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Abstract

Recent progress in the field of cellular reprogramming has opened up the doors to a new era of
disease modelling, as pluripotent stem cells representing a myriad of genetic diseases can now be
produced from patient tissue. These cells can be expanded and differentiated to produce a
potentially limitless supply of the affected cell type, which can then be used as a tool to improve
understanding of disease mechanisms and test therapeutic interventions. This process requires
high levels of scrutiny and validation at every stage, but international standards for the
characterisation of pluripotent cells and their progeny have yet to be established. Here we discuss
the current state of the art with regard to modelling diseases affecting the ectodermal, mesodermal
and endodermal lineages, focussing on studies which have demonstrated a disease phenotype in
the tissue of interest. We also discuss the utility of pluripotent cell technology for the modelling of
cancer and infectious disease. Finally, we spell out the technical and scientific challenges which
must be addressed if the field is to deliver on its potential and produce improved patient outcomes
in the clinic.
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Introduction

The field of cellular reprogramming has advanced in leaps and bounds since the early
experiments of Briggs and King in the 1950s which demonstrated that cloning was possible
using an embryonic frog model [1]. This approach was refined by John Gurdon in the 1960s
and 1970s using nuclear transplantation with differentiated frog cells to generate clones [2—
4]. Another advance was made in the 1980s with Harold Weintraub demonstrating that
cellular fate could be reassigned via the ectopic expression of the transcription factor and
master regulator MyoD [5]. Since then the field of cellular reprogramming has progressed
rapidly with the cloning of the first mammal “Dolly the sheep” in the 1990s [6], and more
recently the reprogramming of somatic fibroblasts to a pluripotent state by the introduction
of four key transcription factors to generate induce pluripotent stem cells (iPSCs) [7-10].
This progress was recently acknowledged with John Gurdon and Shinya Yamanaka being
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awarded the Nobel Prize for their contributions to the field of reprogramming. Since the
inception of induced pluripotent stem cells, the floodgates have opened with respect to
refinement of the technology and its application in the generation of patient-specific models
of disease [11-13]. For the first time it is now possible to generate a virtually limitless
supply of highly characterised, patient-specific cells representing disease-relevant tissues
[12]. The power of iPSC technology lies in its ability to model both monogenic and
polygenic disorders, as well as disease states where the genetic component has yet to be
identified.

To date there are a number of papers that describe the generation of both human embryonic
stem cell (hESC) and iPSC lines from a myriad of disease states, however many do not
convey the disease phenotype /n vitro. In this review we will discuss only the hESC and
iPSC lines which present the appropriate phenotype; in addition we will discuss the hurdles
that remain before their widespread use in disease modelling and drug discovery can be
adopted. Table 1 lists all the diseases which have been successfully modelled in iPSCs to
date, and from these we have selected notable studies for in-depth discussion in the text. Our
intention is to give as complete a picture of the technology as possible, and represent the
wide range of experimental approaches, disease states and translational goals currently
attracting interest in this rapidly expanding field.

Drawbacks of current approaches in modelling diseases

Up to this point, the majority of disease modelling has been conducted in animal models,
patient fibroblast cultures / primary tissue, or by the overexpression of affected genes in
previously characterised cell lines. Though these approaches are informative and have
contributed to our overall understanding, each has its limitations. For example, due to
differences in both gene expression and physiology, animal models do not always fully
recapitulate disease states as they present in the human system, and this has led in part to
high attrition rates on translation from animal to clinical studies [14-17]. The use of primary
cells from affected individuals is limited both by access to donors and the lifespan of the
tissue in culture, as well as the difficulty in accessing particular cell types from living
patients such as neural and cardiac material. Finally, the overexpression of proteins in cell
lines may not accurately reflect the pathophysiology of disease states, for example due to
variability in transgene integration points and copy number states. With iPSC technology it
is possible to isolate a patient biopsy, culture the cells, induce pluripotency, and differentiate
the resulting iPSCs into the specific cell type afflicted with the disease. This opens up the
possibility of studying the disease /n situ in the relevant cell type under the correct genetic
background, allowing the penetrance of the disease to be considered.

Human embryonic stem cells for modelling disease

Embryonic stem cell research has laid the groundwork for the development and use of iPSC
technology. Following their initial derivation in 1998 by Thomson and colleagues [18],
hESCs were predicted to provide a powerful platform for the scientific community to
interrogate disease, as well as a limitless supply of somatic cells for therapy and translation.
However, their widespread adoption has been slowed by the ethical concerns which still
surround the hESC derivation process. In addition to leading the way to iPSC technology,
hESCs have also provided insight into disease in their own right through several different
approaches.

