 2002; Ding
et al. 2003; Holland et al. 1998; Zhu et al. 2009). A C-terminal EGFR truncation mutant has
been shown to confer anchorage-independent growth and tumorigenicity to NIH-3T3 cells
(Wells et al. 1990; Masui et al. 1991). Several of the extracellular EGFR missense mutations
(R108K, T263P, A289V, G598V) have been shown to transform NIH3T3 cells and confer
tumorigenicity (Lee et al. 2006b). In contrast to the EGFR mutants described above,
overexpression of wild-type EGFR does not transform mouse NIH3T3 in the absence of
exogenous EGF (Di Fiore et al. 1987). In mice, overexpression of wild-type EGFR induces
glioma formation only in the presence of CDKN2A deletion and, even then, with very low
efficiency (Zhu et al. 2009).

The role of mutant EGFR for tumor maintenance needs to be defined more extensively, but
current data suggests that at least a subset of EGFR mutant gliomas require EGFR signals
for maintenance of the malignant phenotype (Eller et al. 2002; Martens et al. 2008; Sarkaria
et al. 2007).

2.2 Platelet-Derived Growth Factor Receptor (PDGFR)
Platelet-derived growth factor (PDGF) is a potent mitogen for glia-derived cells (Richardson
et al. 1988) and consists of five dimeric isoforms. These include homodimers of A-, B-, C-,
and D-polypeptide chains (i.e., PDGF-AA, -BB, -CC, and –DD) and a PDGF-AB
heterodimer. PDGF dimers bind to the RTKs PDGFR-α and PDGFR-β and activate the
receptors by inducing receptor dimerization. Different types of receptor dimers are induced
by different ligands: A-, B-, and C-chains of PDGF bind to PDGFR-α, whereas B-and D-
chains bind to PDGFR-β. PDGF ligands and receptors are frequently co-expressed in human
gliomas, perhaps reflecting the presence of an autocrine signaling loop (Hermanson et al.
1992; Lokker et al. 2002).

Mutations in genes encoding PDGF ligands or receptors have been found in a variety of
human cancers, including Dermatofibrosarcoma Protuberans (PDGFB), Chronic
Myelomonocytic Leukemia (PDGFR-β), and Gastrointestinal Stromal Tumors (PDGFR-α).
Many of these cancers respond to PDGFR kinase inhibitors such as imatinib (Ostman and
Heldin 2007). Kumabe et al. first reported amplification of the PDGFR-α gene locus in 1/9
(11%) human gliomas. Interestingly, the one case with PDGFR-α gene amplification also
harbored an in-frame deletion of exons 8 and 9 of PDGFR-α (Kumabe et al. 1992).
Subsequent studies reported PDGFR-α gene amplification in 8–11% of primary human
GBMs (Beroukhim et al. 2009; Fleming et al. 1992). Functional characterization of the
PDGFR-α-Δ8,9 mutant by Peter Dirk’s laboratory showed that the 243 base pairs deletion
results in a constitutively active receptor with greater transforming and tumorigenic ability
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than wild-type PDGFR-α (Clarke and Dirks 2003). Other PDGFR-α mutations reported in
GBM include a two basepair deletion in exon 23, resulting in a truncation of the C-terminus
of the receptor (Rand et al. 2005) and an oncogenic gene fusion between the 5′ end of the
kinase insert domain receptor (KDR) and the kinase domain and 3′ portion of PDGFR-α
(Ozawa et al. 2010) (Table 1).

The contribution of PDGF signaling toward glioma formation in mice has been well
documented. Injection of a PDGF-B chain-encoding retrovirus into the brain of newborn
C57B16 mice induced brain tumor formation in 40% of animals (Uhrbom et al. 1998). This
result has been confirmed by somatic cell type-specific gene transfer experiments in which
targeted expression of PDGF-B in nestin-expressing neural progenitors or GFAP-expressing
astrocytes induced gliomas in 60 and 40% of mice, respectively (Dai et al. 2001). Retroviral
infection of adult white matter progenitor cells similarly resulted in glioma formation
(Assanah et al. 2006) and expression of doxycycline-regulated PDGF-B in the spinal cord
produced mixed oligoastrocytomas (Hitoshi et al. 2008).

2.3 MET Tyrosine Kinase Receptor
The MET tyrosine kinase is the cell surface receptor for hepatocyte growth factor (HGF).
Aberrant activation of MET in human cancers results from amplification of the MET gene
(e.g., gastric/esophageal carcinoma, medulloblastoma), missense mutations in the MET gene
(e.g., papillary renal cancer), and transcriptional upregulation of MET and its ligand HGF
(Comoglio et al. 2008; Koochekpour et al. 1997). While missense mutations in MET are rare
in human GBM, focal amplification of the MET gene occurs in about 5% of primary human
GBMs (Beroukhim et al. 2009). Amplification of MET has been linked with increased
sensitivity to MET kinase inhibition in a panel of human cancer cell lines (McDermott et al.
2007) and radiographic regression of a MET-amplified GBM was recently reported in a
patient treated with the MET/ALK kinase inhibitor crizotinib (PF-02341066) (Chi et al.
2011).

3 Mutations in the Ras-Raf Axis
The family of RAS GTPases (HRAS, NRAS, and KRAS) are proteins which cycle between
a GTP-bound active form and a GDP-bound inactive form. Guanine nucleotide exchange
factors (GEFs) promote formation of GTP-bound RAS, whereas GTPase-activating proteins
(GAPs) stimulate the hydrolysis of GTP on RAS. The first critical effector of Ras to be
identified in mammalian cells was the RAF-MEK-ERK pathway. Serine/threonine kinases
of the RAF family (C-Raf or Raf-1, A-Raf, and B-Raf) bind to RAS-GTP and then
relocalize to the plasma membrane where they are phosphorylated. Once activated, they
phosphorylate and activate mitogen-activated protein kinase kinase (MAPKK or MEK) that,
in turn, phosphorylates and activates extracellular signal-regulated kinases 1 and 2 (ERK1/2)
(Castellano and Downward 2011; Shaw and Cantley 2006). The RAS-RAF axis is activated
in glioma through several mechanisms, including mutations in NRAS and KRAS,
inactivating mutations in the neurofibromatosis gene (NF1), and mutations involving BRAF
and CRAF (Table 1 and Fig. 2).

