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A thermodynamic model is used to investigate the conditions under which clathrin triskelions form
polyhedral baskets. The analysis, which is similar to classical methods used to study micelle forma-
tion, relates clathrin basket energetics to system parameters linked to triskelial rigidity, the natural
curvature of an isolated triskelion, and interactions between triskelial legs in the assembled poly-
hedra. Mathematical theory predicts that a minimal (“critical”) clathrin concentration, CC, needs to
be surpassed in order for basket polymerization to occur, and indicates how CC, and the amount
of polymerized material, depend on the chosen parameters. Analytical expressions are obtained
to indicate how changes in the parameters affect the sizes of the polyhedra which arise when
the total clathrin concentration exceeds CC. A continuum analytic approximation then is used to
produce numerical results that illustrate the derived dependences. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4816634]

I. INTRODUCTION

Protein-coated lipid vesicles are extensively used in eu-
karyotic cells to transfer materials between membranous or-
ganelles, and to and from membrane-delimited cell compart-
ments. Well established examples are intracellular transport
between the endoplasmic reticulum (ER) and the Golgi appa-
ratus, and the internalization of cargo at the plasma membrane
(and selective transport from the Golgi to the cell surface).
Both processes involve vesicle biogenesis mediated by the
formation of distinct protein lattices with which other proteins
associate to form the outer coats of the vesicles.1, 2 The first
utilizes a CopII coat, of which the elemental lattice is a cuboc-
tahedral “cage” built from the Sec13/Sec31 protein complex
(MW ca. 339 kDa). In these cages the intrinsic vertex valency
is four.3 In the second, more extensively studied, case, the un-
derlying structural lattice is constructed of clathrin, which is a
heterodimeric protein composed of a ca. 180–190 kDa heavy
chain and an associated light chain of variable, ca. 23–30 kDa,
MW.4–6

The basic building block of the protein lattices in such
clathrin-coated vesicles (CCVs) is a three-legged “triskelion”
containing three clathrin molecules whose identical, species
specific, heavy chains are non-covalently joined at a com-
mon hub (Fig. 1(a)). The vertex valence of the clathrin lat-
tice everywhere is three, and the cages (also referred to as
“baskets”) predominantly contain hexagonal and pentagonal
faces. The total length of a leg, which contains bends, is
approximately 50 nm, and the diameter of a CCV typically
ranges between 80 and 200 nm. Various proteins bind to
clathrin within a cell.7–9 Some have a role in joining the coat
to specific lipid components of, e.g., the plasma membrane
and/or to receptors and other membrane-embedded entities.

a)Author to whom correspondence should be addressed. Electronic mail:
nossalr@mail.nih.gov.

Other coat components stimulate the formation of the clathrin
lattice or are involved in the release of CCVs from the mem-
brane. Yet others are implicated in the dissolution of the coat
prior to the delivery of cargo to endosomes. Among these
is the heterotetrameric “adaptor complex,” AP-2, that links
clathrin at the plasma membrane to various macromolecu-
lar cell constituents, including transmembrane receptors for
extra-cellular ligands.9, 10 These adaptors, as well as certain
other proteins (e.g., AP1, AP180/CALM, Hip1R), also facili-
tate the in vitro polymerization of clathrin triskelions (“triske-
lia”) into closed polyhedral baskets, and therefore sometimes
have been called “assembly proteins” (herein referred to,
generically, as “APs”). Such baskets retain the overall geomet-
ric characteristics of the closed lattices that surround CCVs.

Structural features of clathrin triskelia and clathrin bas-
kets have been known for many years.11, 12 More recently, cry-
oelectron microscopy has yielded exquisite images showing
how sections of four heavy chains on neighboring triskelions
(two distal and two proximal segments) interwind (Fig. 1(b))
to form the struts of the baskets6, 13–15 Clathrin baskets self-
assemble in vitro in the absence of APs, but readily do so
only at low pH and low salt concentrations (e.g., 0.1 M MES
buffer, pH ≤6.4). The rate of polymerization and total amount
of clathrin incorporated into baskets are pH dependent, being
close to zero at neutral pH but increasing markedly as the pH
of the buffer is lowered. At pH 6.0, the assembly of baskets
occurs very rapidly and almost all triskelia are incorporated
into higher-order structures. In the presence of APs, clathrin
assembly occurs even at physiological pH (i.e., pH 7.0), yield-
ing distributions that are highly enriched in smaller baskets.16

