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Abstract

Motion capture is usually performed on only a few steps of over-ground locomotion, limited by
the finite sensing volume of most capture systems. This makes it difficult to evaluate walking over
longer distances, or in a natural environment outside the laboratory. Here we show that motion
capture may be performed relative to a mobile platform, such as a wheeled cart that is moved with
the walking subject. To determine the person’s absolute displacement in space, the cart’s own
motion must be localized. We present three localization methods and evaluate their performance.
The first detects cart motion solely from the relative motion of the subject’s feet during walking.
The others use sensed motion of the cart’s wheels to perform odometry, with and without an
additional gyroscope to enhance sensitivity to turning about the vertical axis. We show that such
methods are practical to implement, and with present-day sensors can yield accuracy of better than
1% over arbitrary distances.

Introduction

Motion capture of human locomotion is usually limited to a finite space, whose volume is
defined by a set of fixed cameras or other sensors. This makes it difficult to characterize
some activities, such as unsteady or unconstrained walking. Treadmills function well for
steady, continuous walking, but not for significant changes in speed or direction. Motion
captured over-ground for large distances could facilitate the study of a greater range of
activities than currently possible.

An alternative is to fix the sensors to a wheeled cart that is moved to accompany the human
subject. This allows for measurement of the subject’s motion relative to the ground, if the
cart’s absolute displacement can be estimated. For human walking, one such indicator of
cart motion is the relative position of foot-mounted motion capture markers. Assuming that
there is always one foot at rest on the ground, at least one marker will indicate cart motion
[1]. An alternative is to use odometry, referring to path integration of the cart’s velocity as
sensed from its wheels [2]. We previously used a combination of these methods to measure
step variability [1], and could capture 100 or more contiguous steps during straight walking.
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Changes in walking direction can, however, reduce accuracy due to slippage between
between feet or wheels with ground. Fortunately, adding a gyroscope can correct for such
issues [3].

The methods above are standard in the field of mobile robots, but are subject to trade-offs in
performance and complexity. They have yet to be assessed in the context of human motion
capture. In the present study, we have implemented and tested all three methods: foot-based
sensing, wheel-only odometry, and gyroscope-enhanced odometry. We also present
techniques for quantifying accuracy and offer suggestions for addressing common practical
issues. This may facilitate motion capture over distances longer than practical in the
laboratory.

We implemented three methods of long-distance motion capture, and tested them for
overground walking. The hardware consisted of a cart-mounted motion capture system for
sensing the person in three dimensions, and optical encoders and a gyroscope for sensing the
motion of the cart (see Figure 1). We first present the foot-referenced method, which was
assessed along straight-line walking. This is followed by two odometry methods, one based
on sensing of the cart’s wheels, and the other adding a gyroscope for yaw rotation. Details
regarding sensors and methodology can be found in Supplementary Material A.

Foot-referenced Estimation of Cart Motion

Motion of the cart may be determined solely from the relative motion of foot-mounted
markers. During walking, the stance legs alternate, so that at least one foot is stationary on
the ground at all times [1]. One of the principal challenges is to identify which marker is
stationary on the ground, based on markers alone. During walk, we assume that each foot is
always either stationary or moving only forward in space. If the cart moves forward, a foot
on the ground will have a marker moving backwards relative to the cart. Therefore the
marker with most rearward velocity therefore indicates which foot is stationary. Two main
limitations of this method are that it does not capture changes in cart heading, and is not
suitable for running gaits. This method is termed Leap-Frog localization [4] in cooperative
robotic applications, referring to alternation between stationary reference points.

This method is highly dependent on marker placement on the foot. For optical motion
capture, it was necessary to mount markers on the heels of the feet for line of sight. These
locations are challenging to track because the heel comes to rest very briefly during each
step, and heelstrike induces vibrations of the foot, shoe, and marker. An alternative is to use
magnetism-based markers that do not require line of sight (e.g., Ascension Technologies,
Inc.; Burlington, VT.), mounted atop the foot insteps [1]. That location is relatively
motionless during much of the stance.

The cart speed can be estimated from the displacement of whichever foot is stationary.
Given a sequence of forward displacements for the left and right feet (d;and d,
respectively), the cart forward speed v can be computed as the difference between two
consecutive measurements, using whichever foot shows the smaller motion in the moving
capture frame:
— A=) g g (n) — dy(n— 1) < dp (n) — dy (n — 1)
v(n)= do(n)dr(n=1) e 4 )
— e i 1(n) —di(n—1)>d-(n) —d.(n— 1)

where T'is sample period. Cart speed v has opposite sign to the marker displacements, which
are moving backwards relative to the cart, hence the negative sign in the Eq. 1. A similar
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equation may be applied for backward cart motion. The x direction is defined as forward for
the cart, and the y (lateral) direction is not measured (Figure 1). Forward position is updated
according to

z(n+l)=z(n)+v(n)T (@

The estimated cart speed can be corrupted by missing or occluded marker data. We address
this problem by filtering the cart speed using a Kalman filter (see Supplementary Material B
for details).