3.1 Mutations in KRAS, NRAS, HRAS
Mutations in KRAS, and NRAS are rare in human gliomas and particularly rare in WHO
grade III and IV gliomas in adult patients. Sequencing of 94 high grade gliomas for
mutations in NRAS (entire coding region), KRAS (entire coding region) and the first exon
of HRAS identified 2 cases (2/94 = 2%) with G12D-NRAS mutation (Knobbe et al. 2004).
Another study examined 93 gliomas for “hotspot” mutations in HRAS (exon 2/3), KRAS
(exon 2/3), and NRAS (exon 2/3) and reported one NRAS mutation (G10E-NRAS) (Jeuken
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et al. 2007). Mutations in KRAS have been reported in 5–10% of pediatric gliomas (Cin et
al. 2011; Forshew et al. 2009; Janzarik et al. 2007; Maltzman et al. 1997; Schiffman et al.
2010; Sharma et al. 2005). Based on the effects of mutant RAS on glioma formation and
maintenance in genetically engineered mouse models (de Vries et al. 2010; Ding et al. 2001;
Holland et al. 2000; Holmen and Williams 2005; Marumoto et al. 2009; Uhrbom et al.
2002), Ras mutations are likely relevant for the biology and drug response of the (rare)
gliomas in which they are found.

3.2 Mutations in NF1
Neurofibromin, the protein product of the neurofibromatosis gene (NF1) gene, is a p21ras-
GTPase activating protein (RasGAP) which critically regulates Ras signal output (Buday
and Downward 2008; Shaw and Cantley 2006). Somatic missense mutations in the NF1
gene were first reported in astrocytoma many years ago (Li et al. 1992; Thiel et al. 1995).
More complete sequencing of the NF1 coding sequence in a larger number of tumors has
uncovered missense mutations in NF1 in ~15% of GBM patients (McLendon et al. 2008;
Parsons et al. 2008). Other mechanisms of NF1 silencing in GBM include heterozygous or
homozygous NF1 copy loss and posttranslational modifications that result in destabilization
of the NF1 protein (McGillicuddy et al. 2009). There is strong evidence for a role of NF1 in
gliomagenesis. Patients with neurofibromatosis type I, a genetic disorder caused by germline
mutations in NF1, are at increased risk to develop high grade gliomas (Listernick et al. 1999;
Rodriguez et al. 2008) and these gliomas often show inactivation of the second NF1 allele
(Gutmann et al. 2003). Mice with targeted disruption of the NF1 locus develop astrocytosis
and NF1 inactivation cooperates with TP53 inactivation and PTEN inactivation to produce
high grade gliomas with rapid onset and high penetrance (Alcantara Llaguno et al. 2009;
Bajenaru et al. 2003; Reilly et al. 2000; Zhu et al. 2005a, b).

3.3 Mutations in BRAF
The frequency and type of BRAF alterations in glioma varies substantially between adults
and children and between distinct glioma subtypes. V600E-BRAF or V600M-BRAF
mutations are rare in WHO grade III/IV gliomas in adults, ranging from 0 to 3% in most
studies (Basto et al. 2005; El-Habr et al. 2010; Hagemann et al. 2009; Jeuken et al. 2007;
Knobbe et al. 2004; Schindler et al. 2011). The frequency of V600E-BRAF mutations is
substantially higher in pediatric gliomas. One series reported V600E-BRAF in 23% (7/31)
of WHO grade II–IV pediatric astrocytomas (Schiffman et al. 2010); another series observed
V600E-BRAF mutations in 9% (4/42) of WHO grade III/IV pediatric gliomas (Schindler et
al. 2011). V600E BRAF mutations are particularly common in the two glioma subtypes
pleomorphic xanthoastrocytoma (60–70%) and gangliogliomas (20–60%) (Dougherty et al.
2010; MacConaill et al. 2009; Schindler et al. 2011).

The majority (50–70%) of pilocytic astrocytomas (PAs), the most common central nervous
system tumor in children, show low-level copy gain at the BRAF gene locus at 7q34 (Bar et
al. 2008; Deshmukh et al. 2008; Pfister et al. 2008). Detailed characterization of this
genomic alteration in 44 human PAs by Peter Collins’ group uncovered a tandem
duplication that produces fusion proteins between KIAA1549 and BRAF in 66% (29/44) of
pilocytic astrocytomas. The most common event fuses KIAA1549 exon 16 and BRAF exon
9. KIAA1549-BRAF fusions generate proteins that lack the BRAF autoregulatory domain
and exhibit enhanced BRAF kinase activity (Jones et al. 2008). Further examination of PAs
without 7q34 duplication identified alternative mechanisms for activation of the RAF-MEK
axis. These included NF1 inactivation (family history of neurofibromatosis type I) (3/44
cases), V600E BRAF mutation (2/44 cases), a tandem duplication at 3p25 fusing SLIT-
ROBO Rho GTPase Activating Protein 3 (SRGAP3) and CRAF/RAF1 (1/44 cases), and a 3
bp insertion at codon 598 in BRAF (1/44 cases). The SRGAP3-RAF1 fusion protein and the
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p.A598_T599insT BRAF mutant both increased the kinase activity of RAF1 and BRAF,
respectively. Altogether, 82% (36/44) of pilocytic astrocytomas in this series showed
mutational activation of the RAS/RAF axis (Jones et al. 2008, 2009).