One method involves manipulating the genome of the hESC line, as exemplified by the
modelling of Lesh-Nyhan Syndrome. This model was generated via gene targeting to
introduce a mutated form of the disease gene HPRT1. The generated lines exhibited some of
the attributes of the disease, both lack of HPRT1 activity and elevated levels of uric acid

Curr Gene Ther. Author manuscript; available in PMC 2013 September 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Siller et al.

Page 3

[19]. This approach is both difficult and laborious due to technical limitations, but recent
advances in genome engineering with zinc finger nucleases (ZFNs) and transcription
activator like effector nucleases (TALENS) which can modify the genome with precision
will potentially allow the modification of hESC genomes more routinely [20-23]. By
modifying target sequences in the genome, ZFN and TALEN-based gene editing may be
able to introduce or correct disease-causing mutations in iPSCs. This will allow the rapid
and precise generation of genetically well-defined and homogeneous iPSCs for disease
modelling. This approach will be applicable to defined monogenic disease states where
penetrance of the disease is not an issue.

Another approach that has been exploited in hESCs is pre-implantation genetic diagnosis
(PGD) [24]. PGD is carried out when one or both parents harbour either a known mutation
such as those seen in X-linked monogenic diseases or a known chromosomal abnormality;
testing is performed to determine if these are present in the embryo. To date a number of
studies have described PGD derived disease models including Huntington, Charcot Marie
Tooth type 1A, Fragile-X and cystic fibrosis [19, 25-31]. Although many lines have been
derived following PGD, there are very few publications that describe further characterisation
in terms of phenotype recapitulation. A few notable studies have delved deeper, including
one describing an hESC line containing Fragile-X mutation, in which mutant FAMR1 gene
was shown to be actively transcribed in the pluripotent state, and silenced upon
differentiation. There are again a number of drawbacks to this approach in that it is
dependent on access to PGD embryos carrying the required disease state and suffers from a
lack of patient information, which is especially important in determining the penetrance of
many disorders. This coupled with ethical issues surrounding the use of hESCs has led
researchers to embrace alternative strategies, chiefly those based on human iPSC
technology.

Human induced pluripotent stem cells for modelling disease

iPSC technology has moved at great speed with respect to both the refinement of derivation
techniques, and the diversity of tissue types that can be reprogrammed [11]. In addition we
have seen the translation of this technology to other arenas including the derivation of iPSCs
from endangered species and farm animals [32]. Disease specific lines were first reported in
2008 by Park and colleagues, who describe 10 disease specific iPSC lines [12]. Since this
publication the number of disease specific lines has exploded, though many studies fail to
demonstrate a disease phenotype. In the following passages we discuss only the hiPSC
models that present a phenotype; for a comprehensive list, see Table 1.

Disease modelling - Ectodermal lineages

In addition to the difficulties in using animal models to study human diseases, as discussed
above, one of the major limitations hampering research into diseases which affect the neural
lineages has been the difficulty in obtaining representative human tissue samples.
Traditionally these samples have been obtained post-mortem. While these post-mortem
samples have contributed immensely to our understanding, they are representative of the end
point of the disease, making it difficult to unravel early events, progression and the overall
etiology. With the advent of induced pluripotent stem cell technology and downstream
procedures to produce regionalised neuronal subtypes, patients specific lines representative
of many neurological and neurodegenerative disorders can now be studied.

The use of pluripotent cells for researching the neural lineage is well established, both in
neurological and neurodegenerative disease. One of the earliest models to be described was
spinal muscular atrophy (SMA), an autosomal recessive disorder caused by mutations in the
survival of the motor neuron 1 gene (SMN), which leads to death in infants. Ebert and
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colleagues derived iPSCs from a SMA patient and demonstrated that these could be
differentiated to both neurons and astrocytes [33]. The striking observation was that the
mutant line recapitulated the disease state in terms of lack of SMNZ, and also exhibited
selective death of motor neurons. Additionally, the authors demonstrated that SMNZ levels
could be modulated by treatment with compounds known to induce SMNZ, thus providing a
“proof of concept” that iPSC models can be used as a platform for screening therapeutic
interventions.

