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Viroporins Customize Host Cells for Efficient
Viral Propagation

Kristina M. Giorda* and Daniel N. Hebert

Viruses are intracellular parasites that must access the host cell machinery to propagate. Viruses hijack the host
cell machinery to help with entry, replication, packaging, and release of progeny to infect new cells. To carry out
these diverse functions, viruses often transform the cellular environment using viroporins, a growing class of
viral-encoded membrane proteins that promote viral proliferation. Viroporins modify the integrity of host
membranes, thereby stimulating the maturation of viral infection, and are critical for virus production and
dissemination. Significant advances in molecular and cell biological approaches have helped to uncover some of
the roles that viroporins serve in the various stages of the viral life cycle. In this study, the ability of viroporins to
modify the cellular environment will be discussed, with particular emphasis on their role in the stepwise
progression of the viral life cycle.

Introduction

Viruses have evolved creative strategies to customize
the cellular environment for optimal viral propagation.

Many viruses encode membrane proteins termed viroporins
that are required for efficient virus production. Viroporins
are small hydrophobic proteins that oligomerize and form
aqueous channels in membranes to modify the permeability
of membranes to ions and small molecules. In general, vir-
oporins contain one or two hydrophobic transmembrane
domains (Nieva et al., 2012). Viroporins also frequently
contain basic amino acids adjacent to transmembrane do-
mains that help in membrane binding. By inducing mem-
brane perforations in the correct cellular locations during
discrete stages of the viral life cycle, the rhythm of virus
reproduction is controlled for optimal spreading. Viroporins
have been shown to assist in each stage of the viral life cycle,
including entry, penetration, genome replication, and release
(Fig. 1A and Table 1).

Entry and Penetration

Viruses bind to host cell receptors to initiate infection and
entry (Marsh and Helenius, 2006). The mechanism used to
overcome host cell membranes is dependent on the struc-
tural organization of the virus. For enveloped viruses such as
the influenza virus and human immunodeficiency virus
(HIV) that have a membrane bilayer, fusion with a host cell
membrane delivers the viral particle into the cytoplasm
during infection (Fig. 1A). In contrast, nonenveloped viruses

contain a protein coat that surrounds their genome, so they
must use a different strategy to translocate components
across the bilayer during entry (Fig. 1A). Viroporins must be
present in virions to assist with entry and penetration.

Influenza virus binds to the cell surface and is internalized
into endosomes (Fig. 1B, left). The influenza virus viroporin
M2 is located in the viral lipid bilayer and is critical for in-
fection. M2 acts as a proton-conducting channel in the viral
envelope that supports the acidification of the virus interior
within endosomes (Pinto et al., 1992; Pielak and Chou, 2011;
Wang et al., 2011). The envelope glycoprotein hemagglutinin
undergoes a major conformational change that is triggered
by the low pH of the endosome that leads to fusion of the
viral envelope with the endosomal membrane and delivery
of the nucleoprotein complex into the cytoplasm (Lakada-
myali et al., 2003). The acidification by M2 is also thought to
promote a structural rearrangement of the viral particle that
is required for efficient uncoating of the viral RNA in the
cytoplasm (Martin and Helenius, 1991). In the absence of M2,
the viral protein capsid is delivered into the cytoplasm, but
uncoating of the matrix protein M1 and the viral ribonu-
cleoprotein does not occur and the infection is stalled (Wa-
tanabe et al., 2001; Takeda et al., 2002; Pinto and Lamb, 2007).
The viroporin activity of M2 is inhibited by amantadine (Hay
et al., 1985; Pinto et al., 1992; Wang et al., 1993). Chemically
inhibiting the channel activity of M2 during infection pre-
vents the infection, and amantadine was used as a treatment
until drug-resistant mutations became prevalent (Davies
et al., 1964; Bukrinskaya et al., 1982a, 1982b; Hay et al., 1985;
Bright et al., 2006). Besides priming the virus particle for
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infection, M2 also serves other roles in the influenza virus life
cycle that will be discussed later.

