
rus first hits the cell, before latency is established. Cells 
surviving virus generated damage would consequently 
become more sensitive to further damage mediated by 
the otherwise insufficient transforming activity of virus 
products expressed in latency, or upon episodic reacti-
vations (viral persistence). Cells with a combination of 
genetic and epigenetic damage leading to a cancerous 
phenotype would emerge very rarely, as the probability 
of such an occurrence would be dependent on severity 
and frequency of consecutive hit and rest cycles due to 
viral reinfections and reactivations.

© 2013 Baishideng. All rights reserved.
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Core tip: Current models for viral driven oncogenesis 
cannot explain why tumor development in carriers of 
tumorigenic viruses is a very rare event, occurring de-
cades after virus infection. Considering that viruses are 
mutagenic agents per se  and human oncogenic viruses 
additionally establish latent and persistent infections, 
we attempt here to provide a general mechanism of 
tumor initiation both for RNA and DNA viruses, sug-
gesting viruses could be both necessary and sufficient 
in triggering human tumorigenesis initiation.
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TUMORS AND VIRUSES
According to currently accepted estimates, viruses are 
etiologically linked to 15%-20% of  all cancer cases world-
wide[1-3]. Although many animal and human viruses can 
transform cells upon infection, only six human viruses are 
consistently associated with the onset of  tumors in man, 
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Abstract
Human oncogenic viruses are defined as necessary but 
not sufficient to initiate cancer. Experimental evidence 
suggests that the oncogenic potential of a virus is effec-
tive in cells that have already accumulated a number of 
genetic mutations leading to cell cycle deregulation. Cur-
rent models for viral driven oncogenesis cannot explain 
why tumor development in carriers of tumorigenic vi-
ruses is a very rare event, occurring decades after virus 
infection. Considering that viruses are mutagenic agents 
per se  and human oncogenic viruses additionally estab-
lish latent and persistent infections, we attempt here to 
provide a general mechanism of tumor initiation both for 
RNA and DNA viruses, suggesting viruses could be both 
necessary and sufficient in triggering human tumorigen-
esis initiation. Upon reviewing emerging evidence on the 
ability of viruses to induce DNA damage while subvert-
ing the DNA damage response and inducing epigenetic 
disturbance in the infected cell, we hypothesize a gener-
al, albeit inefficient hit and rest mechanism by which vi-
ruses may produce a limited reservoir of cells harboring 
permanent damage that would be initiated when the vi-
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namely human papillomavirus (HPV), human T-cell lym-
photropic virus 1 (HTLV-1), Epstein-Barr virus (EBV), 
human herpesvirus 8 (HHV-8), hepatitis B virus (HBV) 
and hepatitis C virus (HCV) (Table 1). A large share of  
what is known about the molecular mechanisms of  onco-
genesis is due to studies of  tumor viruses, defined thereof  
as viruses carrying in their genome one copy of  an on-
cogene or of  an anti-oncogene or viruses that can alter 
the expression of  the cellular version of  one such gene[4]. 
Viruses have been shown to influence tumor sustainment 
and progression and induce escape pathways from apop-
tosis and immune surveillance[1,4], however in no case has 
it been proven that a virus can be the initiator, the primum 
movens, and not merely an “influential passenger” of  a 
tumor (Figure 1).

TUMORS AND GENES
Tumor development is believed to be a multistep pro-
cess leading to the accumulation of  permanent genetic 
damage[5], affecting either oncogenes, tumor suppressor 

genes, or stability genes[6,7]. Cancer is therefore essentially 
a genetic disease, and a crucial observation in understand-
ing multistep carcinogenesis is that the vast number and 
the coarse/crude nature of  chromosomal defects that are 
present in the majority of  tumor cells[8], are not amenable 
to an altered mutation rate in these cells[9,10]. In fact, most 
human solid tumors are characterized by an abnormal 
chromosome content, aneuploidy, which can be caused by 
genetic instability[8,11,12]. In addition, distinct and inheritable 
gene expression and phenotypic states that arise indepen-
dently from changes in DNA sequence, known as epigen-
etic modifications, are also linked to tumor formation and 
progression[13,14]. On the whole, mechanisms for the initia-
tion of  tumorigenesis leading to genetic instability are on 
the whole poorly understood, both for virus induced and 
virus unrelated tumors[6].