Another early study published in 2009 by the Studer laboratory describes patient-specific
iPSCs representing familial dysautonomia (FD), a rare but fatal neuronal disease [34]. FD is
caused by a point mutation in the /KBKAP gene, and its disruption leads to a tissue specific
splicing defect causing loss of autonomic and sensory neurons [35]. Owing to a lack of
suitable model systems the role of the FD defect in the aetiology of the disease remained
elusive. To this end, Studer and colleagues derived iPSCs from 3 FD patients and non-
affected control patients, and confirmed the presence of the FD causing mutation in
IKBKAP. The iPSCs were differentiated into cells deriving from all three lineages, further
confirming pluripotency. On differentiation to neural precursors, no notable difference in
differentiation efficiency was detected. However, markedly lower levels of the normal
IKBKAP transcript were observed in the mutant line-derived neural crest precursors
compared to controls. The mutant lines also demonstrated a decreased rate of neurogenesis
and migration potential when subjected to a wound healing assay. These observations
correlated well with the /n vivo pathophysiology of the disease, demonstrating an observable
relevant phenotype. As a “proof of concept” various compounds were used to assess rescue
of phenotype with respect to splicing defects, rate of neurogenesis and migration potential.
Of the compounds tested, kinetin, a plant hormone which had previously shown to rescue
splicing defect in FD-lymphoblast lines [35], rescued this phenotype in neural crest
precursors. Interestingly, a short term treatment was only able to rescue the splicing defect,
with no effect observed against neurogenesis or migration. Extended treatment with kinetin
produced a significant rescue of neurogenesis, but no improvement of migration. In a recent
review, Studer and colleagues have gone on to outline the future of research into FD and
indeed other diseases with iPSC technology [36]. They identify three key areas of future
work based on FD-iPSCs: genetic correction of the disease mutation, mechanistic studies of
the disease pathology, and the use of FD-iPSC derived neural precursors as a platform for
drug screening.

The FD study was successful because there is a clearly defined mutation which presents a
definite phenotype /n vitrothat correlates to the clinical presentation of the disease in human
patients; this is true now of many monogenic disorders (see Table 1). For more complex
neuronal diseases such as the autism spectrum disorder (ASD), new genomic sequencing
and genome wide association (GWA) studies are highlighting novel ASD-relevant genes to
study using iPSC technology [37]. Using iPSCs derived from patients harbouring more
highly characterised genetic aberrations as a model for autism, it will be possible to create a
platform for drug discovery which could be effective in alleviating the symptoms of patients
with a more complex cause of the disease.

An important factor that needs to be taken into consideration is the time of onset of the
disease. For example amyotrophic lateral sclerosis (ALS) is a progressive disorder that
usually manifests around the age of 50 [38]. Other neurodegenerative disease such as
Parkinson's and Alzheimer's also develop over time. All of these have been modelled in
iPSCs and all exhibit some of the phenotypic signatures of the disease state. For example,
Bilican and colleagues recently demonstrated that an iPSC model of ALS (mutation in the
gene TARDBP) exhibited the pathological hallmarks of the disease, in that mutant motor
neurons (MNSs) contained detergent resistant TDP-43 protein [39]. In addition, the
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functionality of MNs was not compromised, but a reduced survival rate was observed. The
above studies give credence to the use of iPSC technology for the interrogation of late onset
disease types.

Disease modelling - Mesodermal lineages

The generation of mesodermal tissue from pluripotent stem cells has been the focus of the
pharmaceutical industry, namely the production of cardiomyocytes to investigate
cardiotoxicity to improve drug safety and potentially accelerate drug discovery. The
rationale for this is to provide a supply of cells that can stop gap the shortage of primary
material. Additionally, researchers have targeted therapeutically relevant cell types for use in
cellular therapy. Now researchers armed with protocols to generate the afflicted cell types,
combined with access to patients and iPSC technology will provide a powerful platform to
study disease.