Several nonenveloped viruses also contain viroporins that
are important for the penetration of host cell membranes.
Viral proteins are frequently proteolytically cleaved during
entry to release small hydrophobic viroporins that facilitate
viral penetration. For example, m1N is released from the
nonenveloped reovirus capsid during infection (Fig. 1B,
right) (Danthi et al., 2010). Viral particles containing a point
mutation to inhibit the cleavage of m1N entered the host cells
but were noninfectious (Odegard et al., 2004). m1N forms size

selective pores in red blood cells and liposome membranes
suggesting that it may also form pores during penetration
that lead to disruption of the endosomal membrane for
subviral particle release into the cytoplasm (Agosto et al.,
2006). The adenovirus protein VI is also activated by pro-
teolytic cleavage to aid penetration (Wiethoff et al., 2005).
However, protein VI appears to have membrane disruptive
properties that lyse the endosomal membrane by introducing
positive membrane curvature rather than forming pores
(Maier et al., 2010). In contrast, the VP4 viroporin from po-
liovirus is released by a structural rearrangement in the

FIG. 1. Models of viral in-
fection and release. (A)
Membrane penetration and re-
lease of enveloped and non-
enveloped viruses. (Top)
Fusion of the viral membrane
with the host cell membrane
is used to overcome the lipid
bilayer for enveloped virus
infection. Viral replication is
facilitated by host cell factors.
Enveloped viruses bud from
infected cells and are released
by membrane fission. (Bot-
tom) Nonenveloped viruses
induce host cell lysis for effi-
cient release of particles. (B)
Mechanisms of enveloped and
nonenveloped viral penetration.
(Left) Internalization of influ-
enza virus and trafficking to
acidic endosomes leads to
activation of the viroporin
M2 (green) and proton influx
into the virus interior. This is
thought to induce structural
rearrangements of the virus
particle. The penetration of
influenza virus is mediated by
envelope glycoproteins for
delivery of the activated viral
particle. (Right) Protease ac-
tivation or receptor binding
induces the release of capsid
viroporins from non-
enveloped viruses to induce
pore formation or membrane
lysis for penetration.
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capsid after receptor binding (Danthi et al., 2003). Current
results support the hypothesis that VP4 forms ion channels
in the endosomal membrane that lead to lysis of the mem-
brane for penetration into the cytoplasm, but further studies
are needed to fully understand the viroporin-assisted pene-
tration process.

The nonenveloped virus SV40 has a small double-
stranded bidirectional genome that encodes for a total of se-
ven proteins, of which four appear to possess the viroporin
activity (Fiers et al., 1978; Daniels et al., 2006a, 2006b, 2007;
Suzuki et al., 2010; Raghava et al., 2011; Giorda et al., 2012;
Giorda et al., 2013; Raghava et al., 2013). To infect cells, SV40 is
bound at the cell surface and endocytosed into caveolae-
coated vesicles (Fig. 2, steps A–B) (Anderson et al., 1996;
Pelkmans and Helenius, 2002; Pelkmans et al., 2005). The
virus traffics to the endoplasmic reticulum (ER) using a
microtubule-dependent mechanism (Fig. 2, steps C–D)
(Pelkmans et al., 2001; Norkin et al., 2002). The ER contains
chaperones and protein disulfide isomerases that induce
structural rearrangements in VP1 that supports the uncoating
and release of the minor structural proteins (Fig. 2, steps E–F)
(Magnuson et al., 2005; Schelhaas et al., 2007; Geiger et al.,
2011). The rearrangements that take place in the ER are likely
required for penetration. The reorganized subviral particle is
thought to be translocated across the ER membrane as a large
intact viral particle (Inoue and Tsai, 2011). The delivery of the
subviral particle into the cytoplasm would require subse-
quent targeting through nuclear pore complexes (Fig. 2, steps
G–H). Alternatively, the ER is continuous with the nuclear
envelope, so the delivery across the nuclear envelope could
be more direct; however, there is no known pore in the inner

nuclear membrane, although this route might be mediated by
viral components (Fig. 2, step I) (Daniels et al., 2006b).