In addition to other functions, clathrin structures may
play a direct mechanical role in vesicle biogenesis. Clathrin
triskelia have an intrinsic curvature in solution, similar to,5, 17

though differing from,18 that assumed by the triskelia when
they are incorporated into baskets. Thus, it is possible that if
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FIG. 1. Clathrin structures. (a) Schematic diagram of a triskelion, showing
three heavy chains joined at a common hub, each heavy chain carrying a sin-
gle bound light chain. (b) CryoEM image of a clathrin basket assembled in
the presence of AP2 adaptors. Left-most figure shows entire structure, includ-
ing APs which are located on the interior of the basket; figure on the right is
the same structure, electronically processed to remove the APs. Adapted from
Ref. 13.

the triskelia form a rigid curved lattice in a cell, they help
bend a region of relatively flat plasma membrane into a CCV,
whose typical diameter is of the order of 100 nm.19 However,
the situation is more complicated, as an analysis of triske-
lial shapes suggests that the triskelia are rather flexible, and
that the bending rigidity of a bare clathrin lattice is close to
that of an equivalently-sized patch of plasma membrane.20

This result is substantiated by small angle neutron scatter-
ing data21 and by analyzing size distributions of reconstituted
clathrin baskets.22 The latter investigation also indicates that
APs strengthen the linkage between the legs of the triskelia
when they come together to form the struts of the cages, caus-
ing an increase in cage rigidity consistent with CCV rigid-
ity determined by atomic force microscopy.23 Moreover, the
binding of APs favors assembly of clathrin lattices by increas-
ing the association energy of the lattice, thereby lowering its
overall energy.22 This mechanism also can affect the tendency
for CCVs to assemble,19 acting along with other factors such
as modification of membrane structure by clathrin-binding
proteins containing BAR domains.9

We now examine how mechanical and other energetic
factors can affect the assembly of clathrin baskets in vitro,
particularly if the clathrin concentration is low. By modifying
classical thermodynamic theories of micelle formation,24, 25

we predict that there is a critical concentration, CC, below
which baskets will not form. Experimental evidence support-
ing the existence of a critical concentration for in vitro as-
sembly was published over three decades ago.11 Addition-
ally, using protocols in which cellular clathrin concentrations
were reduced by RNAi techniques, it was shown that CCV
formation is thwarted in vivo when the clathrin concentration
falls below a minimal level,26 suggesting that the notion of a
critical concentration for assembly may be important for un-
derstanding cell function. Indeed, critical concentration bio-
physics may be used in cellular control functions. For exam-
ple, when auxilin in down regulated, structures having the
appearance of clathrin baskets arise in the cytoplasm of tis-
sue culture cells,27 one interpretation being that auxilin nor-
mally binds to triskelions to lower the free clathrin concentra-
tion below the CC pertaining to the cellular milieu. Moreover,
clathrin is involved in various aspects of mitosis, including
interactions with microtubule binding proteins during kineto-

chore formation,28 and it is likely that, in certain instances,
depletion of cytosolic clathrin by mitosis suppresses clathrin
mediated endocytosis.29 Other cellular activities also compete
for clathrin.30

In Sec. II, we describe the model adopted for this study,
which is analogous to classical models of micelle formation
by amphipathic molecules. We derive in the following analy-
sis an approximate, but rather general, expression for the criti-
cal concentration pertaining to basket formation in vitro, viz.,
CC ∼ exp(GN∗/kBT ), where GN∗ is the free energy change
that occurs when triskelia assemble into baskets of maximal
prevalence. Consequently, we conclude that CC is lowered by
factors that increase basket stability. This approach is based
on a purely thermodynamic treatment and, thus, is only an ap-
proximate treatment (see the Discussion, below). However, it
provides a means to relate the critical behavior to such system
parameters as the intrinsic curvature and mechanical rigidity
of a triskelion, as well as the energetics of clathrin-clathrin
associations. By comparing the dependence of CC on the sys-
tem parameters, we infer that CC is most sensitive to changes
in inter-leg associations. We also derive an analytical approx-
imation that allows us to calculate the mass-weighted distri-
bution of basket size and the dependence of the mean and
variance of the distribution as a function of these parameters.