There are now a number of studies that describe the modelling of diseases that affect
mesodermal tissues. These include the cardiac diseases, and to date there have been a
number of reports that describe iPSC models of the cardiac arrhythmias, including the
congenital long QT syndrome (LQTS) which affects cardiomyocytes [40]. In a study by
Itzhaki and colleagues, type-2 LQTS patient specific iPSCs were derived containing an
A614V missense mutation in the KCNHZ gene [41]. On analysis of differentiated
cardiomyocytes from these cells by patch clamping, a prolonged action potential was
revealed in comparison to control. Upon further investigation, it was revealed that the defect
was caused by a reduction in the cardiac potassium current (ly,), which is crucial for
cardiomyocyte function. Itzhaki and colleagues then tested various pharmacological
compounds to assess their influence on the observed phenotype [41]. The rationale behind
this was to demonstrate the utility of iPSC models in emulating disease states and producing
platforms for drug screening, and also to investigate drug interactions that could potentiate
the problem. This was highlighted when Itzhaki and colleagues observed increased
arrhythmogenicity in LQTS-iPSC derived cardiomyocytes following exposure to cisapride,
a drug that was removed from market due to pro-arrthythmic mortality [41]. Developing this
technology further will create a platform to help reduce drug attrition and provide
personalised screening for adverse drug reactions.

There are now a number of studies which describe the modelling of disease states affecting
hematopoietic tissues. One such disease is Fanconi anaemia (FA), which is a bone marrow
failure disease caused by mutations in a large number of genes in the FA pathway, but
whose mechanism remains elusive [42]. A study by Raya and colleagues described the
unresponsiveness of FA cells to reprogramming, and reported that iPSCs from FA patients
could only be derived after correction of the affected gene [43]. This raised the question of
whether this was due to the refractory nature of FA cells to reprogramming, or if the
limitations of current technology were a contributing factor. In 2012 Muller and colleagues
demonstrated the latter, using physiological normoxia (5% O,) and a polycistronic lentivirus
to produce FA-IPSCs, albeit at a reduced efficiency [44, 45]. Now that both corrected and
uncorrected FA-iPSC lines have been derived it will be possible to investigate the disease in
an isogenic background.

A number of recent papers describe the generation of iPSCs from patients with diseases
affecting several different tissue types. Panicker and colleagues [46] derived iPSCs from
patients with Gaucher's disease (GD), an inherited lipid storage disease with a high
prevalence in the Ashkenazi Jewish population [47, 48]. Patients with GD present with
many symptoms including haematological abnormalities, enlarged liver and spleen, and
bone disease, with varying severity depending on the type of GD. Types 1 to 3 were
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modelled in this study [46]. The GD-iPSCs were differentiated to macrophages, the cell type
most influenced by this disease, and to neurons which are also affected. Both the
macrophages and neurons presented with the expected reduced levels of glucoceroroside
activity, along with accumulation of sphingolipids and loss of lysosomal function. In the
macrophages this was further reinforced by their inability to clear red blood cells, a
phenotype representative of the severity of the mutation (type 1, 2 or 3). Interestingly, this
phenotype could be rescued with recombinant glucoceroroside, and partially rescued with
the chaperone isofagomine, in agreement to clinical observations.

Two other recent publications describe the derivation of trisomy 21 iPSCs for the modelling
of the haematological abnormalities associated with Down's syndrome, which previously
had been impossible [49, 50]. Both groups produced iPSC lines, but MacLean and
colleagues derived isogenic iPSCs that were di- or trisomic with respect to chromosome 21.
In addition they utilised a hESC line containing trisomic 21 as a control. Both groups
observed differences in differentiation potential, with a reduction of myeloid potential and
increased erythroid potential. The added value of using isogenic controls not only here but in
other model systems is that this will allow further dissection of the molecular mechanism of
the disease state. In an independent study by Li and colleagues [51], they describe the
derivation of Down'’s syndrome-iPSCs and the successful removal of one copy of
chromosome 21, thus reverting it back to a normal chromosomal complement. This was
achieved by targeting of one copy of chromosome 21 with thymidine kinase (TK) neomycin
cassette in the presence of G418 selection, and then subsequent counter-selection for TK
with ganciclovir. This approach has potential implications for modelling Down'’s syndrome
with direct isolation of isogenic control iPSC line. However, as reported above by MacLean
and colleagues [50], disomics for chromosome 21 can arise spontaneously, and cells could
be generated in this way rather than through laborious genetic manipulation.