Profiling of human pilocytic astrocytomas by other groups confirmed near-universal
activation of the RAS/RAF/MEK signaling axis in this disease through KIAA1549-BRAF
fusions (~70%), V600E BRAF mutations (5–10%), BRAF codon 598 insertions (1–3%),
NF1 inactivation (1–3%), KRAS mutations (1–3%), the SRGAP3-RAF1 fusion (1–3%), and
a recently described fusion involving BRAF and Family with sequence similarity 131,
member B (FAM131B) (2%) (Cin et al. 2011; Eisenhardt et al. 2010; Forshew et al. 2009;
Jacob et al. 2009; Pfister et al. 2008; Schindler et al. 2011; Sievert et al. 2009; Yu et al.
2009). Functional studies support a role of glioma-related BRAF mutants and activated
Raf-1 in transformation and gliomagenesis, in particular in combination with CDKN2A
inactivation (Gronych et al. 2011; Jones et al. 2008, 2009; Lyustikman et al. 2008; Robinson
et al. 2010, 2011).

4 Mutations in PI3K and PTEN
Phosphatidyloinositide 3-kinases (PI3K) belong to a family of lipid kinases that
phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositol (PtdIns),
PtdIns4P, and PtdIns (4, 5)P2. PI3Ks have been assigned to different classes based on
substrate preference and structural features. Class I PI(3)Ks are activated by receptor
tyrosine kinases and G-protein coupled receptors and use PtdIns(4, 5)P2 as substrate to
generate phosphoinositide 3,4,5 trisphosphate (PIP3). Other classes are class II and class II
PI3Ks (Fig. 3a) and the family of PI3K-related protein kinases (PIKKs) which include
mammalian Target of Rapamycin (mTOR), ATM, ATR, DNA-PK, and hSMG1
(Vanhaesebroeck et al. 2010).

PI(3)Ks are composed of a catalytic subunit and a regulatory subunit (Fig. 3b). Catalytic
subunits include p110α (encoded by PIK3CA), p110β (encoded by PIK3CB), p110γ
(encoded by PIK3CG), and p110δ (encoded by PIK3CD). Regulatory subunits include
p85α, p55α, and p50α (all encoded by PIK3R1), p85β (encoded by PIK3R2), p55γ (encoded
by PIK3R3), p101 and p87. p110 subunits share a five-domain structure, which includes an
N-terminal adaptor binding domain (ABD domain), a Ras binding domain (RBD domain), a
C2 (Protein kinase C homology-2) domain, a helical domain, and a catalytic domain. All
p85 isoforms (p85α, p55α, p50α, p85β, p55γ) have two Src homology domains 2 (SH2)
domains and an intervening domain (iSH2) that binds to the adapter binding domain in p110
(Vanhaesebroeck et al. 2010). P85 isoforms provide at least three functions to p110 proteins:
(i) they stabilize the intrinsically unstable p110 protein, (ii) they recruit p110 proteins to
pTyr residues in receptor and adaptor molecules (through the SH2 domains of p85 isoforms)
upon activation, and (iii) they restrain the kinase activity of p110 proteins in their un-
activated state.

PI3K were first linked to cancer through the study of oncogenic viruses. Their critical role in
the pathogenesis of human cancer was fully recognized following the discovery that many
human tumors harbor mutations in genes whose gene products regulate levels of the lipid
molecule PIP3 (Shaw and Cantley 2006; Vogt et al. 2009). These include the phosphatase
and tensin homolog deleted on chromosome 10 (PTEN) (Li et al. 1997; Steck et al. 1997),
the regulatory subunit p85 (PIK3R1) (Philp et al. 2001), and the catalytic subunit p110α
(PIK3CA) (Samuels et al. 2004), and PIK3R2 (Cheung et al. 2011). Almost 100 mutations
have been found throughout the PIK3CA coding region. The Ras binding domain (RBD)
appears to be spared from mutations and mutation “hot-spots” include the p85-binding
domain, the helical domain, and the kinase domain (Vanhaesebroeck et al. 2010; Vogt et al.
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2009). Many studies have documented the biochemical effects and transforming ability of
PTEN-inactivation (Salmena et al. 2008) and various PIK3CA (Vogt et al. 2009) and
PIK3R1 mutations (Huang et al. 2007; Jaiswal et al. 2009; Philp et al. 2001; Sun et al. 2010;
Wu et al. 2009). Mutations have not been found in genes encoding other PI3K catalytic
subunits (PIK3CB, PIK3CG, PIK3CD). In contrast to p110α, however, which only shows
transforming ability it its mutant form, overexpression of wild-type p110β, p110γ, and
p110δ can transform chicken fibroblasts (Kang et al. 2006) and these PI3K family members
may represent critical oncogenic units in certain genetic contexts (Berenjeno and
Vanhaesebroeck 2009). In GBM, mutations in the PI(3)K-mTOR axis are most frequently
found in the genes encoding the catalytic and regulatory subunit of PI(3)K (PIK3CA and
PIK3R1, respectively) and in PTEN (Table 1 and Fig. 2).