VP2 and VP3 are required for efficient viral propagation
(Daniels et al., 2006b). VP2 and VP3 could serve a role in
penetration as in vitro-translated VP2 and VP3 insert into
purified ER membranes. VP2 and VP3 form pores in model
membranes, and mutant viruses lacking the pore formation
activity are noninfectious (Giorda et al., 2013). The N-termi-
nus of VP2 contains a conserved Glu residue that was critical
for infection because it mediated an association to an ER-
resident membrane protein, Bap31 (Geiger et al., 2011). To-
gether, these results support the hypothesis that VP2 and
VP3 act as soluble structural components during binding,
entry, and assembly, and as membrane proteins for viral
penetration. While some viruses utilize viroporins during
penetration to modulate host membranes, the triggers used
to activate the viroporins and the extent of membrane dis-
ruption are highly specialized.

Replication and Assembly

Following viral genome delivery to the host cell, some
viruses modify the cellular environment to support viral
genome replication. Two currently known viruses that re-
quire viroporins for replication include enteroviruses and
coronaviruses. Viroporins from these viruses induce the
dramatic remodeling of cellular membranes to create viral
replication factories. These modified membranes originate
from the secretory pathway and become sites of genome
replication and assembly (Suhy et al., 2000; de Jong et al.,
2006; Hsu et al., 2010b).

Table 1. Viroporins of Enveloped and Nonenveloped Viruses

Structure Virus Viroporin
Amino

acid length Proposed stage(s) References

Enveloped Influenza virus M2 97 Infection Lamb et al. (1985), Pinto et al. (1992)
Maturation
Release

Hepatitis C virus p7 63 Assembly Griffin et al. (2003), Griffin et al., (2004)
Maturation
Release

HIV Vpu 81 Release Gonzalez and Carrasco (1998),
Schubert et al. (1996)

Alphavirus 6K 60–61 Release Melton et al. (2002)
Coronavirus E protein 76–83 Assembly Liao et al. (2004)

Release
Nonenveloped Reovirus m1N 41 Penetration Agosto et al. (2006), Chandran et al.

(2003), Odegard et al. (2004)
Poliovirus VP4 69 Penetration Danthi et al. (2003)

2B 97 Replication Aldabe et al. (1996),
Lama and Carrasco (1992)Release

Bluetongue virus NS3 229 Release Han and Harty (2004)
JC polyomavirus Agnoprotein 71 Release Suzuki et al. (2010)
SV40 polyomavirus VP2 352 Infection Daniels et al. (2006a), Giorda et al. (2013)

VP3 234 Infection
VP4 125 Release Daniels et al. (2007), Raghava et al.

(2011), Giorda et al. (2012)
Papillomaviruses E5 83 N.D. Wetherill et al. (2012)
Respiratory

syncytial virus
SH 64 N.D. Perez et al. (1997)

N.D., not determined.
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The best-characterized viroporin involved in genome
replication is the enterovirus nonstructural protein 2B from
poliovirus and coxsackievirus. The replication of the viral
genome takes place on specialized vesicles that are derived
from ER and Golgi membranes (van Kuppeveld et al., 1996;
Sandoval and Carrasco, 1997). When expressed in cells, 2B
appears to insert two transmembrane domains into ER
membranes (Martinez-Gil et al., 2011). The oligomerization
of 2B in the membrane forms pores that induce Ca + leakage
from the ER lumen and inhibits vesicular transport (Barco
and Carrasco, 1995; Doedens and Kirkegaard, 1995; Aldabe
et al., 1997; de Jong et al., 2008). 2B also contributes to the
virus release by increasing the permeability of the plasma
membrane. The current hypothesis is that the level of 2B
production in the cell dictates the localization and function of
the protein to aid either in replication or release (Martinez-
Gil et al., 2011).

The viroporin p7 is essential for hepatitis C virus infec-
tivity (Sakai et al., 2003; Jones et al., 2007). The channel ac-
tivity of bacterially expressed and purified p7 is inhibited
with amantadine (Griffin et al., 2003). Hepatitis C virus ge-
nome replication takes place in the cytoplasm and coincides
with membrane remodeling, including the formation of lipid
droplets that originate from the ER. Lipid droplets help to
enhance the efficiency of virus assembly by concentrating
viral core proteins in close proximity to structural compo-
nents and viral genomes that are situated in ER membranes
(Boson et al., 2011). The p7 viroporin functions as a calcium
channel and interacts with the nonstructural protein 2 (NS2)
(Griffin et al., 2003; Tedbury et al., 2011). p7 is not required
for viral genome replication, but is essential for subsequent
steps in virus assembly ( Jones et al., 2007). The basic amino
acid residues that are critical for channel function are im-
portant for the release of infectious virions (Griffin et al.,
2004; Jones et al., 2007). Together, p7 and NS2 appear to
coordinate the hand off of the viral core from lipid droplets
to ER sites for viral assembly (Boson et al., 2011).