CAN VIRUSES INITIATE GENETIC 
INSTABILITY?
It has been known for more than four decades that 
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Figure 1  Viral infection and tumorigenesis. Viruses have been shown to encode functions that can modulate all crucial steps towards tumor development, with the 
exception of the initiation step(s). Recognized contributions of viral infection are mentioned in blue letters. V: Virus. Red arrowheads up, stimulation; down, inhibition.

Table 1  Oncogenic viruses are latent/persistent viruses

Virus EBV HHV-8 HPV HBV HCV HTLV-1

Associated  
tumor(s): viral 
protein(s) 
expressed

BL: EBNA-1 KS: vFLIP, vCYC, LANA-1 Anogenital, oral, skin 
and laryngeal cancers: 
E6, E7

HCC: HBx HCC: CP10, NS3, NS5 ATL: tax
NPC, TCL: 
EBNA1 + LMP1

PEL, MCD: vFLIP, vCYC, 
LANA-1, LANA-2, vIL-6

HL: EBNA1 + 
LMP1-2
PTLD: EBNA1-6 + 
LMP1-2

Persistency Always Always 20% infected subjects 90%-95% infected 
newborns

70%-85% infected 
subjects

Always

5% infected adults
Period between 
infection and 
tumor onset

10-20 yr 10-20 yr 5-20 yr 10-30 yr 10-30 yr 20-30 yr

EBV: Epstein-Barr virus; HHV-8: Human herpesvirus 8, also named Kaposi sarcoma virus; HPV: Human papillomavirus; HBV: Hepatatis B virus; HCV: 
Hepatitis C virus; HTLV-1: Human T-cell leukemia virus 1; BL: Burkitt lymphoma; NPC: Nasopharyngeal carcinoma; TCL: T cell lymphoma; HL: Hodgkin 
lymphoma; PTLD: Posttransplant lymphoprolipherative disorder; KS: Kaposi sarcoma; PEL: Primary effusion lymphoma; MCD: Multicentric Castleman’s 
disease; HCC: Hepatocellular carcinoma; ATL: Adult T-cell leukemia.



members of  different virus families can induce chromo-
some damage in infected cells in vitro[15], and chromosome 
breakages have been observed in leukocytes isolated from 
patients experiencing systemic viral active infections[16,17]. 
In recent years evidence has accumulated indicating the 
ability of  different viruses to induce aberrant mitosis, 
genetic instability and interfere with cellular DNA repair 
pathways, which has confirmed early reports[18-21]. Recent 
data suggest that viruses induce permanent damage in the 
genome of  infected cells in the context of  their natural 
infection[22,23], and are capable of  chromatin manipulation 
and epigenetic reprogramming of  host expression pat-
terns[24,25]; it remains to be seen whether this could stimu-
late tumor initiation.

It is well known that viruses can transform non-per-
missive cells and several human viruses cause tumors if  
introduced in experimental animals. Interestingly all of  the 
six human oncogenic viruses are able to establish latent 
and persistent infections (Table 1). Chronic HBV, HCV 
and EBV infections, persistent infection with HTLV-1, 
prolonged exposures or frequent reactivations of  HPV 
and HHV-8 associated with clinical conditions, are all epi-
demiologically linked to increased risk of  developing virus 
related malignancies[26-32]. Failure to eliminate emerging 
tumor cells because of  impaired immune function alone 
cannot account for this increased risk, since tumors devel-
op in a minority of  immune depressed patients. Further-
more tumor cells emerge very rarely from in vitro virally 
transformed cell lines, growing in the absence of  immune 
selective pressure[33]. When they do, these tumors are not 
associated with genetic instability[34]. Therefore there is a 
missing causative factor acting in the setting of  persistent 
infections, generally thought of  as non viral carcinogens or 
host responses[35]. We propose that reiteration and sever-
ity of  infections/reactivations is a key factor that possibly 
generates primary genetic and epigenetic damage on which 
viral oncogenes may add up their own oncogenic activities.