4.1 Mutations in PIK3CA
The initial discovery of PIK3CA mutations in cancer reported a mutation prevalence of
26.7% (4/15) for GBM (Samuels et al. 2004). Subsequent studies in larger numbers of
tumors suggest that these mutations occur less frequently in primary GBMs. Sequening of
exons 9 and 20 of PIK3CA in a diverse panel of primary brain tumors found mutations in
5/105 (5%) GBMs, 3/21 (14%) anaplastic oligodendrogliomas (WHO grade III), 1/31 (3%)
anaplastic astrocytomas (WHO grade III), 0/24 (0%) WHO grade II astrocytomas, 4/78 (5%)
medulloblastomas, and 0/26 (0%) ependymomas (Broderick et al. 2004). Other studies
screened the entire PIK3CA coding region and reported mutations in 0/30 (0%) (Mueller et
al. 2005) and 5/70 (7%) GBMs (Hartmann et al. 2005). Direct sequencing of a large part of
the PIK3CA coding sequence (exons 1, 2, 4, 5, 7, 9, 12, 13, 18, 20) in 38 primary human
GBMs identified mutations in 3/14 (21%) pediatric and 4/24 (17%) adult GBMs (Gallia et
al. 2006). Another study focused on exons 9 and 20 of PIK3CA and reported mutations in
5/107 (5%) de novo GBMs and in 1/32 (3%) secondary GBMs (Kita et al. 2007).
Differences between studies in the reported frequency of PIK3CA mutations are likely due
to a combination of factors, including the sensitivity of the mutation detection assay (single
strand conformational polymorphism versus direct bidirectional sequencing), gene coverage
(mutation hot-spots versus entire coding sequence), glioma subtype, sample size, and
inclusion of cell lines.

Amplification of the PIK3CA gene locus was first reported as oncogenic event in ovarian
cancer (Shayesteh et al. 1999) and later in other cancers. No evidence for PIK3CA gene
copy gain (>5-fold) or RNA overexpression was found in an analysis of 145 primary brain
tumors (including 50 GBMs and 35 WHO grade III gliomas) (Broderick et al. 2004). Using
a slighty less stringent cutoff for PIK3CA gene copy gain (>3-fold), Kita et al. reported
PIK3CA amplifications in 14/107 (13%) de novo and 3/32 (9%) secondary GBMs (Kita et
al. 2007).

4.2 Mutations in PIK3R1
A truncating mutation in PIK3R1 was first reported in a GBM in 2004 (Mizoguchi et al.
2004). More recent studies reported mutations in PIK3R1 in~10% of GBMs (McLendon et
al. 2008; Parsons et al. 2008). These mutations clustered in the N-terminal SH2-domain and
the inter-SH2 domain of the PIK3R1 gene, regions that interact with the C2 and helical
domains of p110α. Detailed characterization of selected p85 mutants showed that they were
unable to negatively regulate p110α, p110β, and p110δ activity, despite retaining their
ability to bind and stabilize them (Huang et al. 2007; Jaiswal et al. 2009; Wu et al. 2009).
Peter Vogt’s group expressed the full panel of GBM p85 mutants (G376R, E439del,
KS459delN, D560Y, DKRMNS560del, N564K, R574fs, T576del, W583del) in chicken
fibroblasts. All mutants induced a transformed phenotype, retained the ability to interact
with p110α, stabilized the endogenous p110α protein, and stimulated phosphorylation of

Mellinghoff et al. Page 7

Curr Top Microbiol Immunol. Author manuscript; available in PMC 2013 September 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Akt and 4EBP-1. Efficiencies of transformation varied between mutants and did not clearly
correlate with their biochemical effects on Akt and 4EBP1 (Sun et al. 2010).

4.3 Mutations in PTEN
Allelic loss of chromosome 10 has long been known to be common in high grade human
glioma (James et al. 1988). After the identification of PTEN as tumor suppressor on
chromosome 10 (Li et al. 1997; Steck et al. 1997), missense mutations in PTEN were
reported in 17/63 (27%) of GBMs (Liu et al. 1997). Examination of the entire PTEN coding
sequence in 331 gliomas reported PTEN missense mutations in 20/142 (14%) GBMs;
homozygous PTEN deletions were observed in 7/142 (5%) GBMs (Duerr et al. 1998).
Another study reported PTEN point mutations and homozygous deletions in 32/110 (29%)
and 11/110 (10%) of GBMs (Smith et al. 2001). Later studies reported PTEN mutations in
14 (Hartmann et al. 2005) to 24% (Ohgaki et al. 2004). PTEN expression is silenced in
additional GBMs through promoter methylation, micro-RNAs, and posttranslational
modifications.

Genetically engineered mouse models (GEMMs) support a prominent tumor suppressor
function of PTEN during glioma progression. Loss of PTEN in various cell types within the
brain does not result in tumorigenesis (Fraser et al. 2004; Groszer et al. 2001; Kwon et al.
2001). Inactivation of PTEN in glioma-prone mice, in which oncogenic V12H-Ras is
expressed from the GFAP promoter, greatly accelerated malignant glioma progression (Wei
et al. 2006). In the NF1/p53 astrocytoma model, haploinsufficiency of PTEN accelerated
formation of WHO grade III astrocytomas, whereas loss of PTEN heterozygosity coincided
with progression into WHO grade IV tumors (Kwon et al. 2008). Combined deletion of
PTEN and TP53 in neural stem cells of the subventricular zone is sufficient to induce glioma
formation (Jacques et al. 2010; Zheng et al. 2008). Combined inactivation of PTEN and
TP53 in mature astrocytes in the adult brain induced high grade gliomas that showed
striking similarity to human GBMs in terms of secondary gene copy number alterations and
genome wide RNA expression changes (Chow et al. 2011).

5 Experience with First-Generation RTK Inhibitors
The success with first-generation EGFR kinase inhibitors (gefitinib, erlotinib) in lung cancer
and the high frequency of oncogenic EGFR alterations in GBM (~40%) raised expectations
that these agents will show activity against GBM. This expectation has largely not been
fulfilled. While most studies reported individual patients with tumor regressions in response
to erlotinib or gefitinib, the frequency of these response is substantially lower (<5%) than
the frequency of oncogenic EGFR alterations in GBM (Mellinghoff et al. 2011). The
experience with imatinib, an ATP-site competitive inhibitor of the PDGFR, KIT and ABL-
kinases has been similarly disappointing. A Phase II study of imatinib in 112 patients with
recurrent gliomas reported a partial response for only 5 patients (Raymond et al. 2008). The
radiographic response rates for the subgroup of GBM patients was 3/51 (6%) in this study.
In a Phase I/II study of the North American Brain Tumor Consortium 3/57 (5%) GBM
patients showed partial radiographic responses and no responses were observed for other
histologic subgroups (Wen et al. 2006).