Wheel-based Odometry

We also implemented an estimate of the cart’s motion from wheel encoders. This method
does not depend on the nature of the subject’s footsteps, and therefore applies even when the
feet slip on the ground or have an aerial phase. Here, the primary assumption is that the
wheels roll a fixed distance per revolution, without slipping on the ground. This is a form of
dead-reckoning, based on the integral of wheel motion.

We measured wheel rotation with optical encoders located on the rear wheels of the cart.
The encoder count change during a sample period ¢;and ¢, can be translated into left and
right wheel forward displacements (syand s, respectively), using information about wheel
diameter D and the count-per-revolution C specification of the encoders

a7 e

These data may be used to track cart motion in the ground plane. Given a separation
between wheels B and the wheel linear displacement, the cart displacement (x forward, y
lateral, and ¢ yaw rotation or heading, defined relative to an initial configuration) is updated
according to

z (n+1) z (n) 78T(n);sl(n) cos (¢ (n) +78T(n)2§l(n)>
y(n+l) | =] y(n) |+ —ST(TL);SZ(”) sin <w (n) +73T(n)2;381(n)) @)
¥ (n+1) ¥ (n) () —su(n)

Additional details can be found in Supplementary Material C.

Gyroscope Enhanced Odometry

For conditions such as walking around corners, the cart’s yaw rotation may be estimated
more accurately with a gyroscope, which senses angular velocity without being affected by
external conditions. We integrate the gyro sensor output w over time to estimate relative cart
heading (with respect to the starting pose). Position and heading are computed as

z (n+1) wn) ][ s (v (n) +251) ]
y(ntl) | =| y(n) |+ | mbliab)g, <¢ (n) +%> ©)
¥ (n+1) ¥ (n) w(n) T

The heading estimate from the gyroscope could be improved by fusing it with encoder data
using estimation techniques (i.e. Kalman filters). However, the benefits are minimal when
using a low-drift and well-calibrated gyroscope as in our case [3], and as discussed
previously by others [5].
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Experimental Results

For the foot-referenced method, we measured straight-line walking and evaluated the
forward displacement errors for a foot-mounted marker. We performed 20 straight walk
experiments (V= 20), each a known distance of 20 m (L = 20). The average error z, (Eq. 6)
for our implementation of foot-referencing was 3.8%, which was reduced to 2.7% with the
digital filter (see Figure 2).

_ 1 N
L= <Z|L — 1z, (n) |) 100% (6)

n=1

We tested the encoder-based odometry methods with known closed walking paths. Here, an
experimenter pushed the cart following a subject walking a rectangular path about 112 m in
length (in a 36 m by 20 m corridor grid), with identical starting and ending points in the
middle of one side. This path was repeated five times, both clockwise and counter-
clockwise, to quantify errors in both directions. The results are presented as position,
distance and heading errors (X,, ¥ deand ), defined as the deviation of the estimated
ending configuration from actual over a closed path that ends on its starting point (see
Figure 3a and Egs. 7 and 8).

de (n) = za(n)Q—l—y@(n)Q )

_ 1 N
w;N;Iwe )] @®

We estimated the average return positioning errors 4, for both wheel-based methods (Figure
3b). The error is presented as percentage of distance traveled and is approximated using the
nominal path length (L ~ 112). For wheel-based odometry alone, the error was 1.7% (0.62
s.d.) of the traveled distance, across all ten experiments (/= 10). Adding gyroscope
measurements, the error was reduced to 0.3% (0.16 s.d.) (Figure 3c). The average of the

absolute heading error v, (Eq. 9) was 10 deg (4.07 s.d.) using odometry alone and 1.7 deg
(1.19 s.d.) with the gyroscope (see Figure 3d). Because the wheel-based odometry errors are
dominated by heading errors, the inclusion of gyroscope improves performance, subject to,
the quality of the gyroscope [3].

Finally, we quantified the extra noise introduced by cart motion. We used the moving cart to
collect position data of a stationary object. Those data were high-pass filtered to focus on
vibration-induced noise, yielding standard deviations of up to 2.27 mm, as opposed to 0.024
mm with the cart not moving. The increased errors can be caused by imperfect wheels,
uneven floor surfaces and small relative motion of the cameras with respect to the cart.

Discussion

Our goal was to capture human locomotion over long distances. We mounted a motion
capture system on a mobile cart, which must then be localized to a stationary reference. We
evaluated three localization methods using differing numbers of sensors. We found that
localization may be performed from foot-mounted markers alone, but only if there is always
at least one foot on ground, and for relatively straight paths. Wheel-based odometry can
improve accuracy considerably, but less so for paths with turns. Not surprisingly, we found
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that the method using the most information—gyroscope-enhanced odometry—yielded the
best accuracy. This works with any gait and on paths that involve turns (see Figure 4).