Disease modelling - Endodermal lineages

The generation of endoderm is of particular interest to the pharmaceutical industry, as a
large proportion of drug toxicity relates to the liver. The main goal of the field has been to
ameliorate the dearth of hepatocytes for toxicology, drug metabolism and drug efficacy, and
to reduce drug attrition. In addition researchers have focussed heavily on the production of
therapeutically relevant endodermal cell types for use in cellular therapy, in particular
hepatocytes and pancreatic B-cells. The knowledge acquired from developmental studies has
informed a number of publications describing the production of functional hepatic endoderm
and pancreatic -cells from human pluripotent stem cells. Now that the full potential of
iPSCs is realised as discussed above, efforts are underway to utilise this technology to
generate endodermal tissues for disease modelling.

One class of diseases being intensely investigated are the inherited metabolic disorders,
which manifest due to mutations that perturb hepatocyte function. Rashid and colleagues
[52] describe the production, characterisation and differentiation of 14 iPSC lines
representing 5 different metabolic diseases. They then further derived three al-antitrypsin
deficiency (A1ATD) lines from different patients, a familial hypercholesterolemia (FH) line,
and a glycogen storage disease type 1A (GSD1A) line, a model also generated by
Ghodsizadeh and colleagues who did not describe a phenotype [53]. These 3 models all
presented a phenotype following differentiation to hepatocytes that reflected some of the
pathology of each disease. This highlights the utility of these models for potential platforms
to screen therapeutic interventions. One salient point to be taken from this report was the
phenotypic variation observed in the ALATD disease lines which contained the same
mutation (E342K), put down to the recalcitrant nature of one of the lines to the hepatocyte
differentiation procedure. This highlights the potential pitfalls of the technology and
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reinforces the requirement for multiple independent clones and subjects. Cayo and
colleagues have taken the preliminary study of Rashid and colleagues further to address key
pathophysiological question of FH [54]; they investigated whether patient-derived iPSCs
would reflect key defects in this metabolic disorder. Importantly, Cayo et al tailored the
experimental approach to take into account the variability associated with reprogramming by
employing multiple clones. Hepatocytes derived from these lines demonstrated a reduced
ability to take up low-density lipoprotein (LDL), as well as increased apoB-100/VLDL
secretion, in concurrence with clinical observations. They investigated the effect of
lovastatin, an inhibitor of HMG-CoA reductase which reduces LDL, and on treatment they
demonstrated increased LDL uptake. They also highlighted the issue of differential response
to the statins; with a large number of individuals being poor responders due to the
polymorphic variation inherent in the population. One possible solution to this would be the
construction of a library from individuals representative of these polymorphisms who
exhibit elevated cholesterol.

Two independent studies describe the generation of iPSCs from patients with Wilson's
disease, a metabolic disorder caused by mutation of the A7P7B gene which leads to
accumulations of copper in the liver and central nervous system [55, 56]. Both studies
generated hepatocytes and demonstrated the presence of A7P7B at the transcription and
protein level. In addition, Zhang and colleagues [55] demonstrated copper transport
dysfunction, which was rescued through overexpression of A7B7B via lentivirus or
treatment with the drug curcumin. The mechanisms behind copper accumulation in Wilson's
disease remain unclear, and a tool such as this is likely to aid understanding and facilitate the
development of new drugs and treatments. The number of iPSC models that affect the
hepatic lineages is growing and now includes tyrosinemia type 1, progressive familial
hereditary cholestasis, and Crigler-Najjar syndrome [52, 53].

Aside from the liver, other potential uses of endodermal cells in disease modelling relate to
airway diseases and Type 1 diabetes. Two independent groups describe the derivation of
patient specific cystic fibrosis (CF) iPSC lines [57, 58]. Mou and colleagues [58] describe
the generation of lung and airway progenitors from the derived mutant iPSCs but were
unable to produce mature lung epithelium ex vivo; the authors speculate this may be due to a
lack of the correct epigenetic patterning. Wong and colleagues, appear to overcome some
issues of maturation and describe the production of mature airway epithelia, but
acknowledge the issue of variability and heterogeneity of differentiation [57]. The resulting
epithelia presented CF protein in the expected polarity, on the apical plasma membrane. CF
transport function was demonstrated but due to the aforementioned heterogeneity was
variable. In CF mutants in this case (F508del) it has been shown that the mutant protein is
not incorporated into the plasma membrane but targeted for degradation. This was
recapitulated in the mutant lines with the F508 deletion, and could be partially rescued with
VX-809, a therapeutic known to promote re-localisation currently in phase 2 trails. Overall
function was however not recovered as ascertained by efflux potential. These studies are
very promising and highlight the power of iPSC technology but also illustrate the limitations
that can be encountered in terms of being able to generate homogeneous, mature cell types
representative of the /n vivo situation.