In contrast to the landmark clinical trials with imatinib in chronic myeloid leukemia (Druker
et al. 2001) and with the HER2 antibody trastuzumab in breast cancer (Slamon et al. 2001),
clinical trials with first-generation EGFR and PDGFR kinase inhibitors in GBM were not
enriched for patients whose tumors harbored mutations in EGFR and PDGFR-α,
respectively. This lack of molecular preselection likely contributed to the disappointing
results in the clinic. Studies to identify determinants of EGFR kinase inhibitor response in
GBM have associated tumor regressions with the presence of oncogenic EGFR alterations
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(EGFR gene amplification or EGFRvIII) and expression of the PTEN tumor suppressor
protein or low p-AKT levels (Haas-Kogan et al. 2005; Mellinghoff et al. 2005). Other
studies have questioned the relationship between oncogenic EGFR and EGFR kinase
inhibitor response in GBM (van den Bent et al. 2009). This discrepancy may, at least in part,
be attributable to differences in the determination of EGFRvIII status in tumor tissue.

Several lines of evidence support that PTEN inactivation mediates EGFR kinase inhibitor
resistance: (1) PTEN restoration sensitizes EGFR amplified/PTEN deleted cancer cells to
cell death induction by EGFR kinase inhibitors (Bianco et al. 2003); (2) PTEN knockdown
is sufficient to render EGFR mutant cancer cells resistant to cell death induction by EGFR
kinase inhibitors (Vivanco et al. 2010); and (3) PTEN emerged as most consistent resistance
factor from a shRNA library screen performed in breast cancer cells to identify mechanisms
of resistance to trastuzumab (which targets the EGFR co-receptor HER2) (Berns et al.
2007), and (4) GBMs with intact PTEN expression showed enhanced responsiveness to
combination therapy of erlotinib plus temozolomide (Prados et al. 2009).

How does PTEN status influence EGFR kinase inhibitor response? By dephosphorylation
the second messenger PIP3, PTEN plays an important role in signal termination downstream
of many RTKs. Even if one RTK is effectively inhibited, PTEN loss may allow the
accumulation of sufficient PIP3 to activate PIP3 effector molecules, such as the serine-
threonine kinase Akt. In other words, PTEN deficient cells may be able to better compensate
for single RTK inhibition than cells with intact PTEN. This concept of redundant RTK
activation is supported by the biochemical evidence for RTK coactivation in primary GBM
tumor samples and the experimental observation that inhibition of multiple RTK, but not a
single RTK, induces cell death in certain GBM lines (Stommel et al. 2007). We recently
made the surprising discovery that PTEN inactivation raises EGFR protein levels and EGFR
kinase activity by interfering with the CBL-mediated downregulation of the activated EGF
receptor. Of note, PTEN knockdown did not confer “absolute” EGFR kinase inhibitor
resistance but instead right-shifted the cell-death response to EGFR kinase inhibition toward
drug concentrations which are difficult to achieve in the central nervous system with
currently available EGFR kinase inhibitors (Vivanco et al. 2010). Further studies are needed
to determine whether more complete EGFR kinase inhibition, simultaneous inhibition of
multiple RTKs, or both are required to overcome EGFR kinase inhibitor resistance in GBM.

In many ways, the current experience with EGFR and PDGFR inhibitors is reminiscent of
the experience in melanoma where the disappointing clinical activity of RAF and MEK
inhibitors questioned the role of mutant BRAF for the maintenance of these tumors (Smalley
and Sondak 2010). The vast majority of clinical trials with RTK inhibitors in neurooncology
did not include tumor biopsies during treatment and it is hence unknown to what extent a
negative clinical trial result might be attributable to poor drug penetration into the brain
tumor. The available data indeed suggests that first-generation RTK inhibitors, given at
standard daily doses, result in only weak (if any) pathway inhibition in GBM. Fresh
operative samples from three GBM patients who received erlotinib or gefitinib prior to
surgery and for whom a frozen pretreatment sample was available showed inconsistent drug
effects on phosphorylation of EGFR, Erk, and Akt (Lassman et al. 2005). A more extensive
analysis of multiple candidate EGFR effector molecules (p-AKT, p-GSK-3α/β, p-NFκB
p65, p-STAT3, p-ERK1/2, p-MEK1, p-p38MAPK, p-p90RSK, p-p70S6 Kinase, p-S6
ribosomal Protein, p-PDGFR-B, and p-SRC) in GBM patients treated with gefitinib
similarly showed poor EGFR pathway inhibition (Hegi et al. 2011).

Conclusions regarding target inhibition in GBM have to be viewed as preliminary because
tumors with the most informative genotype(s) and strong basal pathway activation were
generally underpresented in these studies and because of difficulties to assemble a
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sufficiently large number of drug-naive “control” tumor samples. Genotype-enriched
clinical trials with a surgical arm cohort (Cloughesy et al. 2008) could address this important
issue and may be instrumental to “weed out” compounds that fail to achieve sufficient
kinase inhibition in GBM tumor tissue and therefore do not warrant further clinical testing in
GBM.