Some envelope glycoproteins induce fusion of the viral
envelope with the host cell membrane to support viral pen-
etration (Fig. 1B, left). Many viruses are internalized to en-
dosomal compartments where they are activated by the
exposure to acidic pH. Influenza hemagglutinin undergoes a
major conformational change upon exposure to acidic con-
ditions that mediates membrane fusion (Harrison, 2008). The
glycoproteins must be kept in a neutral pH environment
when maturing in the secretory pathway to prevent prema-
ture activation. Both M2 and p7 appear to disrupt the proton

FIG. 2. Model for polyomavirus infection and release. (A)
Polyomavirus is bound at the plasma membrane by cellular
receptors. (B) The virus is taken up by invagination of the
plasma membrane. (C) The endocytosed virus is transported
and (D) delivered to the ER. (E–F) Once the SV40 is in the ER,
it is proposed that the viral protein coat is disassembled,
releasing or exposing structural proteins VP2 and VP3. The
released or exposed coat proteins aid viral transport to either
the cytoplasm (G–H) or nucleus (I). ( J) Capsid assembly
around the viral minichromosome produces virions in the
nucleus. (K) Newly produced VP4, along with (L) agnopro-
tein, triggers cytolysis of the host cell and release of the viral
progeny. ER, endoplasmic reticulum.

‰

560 GIORDA AND HEBERT



gradient in the secretory pathway to aid the maturation of
active virus particles (Sugrue et al., 1990; Sugrue and Hay,
1991; Jones et al., 2007). A channel inactive mutant of hepa-
titis C virus p7 can be rescued by the expression of influenza
virus M2 or using bafilomycin A1 to chemically inhibit en-
dosome acidification (Wozniak et al., 2010). M2 and p7 ap-
pear to disrupt the pH gradient in the secretory pathway so
that active viruses are released from infected cells (Sugrue
et al., 1990; Sugrue and Hay, 1991; Jones et al., 2007). Alto-
gether these results demonstrate that viroporins contribute to
the viral replication and assembly processes by modifying
the cellular environment and coordinating interactions with
other viral proteins.

Release

Membrane budding and scission events are commonly
used to release enveloped viruses from infected cells (Fig.
1A, top right). Several enveloped viruses exploit the ESCRT
pathway of host cells to complete membrane fission at the
virus bud neck (Chen and Lamb, 2008). Influenza virus ap-
pears to use M2 for membrane fission instead of the ESCRT
pathway as M2 induces the membrane invagination of li-
posomes and the pinching off of membrane vesicles (Ross-
man et al., 2010). A conserved amphipathic domain is
required for this activity as its deletion inhibits the release of
viral particles from host cells indicating that M2 plays a di-
rect role in membrane fission for virus spread.

The alphavirus 6K viroporin conducts ions across planar
lipid bilayers (Melton et al., 2002). The synthesis of 6K in
Escherichia coli and mammalian cells induces toxicity and
permeability, respectively (Sanz et al., 1994; Joe et al., 1998).
6K is produced as part of a polyprotein that is generated
after cleavage and traffics as a complex to the plasma
membrane for the assembly and release of the enveloped
virus (Liljeström and Garoff, 1991). The 6K protein is asso-
ciated with the envelope glycoproteins throughout the se-
cretory pathway and may enhance their trafficking
(Gaedigk-Nitschko et al., 1990; Lusa et al., 1991; Loewy et al.,
1995). In the absence of 6K, the viral genome is replicated,
and the synthesis and intracellular trafficking of envelope
proteins is detected; however, virus particles do not effi-
ciently bud from cells (Bredenbeek et al., 1993; Loewy et al.,
1995). 6K appears to directly modify the lipid bilayer to
prompt virus release potentially by depolarizing the plasma
membrane (Sanz et al., 2003).