Type 1 and Type 2 diabetes has had been the focus of intense research, and as stated above
the main area that has been addressed is the generation of mature p-cells ultimately for cell
replacement therapy. However, researchers have seen the utility of iPSC technology to
facilitate the dissection of monogenic, and some more complex diseases. A handful of
papers describing the production of patient specific iPSC lines from both Type 1 and 2
diabetes are now published, but as of yet none describes a phenotype [59, 60]. For an insight
into the direction of the use of pluripotent stem cells in diabetes research, see [61, 62].
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Modelling Infectious Disease

An emerging area that is beginning to exploit iPSC technology is the study of infectious
disease. To date the availability of models to explore infectious agents, pathogens and
parasites, and their interactions with the host remain sparse. Some reports now describe the
use of iPSCs to investigate a number of viral systems including the human
immunodeficiency virus (HIV) and hepatitis C [63-68]. The recent publication by Spence
and colleagues [69] describing the directed differentiation of human pluripotent stem cells to
intestinal tissue has many implications in this area [70]. Very recently a publication by
Finkbeiner and colleagues described the use of this system to model rotavirus infection in so
called “induced human intestinal organoids” [70]. A potential implication of this study is the
reduction of animals (African green monkeys) used to produce primary material. With this
area rapidly developing, researchers outside the stem cell field are now becoming aware of
the implications and versatility of this emerging technology [71-73].

Modelling Cancer

Another area gaining momentum is the use of iPSC technology to understand the molecular
events involved in cancer and tumourigenicity. This is not a new area of investigation as
early work describing the nuclear transfer of mouse embryonal carcinoma lines was
performed in 2004, to investigate tumourigenic and developmental effects and the
contribution of epigenetic and genetic components to the process [74].

The potential of pluripotent stem cells to give rise to all three lineages is a cornerstone of
their potential in regenerative medicine. There are however concerns about their
tumourigenic nature, exemplified by the formation of teratomas. These cells in turn are now
being used to dissect the mechanism of their oncogenic potential [75]. The reprogramming
process itself shares a lot of features with tumourigenesis, and indeed there are a number of
studies that describe changes to the genome after this process [76, 77]. Insights gained from
these early events may provide the tools to further understand cancer [78].

A number of studies have now described the reprogramming of cancer cells to a pluripotent
state [79-83]. A striking observation is that upon differentiation of the cancer iPSCs, their
cell progeny appear to lose or at least reduce their tumourigenic potential. It is speculated
that this is driven by epigenetic remodelling which reverses the observed dysfunction [82].
In another study Lin and colleagues [80] compared the microRNA profile of the original
cancer tissue to the cancer-derived iPSCs, and identified the hESC specific microRNA
Mir-302. This was capable of reprogramming cancer cell lines, including Colo and PC3, to
iPSC like cells with respect to self-renewal and pluripotency. Interestingly, they suggested
this could be utilised to produce transgene free iPSCs from somatic cell types, which has
now been described by Anokye-Danso et al [84]. More recently, the potential therapeutic
application of this technology has been highlighted by the findings of Zhang et al [85]. This
study demonstrated that sarcomas with complex karyotypes could be reprogrammed to an
iPSC status, and in turn differentiated into cell types including connective tissue and red
blood cells. Zhang et al. found that the differentiated tissues lost their proliferative capacity
as well as their tumourigenicity. By analysing the transcriptome and the epigenome of the
original cancer cells and comparing them to the reprogrammed cells, they found that
extensive epigenetic remodelling of tumour suppressor genes and oncogenes arose during
the reprogramming process [85]. The critical finding of this study was that it is possible to
reprogram cancer cells, differentiate them to a tissue type of interest and essentially erase the
characteristic hallmarks of the cancer. Through further study of the transcriptome and
epigenome of cancer cells and their reprogrammed progeny it may be possible to understand
the precise changes which lead to cancer being so effective in colonising the human body.
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Challenges

There are several key challenges which must be addressed if the power of iPSC technology
is to be fully utilised in the modelling of disease. Firstly, bona fide and well characterised
iPSC lines must be generated from disease patients as well as age and sex matched control
lines, and if possible isogenic controls should be used for comparative studies. Secondly,
there must be robust and efficient /n vitro directed differentiation protocols available in
order to generate the cell types of interest. These should be extensively characterised and
possess the same properties as their /n7 vivo counterparts. Importantly, the derived progeny
should express the allele affected and manifest an observable phenotype (see Figure 1).