A MECHANISM FOR TUMOR INITIATION 
IN VIRAL PERSISTENCE
Viral persistence can be achieved by continuous replica-
tion, latency or both. Several virus-encoded products have 
been associated with transforming and/or oncomodulato-
ry activities[4], and with the ability to induce chromosome 
damage, abnormal mitosis and genetic instability when 
expressed in cell cultures (Table 2)[18,36-38]. Recent find-
ings point to viral proteins interfering with the epigenetic 
milieu of  the infected cells, leading to the transcriptional 
repression of  tumor suppressor genes, and interference 
with cell cycling control[39] (Table 3). However in vivo these 
activities must be particularly inefficient if  one considers 
that the majority of  the human population carries a num-
ber of  resident viruses, but only a minority among infect-
ed individuals will develop tumors that can be correlated 
with persistent viral infections, and generally after very 
long latency periods (years to decades)[4,35]. It should be 
noted that latency is characterized by a relatively low viral 
transcriptional rate[40,41], that one can define as “a virus at 
rest”: this could explain why damaging and/or destabiliz-
ing activities of  latent gene products have little chance to 
induce permanent effects in cells equipped with an intact 
set of  caretaker genes, antioncogenes, and non activated 
oncogenes. Consistently, subjects with Fanconi’s anemia, 
an inherited disease with defective DNA repair, have up 
to 4000 times increased risk of  developing solid papillo-
mavirus-associated tumors[4]. In fact cell immortalization 
has been achieved experimentally only following expres-
sion of  latent genes in the context of  previously accumu-
lated mutations in the cellular genome[18,20]. On the other 
hand, lytically infected cells are typically characterized by 
massive transcription of  the viral genome, a “hit”. These 
cells develop virus induced chromosome damage and 
can undergo abnormal mitosis (Table 2), both in vitro and  
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Table 2  Viral proteins inducing genetic damage

Virus EBV HHV-8 HPV HBV HCV HTLV-1

Latent proteins EBNA-1 LANA-1[64] E6, E7[66,67] Naturally occurring pre-S mutants[68] - -
EBNA-3C v-CYC[65]

LMP-1[63]

Lytic proteins BZLF-1[69] - E1, E2[71,72] HBx[73,74] Core Tax[76,77]

BGLF-5[70] NS3[23,62]

NS5[75]

EBV: Epstein-Barr virus; HHV-8: Human herpesvirus 8, also named Kaposi sarcoma virus; HPV: Human papillomavirus; HBV: Hepatatis B virus; HCV: 
Hepatitis C virus; HTLV-1: Human T-cell leukemia virus 1.

Table 3  Virus products controlling cellular epigenetic modifications

Virus EBV HHV-8 HPV HBV HCV HTLV-1

EBNA-3A, EBNA-3C[78] LANA-1[81] E6[83] HBx[85,86] Core[87] Tax[88]

LMP-1[79] microRNA[82] E7[84]

LMP-2[80]

EBV: Epstein-Barr virus; HHV-8: Human herpesvirus 8, also named Kaposi sarcoma virus; HPV: Human papillomavirus; HBV: 
Hepatatis B virus; HCV: Hepatitis C virus; HTLV-1: Human T-cell leukemia virus 1.
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in vivo[16]. So here we have two observations where there 
is apparently little if  any effect on the genetic stability of  
healthy cells in vivo: (1) latency functions can transform 
cells but cause genetic instability only in already genetically 
damaged cells; and (2) lytic functions may induce genetic 
instability but kill the cells. Is there a setting in which these 
two phenomena may lead to an outcome that has been 
overlooked? The phase immediately following virus entry 
into a permissive cell, before the fate of  the infection (lytic 
or latent) is set (green cells in Figure 2), may be crucial in 
this regard. 

Latency is defined as an infection where the produc-
tion of  infectious virus does not occur immediately but 
the virus retains the potential to initiate productive infec-
tion at a later time, and is characterized by a unique tran-
scriptional and translational state of  the virus, the latency 
expression program, in which the productive replication 
cycle is not operative[4]. Hence latency can be regarded 
as a transitory state of  resistance of  the infected cell to a 
virus, and the latency program as the result of  a negotia-
tion between virus and host, after a battle between cel-
lular functions reacting to the incoming virus and virus 
encoded functions, expressed at early stages following vi-
rus entry into the host cell. The first consequence of  this 
definition is that latency is not a default life program for a 
virus, but a survival condition that a virus is forced to opt 
for when the infected cell does not allow progression of  
the lytic cycle. A second consequence is that there is not 
one strictly planned latency program for any given virus, 
but the latency program is defined depending on the con-
text of  host cell gene expression, after the cell succeeds 
converting a viral hit into a virus at rest by resisting to the 
initial round of  lytic cycle gene transcription, and forces 
the virus into the latency state, for some time. This state 
of  resistance can last for very different periods of  time, 
depending on the moment viral reactivation will be al-
lowed by the infected cell, and can be long lasting, when 