Although foot-referenced localization can yield acceptable accuracy [1], its implementation
is not trivial. The method requires overlapping intervals where foot-mounted markers are
stationary. It is affected by marker vibrations, which often increase with walking speed.
Vibrations may be partially offset with an appropriate noise filter.

The addition of wheel sensing facilitates straightforward implementation of odometry. We
obtain best accuracy by calibrating scaling factors from empirical data gathered over known
distances, rather than from wheel geometry. We caution that any calibration is specific to a
particular floor surface, because wheel slippage and deformation depend on ground contact
conditions. Where turning paths are involved, wheel-based odometry performs less well.
However, the addition of a yaw gyroscope can greatly improve performance and reduce the
impact of wheel slippage. Even though these methods allow the cart to be localized on the
ground plane, the motion capture is performed in three dimensions. Although these various
sources for error tend to degrade absolute accuracy in space, we believe that the relative
(displacement) accuracy can be quite acceptable for many biomechanical applications.

The methods presented tend to share and often magnify the limitations of conventional
motion capture. With a cart, markers may usually be tracked on one side of the body, and
are subject to occlusion, loss of view, and poor depth accuracy (along the camera axis). It
may be challenging to maintain line of sight, especially when turning corners (see Figure 4).
Accuracy may be degraded with poor camera views or long capture distances. Some of these
restrictions are reduced by using a magnetic tracker, but many can be reduced with multiple
cameras, placed appropriately.

Mobile motion tracking is necessarily subject to increasing drift over time. For closed paths,
a possible compensation is to distribute the error over the entire trajectory so that the start
and end points match correctly. It may also help to provide additional absolute reference
information, for example with fiducials, meaning markers fixed at known ground locations.
Another issue is vibration of the cart, which is increased by rough or deformable terrain,
might be reduced by rolling a dolly on a smooth track. We have yet to evaluate such
possibilities.

The natural alternative for over-ground locomotion is traditional motion capture with many
cameras fixed to ground. But even then it may be difficult to calibrate for absolute accuracy
over large capture volumes, especially if many cameras have non-overlapping views.
Fortunately, many human walking studies require only relative displacement (e.g., joint
angles or step lengths) rather than absolute position. We believe that mobile motion capture
can yield good accuracy over distances longer than practical with many other methods,
albeit with limitations imposed by the need for cart localization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Table of Symbols

Sampling period
Traveled distance
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d;, d; Left and right foot displacement relative to cart, measured with motion capture
system
% Estimated foot-referenced cart speed
D Wheel diameter
C Encoder count-per-revolution parameter
B Cart wheel separation or base
e, & Left and right wheel encoder outputs
S Left and right wheel displacement
X,y Cart position relative to the origin
Xer Ye Cart return positioning error
. Average forward percentage error
] Cart heading angle
YPe Cart return heading error
TZC Average of the absolute return heading error
() Gyroscope output
de Return distance error
4 Average position percentage error
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Figure 1.

System for collecting overground walking data. Motion capture cart is pushed behind the
walking subject, recording marker paths relative to the cart. On-board sensors (encoders and
gyro) and 3-dimensional marker data are then used to determine marker paths relative to
ground.
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[ \/otion Capture
[—JMotion Capture + Kalmam Filter

(b)

Forward cart speed and displacement errors for the foot-referenced method. (a) Estimate of
cart speed from foot-referenced markers after filtering. A Kalman filter reduces noise,
yielding cart speeds (black line) comparable to estimates from wheel encoders (gray line),
albeit with a small time lag that can be removed with post-processing. (b) Applied to straight
line walking of 20 m, errors are shown as mean percentages (with error bars representing

s.d.).
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Figure 3.

Comparison of positioning and heading errors using odometry-based methods for cart
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(d)

localization. (a) Example of cart path estimated using wheel odometry. Magnified view of
the return point (inset) is shown with definitions of the final position (xzand y,), distance
(dp), and heading (¢,) errors. (b) Position errors after a closed path returning to the starting
point, using wheel-based odometry alone, and with gyroscope enhancement. Data are for
clockwise and counter-clockwise paths (CW and CCW, respectively), one data point per

trial. Ellipses indicate 20 covariance error. (c) Magnitude of position error (;,), expressed as

a percentage of the traveled distance. (d) Average absolute heading error (1;5) across trials.
Error bars indicate s.d.
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Figure4.

Sample motion capture data for overground walking, using gyroscope-enhanced odometry.
Markers for left and right feet and pelvis are shown (thin black, thin gray and thick black
lines respectively). The marker motion with respect to the cart is added to the estimated cart
motion to yield locations relative to ground. Example of a closed rectangular path about 112
m in length. Also shown is a magnified view of data taken while turning a corner.
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