Another challenge relates to the types of diseases which can be modelled, as the majority of
diseases described to date are monogenic, and many present with a phenotype (see Table 1).
This may become more problematic with respect to complex diseases, as in many cases we
are uncertain about the contribution of genetic and epigenetic components. This could prove
to be an issue particularly with respect to iPSC derived cancer models as discussed above.

Next, the way in which iPSCs are derived has an influence on their epigenetic landscape,
which is extremely pertinent when modelling X linked diseases [86]. Taken further it has
been demonstrated that the sex of cell lines needs to be taken into account as Anguera and
colleagues have shown that female iPSCs may be epigenetically less stable [87].

Assuming that these criteria are met, one key issue remains: the maturity of pluripotent stem
cell derived progeny. It has recently been shown that differentiated products of hESCs and
iPSCs retain an immature phenotype even when terminally differentiated [88]. This group
performed comprehensive transcriptomic analysis on pluripotent cell derived progeny and
compared them to their tissue derived equivalents. In doing so they found that although both
hESCs and iPSCs made equivalent progeny when differentiated to all three lineages, the
pluripotent stem cell derived tissue retained expression of genes which are associated with
very early mammalian development in the order of 6 weeks of gestation, regardless of the
tissue type. While they found that expression of pluripotency genes was quickly
extinguished upon initiation of differentiation, other genes associated with embryonic tissue
such as LINZ8A, LIN28B, and DPPA4 were not silenced. This data raises serious concerns
about disease modelling using pluripotent stem cells, as well as their future clinical
application, and thus represents one of the key challenges to be tackled in the future, as it is
critical that stem cell derived progeny are functionally mature in order to provide accurate
information about the diseases being modelled. There are preliminary indications that
culture conditions and microenvironments have a critical impact on their resulting maturity
and function [89]. Finding the best possible combination of media composition, oxygen
levels, growth factors and matrices, as well as considering 2D versus 3D culture, will very
likely lead to dramatic improvements in the maturity and functionality of pluripotent stem
cell derived progeny. iPSC technology is still a young, rapidly evolving field and the
majority of these shortcomings are technical limitations which are likely to be overcome in
the near future.

Conclusions

While tremendous progress has been made in recent years modelling diseases using patient
derived iPSCs, much work remains to be done. It is clear that iPSC technology represents a
powerful resource which can provide great insights into disease pathology, but it is essential
that a number of key steps in the process be standardised (see Figure 1). The research
community will need to agree on what defines a high quality iPSC, standardise methods of
confirming pluripotency, and establish the minimum number of clones, subjects and controls
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deemed necessary to cover genetic variance. A number of groups are now working to
address some of these issues, for example Muller et al. suggest a bioinformatical approach to
define pluripotency and potentially the quality of cells [90]. In addition, through greater
definition one may be able to predict the differentiation potential of lines thus allowing the
researcher to choose lines fit for purpose. The most immediate benefit with regard to disease
modelling and therapy is the use of these cells as a platform to discover novel compounds,
which can ameliorate disease phenotypes as described above. While gaps remain in our
understanding of the very nature of iPSCs and their relation to hESCs, it is clear that they
have the potential to make a substantial contribution to our understanding of many of the
diseases which affect the population.
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Figure 1. The process of creating improved patient care using reprogramming and
differentiation of donor tissue

A biopsy is taken from a patient, reprogrammed to a state of pluripotency before being
differentiated to a cell type of interest. Disease-specific tissues can then be used to improve
current understanding of disease states and aid the drug development process. The induction
of pluripotency allows for limitless expandability of the cell population. Validation is critical
to the success of the process; here we identify six key steps which must be addressed. (A).
Tissue from the patient must present the genetic traits of the disease state. (B).
Reprogrammed cells must demonstrate pluripotency as assessed through a rigorous,
standardised validation process. (C). Differentiated cells must demonstrate the key
characteristics of the mature cell type as assessed by marker expression and functionality.
(D). The differentiated cells should present the disease phenotype. (E). Genetic and drug
interventions should be able to correct the phenotype. The cell model should predict the
response of current therapies. This will lead to increased knowledge of the disease
mechanism. (F). Patient benefit must be assessed through clinical trials.
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