6 Clinical Experience with Rapalogs
The PI(3)K pathway represents a very active area of drug development in cancer. Strategies
to target members of this pathway are of particular interest in GBM because the majority of
these tumors harbor mutations in one or more genes that regulate this pathway (McLendon
et al. 2008), including EGFR, PDGFRA, MET, PTEN, NF1, PIK3CA and PIK3R1 (Fig. 1).
Biochemical evidence for frequent PI(3)K pathway activation in GBM is provided by
immunohistochemical studies which showed phosphorylation of the downstream pathway
member S6 ribosomal protein in the majority of these tumors (Choe et al. 2003). The
optimal strategy to target the PI(3)K pathway in glioma and other human cancers is
currently unclear. Options include inhibitors of PI(3)K, the serine-threonine kinase Akt, the
mammalian target of rapamycin (mTOR), and a combination thereof (Workman et al. 2010).

The first member of the PI(3)K pathway for which a clinical grade inhibitor became
available was mTOR which exists as a member of two distinct protein complexes called
complex I (mTORC1) and complex 2 (mTORC2). mTORC1 responds to a variety of stimuli
(growth factors, changes in amino acid availability, energy status, oxygen levels, DNA
damage) and promotes protein translation by phosphorylating p70 ribosomal S6 kinase
(S6K) (Threonine 389) and eukaryotic initiation factor 4E-binding protein (4EBP)
(Threonine 37/46). mTORC2 functions are incompletely understood and include
phosphorylation of Akt (Serine 473), serum glucocorticoid-induced kinase (SGK), and
specific Protein Kinase C isoforms (Mendoza et al. 2011; Sengupta et al. 2010). The natural
product rapamycin inhibits mTORC1 functions allosterically by binding with high affinity to
the immunophilin FK506-binding protein-12 (FKBP12).

The potent antiproliferative activity of rapamycin against PTEN-deficient tumor models
(Neshat et al. 2001; Podsypanina et al. 2001) motivated a clinical trial with single-agent
rapamycin for patients with PTEN-deficient, recurrent GBM. Screening for PTEN protein
expression was performed by immunohistochemistry on the specimen from the initial tumor
resection and rapamycin was given for 1–2 weeks prior to resection of recurrent tumor. Drug
levels of rapamycin were measured in blood and tumor tissue and inhibition of mTOR was
evaluated with phosphosite-specific antibodies against the S6K substrate S6 Ribosomal
Protein and 40 kDa proline-rich AKT substrate (PRAS40). Inhibition of tumor cell
proliferation by rapamycin correlated with mTOR pathway inhibition. About half the tumors
showed increased phosphorylation of the Akt substrate PRAS40 during rapamycin treatment
and PRAS40 hyperphosphorylation was associated with poor clinical outcome (Cloughesy
et al. 2008). Akt activation during treatment with rapalogs has been observed in other
cancers and has been attributed to de-inhibition of a negative feeback loop between the
mTORC1 substrate S6K1 and adaptor protein insulin receptor substrate (IRS-1) (O’Reilly et
al. 2006; Sun et al. 2005). Reactivation of the PI3-K pathway, and also the MAPK pathway
(Carracedo et al. 2008), may contribute to the overall disappointing clinical activity of
rapalogs in high grade glioma (Chang et al. 2005; Cloughesy et al. 2008; Galanis et al. 2005)
and other human cancers (Dancey 2010).

Since PTEN-loss has been associated with EGFR kinase inhibitor resistance and mTOR
represents an important effector protein downstream of PI(3)K, combined blockade of
EGFR andmTOR might overcome this resistance. In GBM cell lines and other preclinical
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models, rapamycin indeed showed synergism with the EGFR kinase inhibitor erlotinib
(Buck et al. 2006; Wang et al. 2006). However, the combination of rapalogs and first-
generation EGFR kinase inhibitors in patients with recurrent GBM was complicated by
toxicity requiring substantial dose reductions and failed to show compelling clinical activity
(Kreisl et al. 2009b; Reardon et al. 2010).

7 New Approaches to Target the PI(3)K-mTOR Axis
The observed PI(3)K pathway activation in response to rapalogs suggests that inhibitors of
PI(3)K (e.g., XL147, GDC-0941, GSK1059615, ZSTK474, PX866) or dual PI(3)K/mTOR
inhibitors (e.g., XL765, SF1126, BEZ235, GSK1059615) might accomplish superior
pathway blockade and biological activity. Many such inhibitors have been synthesized and
have shown broad antiproliferative activity in preclinical GBM models (Fan et al. 2006;
Guillard et al. 2009; Shuttleworth et al. 2011). The majority of first generation PI(3)K
inhibitors entering the clinic block all members of the class I PI(3) K family and appear to
be surprisingly well tolerated (Shuttleworth et al. 2011) despite the central role of individual
class I PI(3)Ks in glucose metabolism and immune function (Okkenhaug et al. 2002; Sasaki
et al. 2000). Determination of their clinical activity in GBM is eagerly awaited.

Whether more selective inhibition of individual class I PI(3)Ks will widen the therapeutic
window of these agents without compromising their activity (Foukas et al. 2010), is an open
question. A screen of six GBM cell lines with a panel of chemotypically diverse and
isoform-selective inhibitors of the PI(3)K family demonstrated that inhibitors of p110α or
p110β were able to inhibit phosphorylation of Akt, but only p110α inhibitors induced
proliferative arrest. The PI3K isoforms p110δ and p110γ were not expressed in these cells
and inhibitors of p110β and p110δ had no effects on proliferation (Fan et al. 2006). More
recent studies identified a critical role for p110β in certain PTEN-deficient malignancies (Jia
et al. 2008; Wee et al. 2008). Further work is needed to determine which PI3K isoforms are
most critical for tumor maintenance in GBM as many of these tumors harbor multiple
lesions within the RTK/Ras/PI(3)-signaling axis (e.g., EGFR mutation and PTEN loss).