reactivation occurs upon transition into a new cell dif-
ferentiation state, or last an unpredictable period of  time, 
as in cells entering a particular metabolic state triggered 
by an infrequent external signal (ultraviolet radiations, 
stress, etc.), or cells being in a particular phase of  the cell 
cycle[42], which could be a frequent event for rapidly repli-
cating cells or a very infrequent event for slowly replicat-
ing cells, as for liver cells. Recent evidence reveals that in 
an EBV latency model lytic genes can be transcribed to 
considerable levels[43], contrary to what had been thought 
previously. Similarly in Kaposi sarcoma virus associated 
tumors, subpopulations of  cells express lytic gene prod-
ucts within a general latency setting[44], suggesting the 
distinction between latency and lytic transcription is less 
clear cut than expected. But what happens between viral 
entry into a cell and the establishment of  latency in that 
cell? Very few studies have addressed this issue, but avail-
able data indicate that during this time lapse the majority 
of  the viral genome is transcriptionally active, with many 
lytic genes being expressed in very much the same way 
as during early phases of  lytic infection, before transcrip-
tions are silenced by the host cell[45,46]. This delicate, vastly 
unexplored resistant period may represent a particularly 
vulnerable setting for the infected host, acting as a non-
permissive cell, a well known target for virus transforma-
tion[1,47]. Therefore the actual phase between virus entry 
and the establishment of  latency is a stage where some 
viral genes, whether belonging to the latent or the lytic ex-
pression program, can be expressed to various levels. Ad-
ditionally, this is a time where the structure of  the incom-
ing virus disaggregates within the cell, releasing dozens of  
structural proteins and enzymes, genomic nucleic acids, 
coding and non coding RNAs, encapsidated in infectious 
particles. In fact it is now clear that the presence of  in-
coming viral genomes relocates DNA repair proteins at 
sites of  viral genome deposition[48]. Several virus products 
are able to induce genetic damage (Table 2), and examples 
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Figure 2  Tumor initiation events mediated by virus induced genetic damage. Virus entry into permissive genetically intact cells (green cells), can result in lytic 
replication or latency. In the latter setting the oncogenic potential of latent genes appears ineffective in vivo. Before silencing of most virus specific transcription is 
achieved, various viral functions are expressed which could induce genetic/epigenetic damage in a fraction of the infected population (red arrows, genetic damage 1). 
Cells surviving to sustainable damage (orange cells) could experience reactivation of the virus, host the virus genome in a latent state, or lose it after uneven segrega-
tion of their genetic material. In damaged cells latent gene products could now represent an effective oncogenic threat if cellular caretaker genes have been affected (red 
arrow, genetic damage 1, 2, 3…). Reinfection or reactivation of latent virus in damaged cells could result in further genetic offense, eventually leading to genetic insta-
bility, immortalization and tumor development. V: Virus; Lat: Latent; Lyt: Lytic. Blue arrows: Infection; Grey arrows: Consequences of infections; Black arrows: Death.
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of  encapsidated DNA nicking activities with a potential 
role in chromosomal damage have been reported[49,50]. 
Other viral proteins can interfere with the cellular DNA 
repair machinery (see[51] for a detailed review) or intro-
duce transcriptional-silencing marks[39]. All these activities 
could in this context generate primary damage events, 
leaving the cell with permanent genetic and epigenetic 
damage before entering into latency. The ensuing latency 
program would now run in a cell bearing a modified ge-
nome. 

Although it would be reasonable to expect that the 
majority of  damaged cells could not survive the insult, it 
would be equally reasonable to expect that cells with sus-
tainable damage may survive, as it is documented in vitro 
in non-permissive cells[19,52] and in cells undergoing chemi-
cally induced DNA breaks and chromosome pulveriza-
tion[53]. 