Enveloped coronaviruses use the E protein viroporin in
viral assembly and release from host cells (Corse and Ma-
chamer, 2000; Lim and Liu, 2001; Madan et al., 2005). E
protein expressed in E. coli or mammalian cells increases the
permeability of the plasma membrane (Liao et al., 2004;
Madan et al., 2005). It is found at low levels in the viral
envelope and is important for the release of infectious
bronchitis virus (Machamer and Youn, 2006).

Vpu is found in the more virulent human immunodefi-
ciency virus type 1 (HIV-1) and is absent from type 2 (HIV-
2). It is a cation selective ion channel when expressed in
xenopus oocytes (Schubert et al., 1996). The expression of Vpu
in mammalian cells or E. coli causes increased permeability to
small molecules (Gonzalez and Carrasco, 1998). This led to
the hypothesis that the function of Vpu during viral release is
to depolarize the plasma membrane to enhance the release of

viral particles (Hsu et al., 2010a). HIV-2 encodes for two al-
ternative ion conducting channel proteins (ROD10 and ST2)
that appear to substitute for the function of Vpu in release
(Bour et al., 1996; Ritter et al., 1996; Bour and Strebel, 2003).
The depolarization of the plasma membrane is thought to
enhance the fusion of the membrane around the capsid and
assist in the progression of the membrane fission reaction
(Hsu et al., 2010a).

Nonenveloped viruses are commonly released through a
lytic mechanism so that viruses are free of membranes (Fig.
1A, bottom right). The bluetongue virus nonstructural pro-
tein 3 (NS3), poliovirus 2B, and JC virus agnoprotein increase
the membrane permeability of mammalian cells and are as-
sociated with viral release (Doedens and Kirkegaard, 1995;
Aldabe et al., 1996; Han and Harty, 2004; Suzuki et al., 2010).
2B and agnoprotein traffic through the ER and Golgi and
eventually permeabilize the plasma membrane by forming
small pores (Agirre et al., 2002; Suzuki et al., 2010). NS3, 2B,
and agnoprotein appear to directly assist in nonenveloped
virus release by forming pores in the plasma membrane that
lead to timely cell lysis.

SV40 viral progeny are assembled in the nucleus of in-
fected cells (Fig. 2, step J). A number of results support a
viroporin role in stimulating viral release for a recently dis-
covered protein produced by SV40 termed VP4: (1) VP4 ex-
pression in E. coli increases membrane permeability; (2) VP4
is expressed when infected host cells become permeable; (3)
deletion of VP4 from the viral genome slows the rate of viral
propagation; (4) purified bacterial expressed VP4 forms size
selective pores in model membranes; (5) when expressed in
host cells, VP4 is localized along the nuclear envelope and
disrupts membrane integrity; (6) like other viroporins, VP4
requires a basic amino acid sequence for the membrane
disruption activity; and (7) fluorescent-based assays indicate
that VP4 induces transbilayer diffusion of lipids through a
toroidal pore structure (Daniels et al., 2007; Raghava et al.,
2011; Giorda et al., 2012; Raghava et al., 2013). A viroporin
activity has also been described for agnoprotein from JC
polyomavirus that disrupts the plasma membrane of infected
cells to promote virus release (Suzuki et al., 2010). As the
polyomavirus SV40 also encodes for agnoprotein, this pres-
ents the possibility that VP4 and agnoprotein work in concert
during virus release to disrupt both the nuclear envelope and
plasma membrane (Fig. 2 steps K–L).

Perspectives

Viruses are able to subvert cellular processes and modify
the cellular environment to reproduce. Viroporins are inge-
niously complicated, small, and efficient proteins that dra-
matically affect the host cell. Future work should aim to
identify new viroporins and understand how they modify
the cellular environment. The approaches used to study p7,
M2, Vpu, and SV40 VP2-4 provide a framework that can be
applied to the study of other viroporins. A deeper under-
standing of the full range of viroporins and their roles in the
viral life cycle could be leveraged to create pharmacological
agents that inhibit viral replication or engineer pseudo-
viruses as gene delivery vehicles. Viroporin inhibitors
might also be used to uncover the stage of the viral life cycle
that channel activity is required. The application of mole-
cular biology, biochemical, structural, and cell biology
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methodologies to the study of viroporins will greatly en-
hance our understanding of these resourceful proteins. De-
tailed analysis of viroporins throughout the virus maturation
process provides valuable insight into the virus and funda-
mental cell biology.
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