The only modest activity of rapalogs against many human cancers may, at least in part, be
due to the fact that these drugs do not effectively block many functions of mTORC2 and
mTORC1. This shortcoming could be overcome by a new class of TOR kinase domain
inhibitors (also called TORKinibs). These “second-generation” mTOR inhibitors have
shown compelling antiproliferative activity in a range of preclinical cancer models and have
also advanced to clinical testing in GBM and other cancer types (Feldman and Shokat 2010;
Liu et al. 2009a).

8 Leveraging the Cancer Genome Atlas for Clinical Drug Development
The clinical experience with kinase inhibitors as cancer therapeutics suggests that these
drugs are most effective in patients whose tumors harbor gain-of-function mutations in the
targeted kinase. Examples include BCR-ABL mutant leukemia, KIT- or PDGFRA-mutant
sarcoma, EGFR or ALK mutant lung cancer, and BRAF or KIT mutant melanoma (Sawyers
2009). While the presence of an oncogenic mutation clearly does not guarantee response to
the corresponding kinase inhibitor, the relationship between tumor genotype and drug
response is compelling enough that mutational profiling is now routinely performed in the
clinic for several human cancers (e.g., lung cancer, melanoma, colorectal cancer) and results
incorporated into treatment decisions (Gerber and Minna 2010). A link between tumor
genotype and drug response still remains to be proven for GBM, but many centers have
begun to prospectively profile gliomas for the most commonly found alterations (e.g., EGFR
gene amplification, MGMT methylation, IDH1/2 mutations, 1p19q deletion) (Jansen et al.
2010; Riemenschneider et al. 2010). The extent of profiling is currently driven by
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institutional expertise, assay cost, and tissue availability but is likely to increase in the near
future as newer profiling platforms yield robust results from formalin-fixed and paraffin-
embedded clinical specimen.

While the impact of tumor profiling on disease classification and treatment in GBM remains
to be firmly established, currently its greatest utility may be for clinical drug development.
A logistic obstacle toward genotype-focused clinical development in GBM is the low
absolute number of patients with tumors of a particular tumor genotype. As discussed above,
many presumed “driver” mutations in GBM (e.g., PDGFRA, PIK3R1, PIK3CA, BRAF,
MET) occur in only a small subset of patients and a substantial number of these patients will
be ineligible for clinical trial participation due to disease-related morbidity. By determining
the distribution of mutations within a large number of patients with primary GBMs, TCGA
(2005) has provided valuable information for clinical trial planning. For example, mutations
in EGFR and PDGFRA are rarely found in the same tumor (Fig. 4) and one could envision
using prospective genotyping information to assign patients to clinical trials targeting either
of these lesions. Genotype-enriched trials for other presumed “driver” mutations, such as
MET gene amplification, PIK3CA mutations, or PIK3R1 mutations will require screening of
a substantially larger number of patients as these mutations are even less common. Based on
the distribution of mutations throughout the coding sequence of various pathway members
(Fig. 2), perhaps a combination of phosphoproteomic “pathway activation” measurements
(Solit and Mellinghoff 2010) and selected genotyping for mutation hotspots (Jansen et al.
2010) may represent the most cost-effective screening approach until predictive biomarkers
have been properly validated.

9 Future Perspective
The clinical development of PI(3)Kinhibitors for GBM would be greatly accelerated by
enrichment of clinical trials for patients whose tumors that are more likely to respond. While
several ATP-site competitive pan-class I PI(3)K inhibitors have shown antiproliferative
activity against a broad panel of human GBM cell lines (Fan et al. 2006; Guillard et al.
2009; Koul et al. 2010; Liu et al. 2009b; Prasad et al. 2011), it is not clear whether any
disease subgroup might exhibit a degree of PI(3)K pathway “addiction” associated with
tumor cell death and tumor regressions in other cancers. In breast cancer, for example, such
PI(3)K pathway addiction appears to exist for tumors with PIK3CA mutation and HER2
gene amplification as evidenced by cell death induction in response to pan-class I PI(3)K
inhibitors (Ihle et al. 2009; Junttila et al. 2009; Mallon et al. 2010; O’Brien et al. 2010; Serra
et al. 2008), Akt inhibitors (She et al. 2008), and the emerging class of mTOR kinase
domain inhibitors (Weigelt et al. 2011). Lung cancer cell lines harboring EGFR kinase
mutations, on the other hand, do not appear to depend on PI(3)K signals for survival (Faber
et al. 2009). More extensive testing of novel compounds in genetically faithful glioma
models (Hambardzumyan et al. 2011) and cell lines (Lee et al. 2006a) will provide the
foundation to formulate hypotheses for genotype-enriched clinical trials.

Different dosing schedules (e.g., intermittent or “pulsatile” dosing) (Shah et al. 2008) and
isoform-specific (e.g., PI3K) or mutant-specific (e.g., BRAF) compounds may increase the
therapeutic window of individual kinase inhibitors. Ultimately, however, a combination of
agents may be required to achieve clinically meaningful tumor regressions. Such therapies
may include: (i) a combination of multiple selective RTK inhibitors, (ii) the simultaneous
inhibition of multiple members within the same signaling pathway (e.g., PI3K and mTOR),
(iii) a multipronged attack on key oncoproteins through distinct pharmacological approaches
(e.g., RTK antibody plus RTK kinase inhibitor or HSP90 inhibitor plus RTK inhibitor), or
(iv) a combination of agents based on synthetic lethal relationships between signaling
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pathways (Kaelin 2005). These strategies warrant rigorous testing in genetically faithful
preclinical models.