A surviving cell could be imagined as acquiring a 
genotype with no phenotypic consequences on the virus, 
in which case the virus would either proceed with the lytic 
cycle and kill the cell or enter a latent state (rest), accord-
ing to the virus and the type of  infected cell (Figure 2). 
Alternatively genetic/epigenetic damage could modify 
the permissivity of  the cell to the infecting virus, either 
further supporting viral expression programs or restrict-
ing them. The consequences on lytic infections would be 
either more productive lytic cycles or their inhibition with 
possible elimination of  the virus, respectively. On latent 
infections the expression profile of  the genome could be 
affected, either positively, as observed in EBV positive 
NK/T-cell lymphoma[54], or negatively as it is observed 
when EBV latently infected B cells switch from the laten-
cy Ⅲ (whole set of  latency products expressed) to latency 
I (EBNA-1 only) following transformation into lympho-
blastoid cells. Viral gene expression would now take place 
in the context of  a genetically modified cell, and in some 
instances this combination could provide damaged cells 
with a selective advantage in their environment, mak-
ing them fitter to survive such damage and ready for the 
accumulation of  future genetic modifications, in other 
words placing them on the road to malignancy.

IS THE VIRUS LATENCY/REACTIVATION 
CYCLE AN ONCOGENIC THREAT?
While a single hit and rest event has little chance to set 
the stage for cancer initiation, repeated cycles of  viral 
infection or reactivation and latency would increase the 
number of  possibly genetically damaged cells in the host 
and eventually produce cells accumulating a number of  
chromosomal abnormalities, as recently observed in an 
in vitro model by Fang et al[55]. If  the damage has modified 
or abolished the activity of  caretaker genes, oncogenes or 
anti-oncogenes, then the genome damaging and/or desta-
bilizing activities of  viral latent gene products could now 
meet the requirements for the introduction of  additional 
permanent damage, eventually leading to genetic instabil-
ity. When the combination of  hit and rest related damage 

reached a critical point, let’s say telomerase activation, the 
cell could become immortal and virus functions may be-
come dispensable. Further damage due to genetic insta-
bility could lead finally to the emergence of  a tumor cell 
(Figure 2). If  the present hypothesis was confirmed, one 
consequence would be that the number of  viruses with 
potential for tumor initiation would be larger than that 
currently accepted. A further consequence of  the present 
hypothesis is that preventing virus reactivations, where 
possible by pharmacologic prophylaxis or medical modu-
lation of  the immune response, should counteract cancer 
development.

TESTING THE HYPOTHESIS
The demonstration that genetic and epigenetic damage 
occurs in latently infected cells and that some damaged 
cells survive in the setting of  natural infections is crucial 
in validating our hypothesis. It would therefore be im-
portant to investigate the process whilst it is occurring. 
It is conceivable to plan prospective studies of  patient 
populations at risk for recurrent or persistent viral infec-
tions. The genetic integrity of  cells latently or persistently 
infected by a given virus could be studied using methods 
applicable to a large number of  samples and correlated 
with virus shed at the site of  sampling. For example the 
analysis of  DNA damage could be associated with HPV 
isolation at the time of  pap test screening, or with EBV 
viral load determination in the follow-up of  transplant 
patients[28]. Retrospective and prospective studies could 
be implemented, analyzing possible correlation between 
frequency of  different virus reactivations, severity of  
these reactivations, evidence of  genetic damage in cells 
that harbor latent viruses and development of  malignan-
cies, in order to better define the importance of  evocative 
findings[56]: ideal candidates for these studies would be 
populations of  immunocompromised patients such as 
those in post-transplant settings[57]. Chronic infections, 
clinically manifest or subclinical, are an additional inter-
esting condition for virus related DNA damage investiga-
tion[37]. In this setting the measurement of  chromosomal 
abnormalities in peripheral blood lymphocytes should 
result particularly fruitful, if  one considers that circulat-
ing cells are exposed to infectious agents even in localized 
infections during tissue perfusion[23,58,59].

Precious information would be generated through 
the analysis of  pre-tumoral and tumoral banked samples, 
where the observation of  abnormal mitosis and genetic 
abnormalities can be associated with the identification of  
virus related antigens or nucleic acids[60], while prospec-
tive studies could include virus isolation. As an example, 
hepatic biopsies from non-responders to anti-HCV 
treatment could be analyzed for the presence of  genetic 
abnormalities and the findings would be compared to 
responders in relation to incidence of  hepatocarcinoma 
development over time. In vitro studies should be devised 
choosing experimental settings that guarantee the closest 
simulation of  authentic in vivo situations, cautiously choos-
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ing animal models and transformed cell lines, avoiding 
non human cell cultures, and laboratory strains of  vi-
ruses[61]. Ideally fresh clinical virus isolates should be used 
to infect cells that are the authentic sites of  latency in vivo, 
looking for consequences of  virus infection on mitosis, 
chromosome integrity and the epigenetic stage.
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