One example for a rational combination therapy is the combination of autophagy inhibitors
with PI(3)K-mTOR inhibitors. Autophagy is a process of “self-degradation” of cellular
components which can provide substrates for energy production during periods of low
extracellular nutrients. mTORC1 suppresses autophagy by blocking autophagosome
initiation via phosphorylation of ATG13 and ULK1 (Zoncu et al. 2011). Conversely,
inhibition of mTORC1 by rapamycin (Takeuchi et al. 2005) or dual pan-class I PI(3)K/
mTOR inhibitors (Guillard et al. 2009; Liu et al. 2009b) induces autophagy in GBMcells.
Induction of autophagy may represent an important survival mechanism during mTOR
inhibitor therapy and explain why inhibitors of PI3K and mTOR induce growth arrest
without cell death. Consistent with that model, recent studies show that inhibitors of
autophagy can synergize with PI3K-mTOR inhibitors to induce apoptosis (Fan et al. 2010;
Xu et al. 2011), representing an opportunity for mechanism-based combination therapy.

GBM has long been known as a disease with mutations in growth factor signaling pathways.
The full extent of these alterations and their relationship to each other has emerged more
clearly through The Cancer Genome Atlas. Despite discouraging clinical results with first-
generation RTK inhibitors and rapalogs, there is considerable optimism that new RTK
inhibitors, “second-generation” mTOR inhibitors, and compounds inhibiting class I PI(3)Ks
will be better suited to effectively shut down critical signaling nodes in GBM. As the
number of clinical grade inhibitors continues to grow, it will become increasingly important
to develop an approach to clinical drug development which fully leverages our knowledge of
the GBM cancer genome, lessons from kinase inhibitor therapy in other human cancers, and
the ability to extract robust molecular information from small amounts of routinely collected
human tumor tissue.
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Fig. 1.
The Ras-PI(3)K-mTOR pathway in GBM. Pathway members highlighted in red are mutated
in human GBM tumor samples. Pathway inhibitors that have been or will be explored as
therapeutics for GBM are indicated
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Fig. 2.
Mutations in the Ras-PI(3)K-mTOR axis in WHO grade IV astrocytoma. Shown are all
confirmed somatic or previously reported mutations that have been listed in COSMIC v54
under astrocytoma grade IV. The y-axis indicates the number of times a particular mutant
has been observed in a primary tumor sample, xenograft tumor, or cell line. Missense
mutations are shown in black; nonsense and frameshift mutations as well as small in-frame
insertions and deletions are shown in red. Recurrent deletions/truncations in the coding
regions of EGFR and PDGFRA are indicated in shaded gray and their estimated frequency
is shown as percent of all GBMs (right y-axis)
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Fig. 3.
The 3-phosphoinositide lipid network. (a) Following activation by upstream agonists,
phosphoinositide 3-kinases (PI3Ks) generate phosphatidylinositol-3,4,5-trisphosphate
(PtdIns(3,4,5)P3), PtdIns-3,4-bisphosphate (PtdIns(3,4)P2) and PtdIns-3-phosphate
(PtdIns3P). These lipids interact with lipid binding domains in PI3K effector proteins and
change their localization and/or activity. Lipid phosphatases degrade or interconvert 3-
phosphoinositides. These include lipid phosphatases for PtdIns(3,4,5)P3, such as
phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inositol
polyphosphate-5-phosphatase E (IPP5E), and SH2 domain-containing inositol 5-
phosphatase type 2 (SHIP2). GAP, GTPase-activating protein; GEF, guanine nucleotide
exchange factor; GPCR, G protein-coupled receptor. (b) Classification and domain structure
of mammalian Class I PI3Ks. All PI3K catalytic subunits have a PI3K core structure
consisting of a C2 domain, a helical domain and a catalytic domain. Class I PI3Ks exist in
complex with a regulatory subunit, either a p85 isoform (for p110α, p110β and p110δ) or
p101 or p87 (for p110γ). All p85 isoforms have two Src homology 2 (SH2) domains and are
encoded by either PIK3R1 (which encodes p85α, p55α and p50α), PIK3R2 (which encodes
p85β) and PIK3R3 (which encodes p55γ). Figure modified from (Vanhaesebroeck et al.
2010)
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Fig. 4.
Potential strategy for genotype-enriched clinical trials in GBM. Tumor tissue collected
during the initial surgery (“GBM Diagnosis”) is profiled to identify candidate “driver”
mutations and clinical trial participation at the time of tumor recurrence (i.e., following
standard “Upfront Therapy”) is guided by the molecular profiling results. Shown is the
distribution of mutations in 138 GBMs which were profiled by the TCGA (2005) and for
whom complete Sanger Sequencing and Gene Copy Number data is available
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Table 1

Mutations in Growth Factor Signaling Pathways in GBM (adult patients)

Gene Alteration Frequency in GBM %

EGFR Amplification 35–40

EGFR-variant III (EGFRvIII) ~20

Nonsynonymous Mutations 10–15

other in-frame deletions/truncations 5–10

PDGFRA Amplification 5–15

delta-8,9 truncation 2–5

Nonsynonymous Mutations <2

MET Amplification 2–5

Nonsynonymous Mutations <2

KRAS Nonsynonymous Mutations <2

NRAS Nonsynonymous Mutations <2

NF1 Homozygous Deletion 2–5

Hemizygous Deletion 5–10

Nonsynonymous Mutations ~15

BRAF V600E BRAF <2 (2–5 in PA)

KIAA1549-BRAF fusions n.d. (60–70 in PA)

p.A598_T599insT BRAF n.d. (1–3 in PA)

FAM131B-BRAF fusion n.d. (1–3 in PA)

CRAF SRGAP3-CRAF fusion n.d. (1–3 in PA)

PIK3CA Nonsynonymous Mutations 5–10

Amplification ~2

PIK3R1 Nonsynonymous Mutations 5–10

PTEN Homozygous Deletion 5–10

Hemizygous Deletion ~70

Nonsynonymous Mutations 15–25

Please see text for references

n.d not detected, PA Pilocytic Astrocytoma
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