II. MODEL

The hub where the three legs of a triskelion are joined
becomes a vertex of an assembled clathrin lattice. An ideal
flat clathrin lattice contains only hexagons and, except for
the edges of the lattice, all vertices on average experience the
same environment and are identical. In contrast, the essential
morphological attribute of clathrin baskets, viz., that they are
closed polyhedra, imposes topological constraints31, 32 so, in
general, not all of the polyhedral faces are alike. Correspond-
ingly, the vertex angles of such closed structures and the inter-
winding of neighboring triskelian legs that form the intercon-
nections between vertices are not all identical.11, 15 Nonethe-
less, when the baskets are sufficiently large, to a first approx-
imation they appear to be almost spherical. In the following,
we use a spherical model in which the variable is basket size,
measured in terms of the number of constituent triskelia, N.

Utilizing concepts of statistical thermodynamics, one of
us previously developed a simple physical theory for inter-
preting in vitro basket reconstitution experiments.22 The sizes
of clathrin baskets were related to parameters describing the
rigidity and intrinsic curvature of individual triskelions and,
also, a term representing the intermolecular interactions be-
tween the legs of neighboring triskelions in the assembled
polyhedra. The underlying assumption of that study is that,
for baskets to form, favorable attractive energy terms linked
to inter-leg associations must offset unfavorable energy terms
arising when triskelia are distorted in order to fit into cages of
varying sizes. This model produces closed form mathematical
expressions for both the basket size of maximal occurrence,
N∗, and the width of the basket size distribution, W1/2. When
applied to experimental data,16 these expressions yielded esti-
mates of the aforementioned parameters. In this earlier theory,
the thermodynamic stability of isolated baskets was investi-
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gated, but equilibrium among different-sized baskets was not
considered.

In the present paper, we assume that thermodynamic
principles of self-association apply to the assembly of the
baskets. Hence, we adapt a model that has been successfully
used to describe micelles and other association colloids such
as lipid bilayers and vesicles,24, 25 postulating that at equilib-
rium the chemical potential of a monomer in a basket of size
N triskelions, μN, must be independent of N and equal to the
chemical potential of an unpolymerized (i.e., free) triskelion.
Thus,

μN = μ0
N + kBT N−1 ln(XN/N ) = constant

N = 1, 2, 3, . . . , (1)

where μ0
N represents the mean interaction free energy per

clathrin triskelion (“monomer”) in a basket of size N, kB is
Boltzmann’s constant, and T is the absolute temperature. XN

signifies the mole fraction of triskelions in baskets of size N.
(Strictly speaking, XN is the activity, but we assume that the
concentrations of baskets and free triskelia are sufficiently low
that the solution is close to “ideal.”) XN is related to the con-
centration CN of triskelia in baskets of size N in dilute aque-
ous solutions by XN = CN/55.5, where CN is in molarity and
55.5 is the number of moles of water in 1 liter. If CN is in
units of mg/ml, then XN = CN/(55.5M), where M is the net
molecular weight of a triskelion assembly, which is taken to
be 650 000 Da in the calculations presented below.

By specifying the free energy of the monomer to be the
reference energy state, it follows from Eq. (1) that

XN = NXN
1 exp

( − βN
(
μ0

N − μ0
1

))
, (2)

where β = 1/kBT. In Eq. (2), μ0
N − μ0

1 represents the differ-
ence between the free energy of a triskelion in a basket of size
N and that of the triskelion when free in solution. Conserva-
tion of mass implies

X = X1 +
∑

N≥Nmin

NXN
1 exp

( − βN
(
μ0

N − μ0
1

))

≡ X1 +
∑

N≥Nmin

NXN
1 exp(−βGN ), (3)

where X represents the total mole fraction of triskelions,
both free and polymerized. (Nmin = 20, in accord with topo-
logical requirements for closed clathrin baskets containing
only pentagons and hexagons.) Given an expression for GN,
Eqs. (2) and (3) enable the calculation of XN for all values
of N if the total mole fraction of triskelia in the solution is
known. We remark that XN/N ≡ PN is a relative measure of
the number of baskets of size N, which is a quantifiable ex-
perimental observable.16, 33 Note that X and X1 must be less
than 1. Thus CN is proportional to NPN ∼ Pm, where Pm is the
probability of finding a basket of mass m. In systems charac-
terized by Eq. (3), essentially no higher-order (polymerized)
structures are formed when C is less than a critical concen-
tration, CC.24, 25 As the concentration is increased beyond CC,
formation of polymer (here, clathrin cages) occurs while the
monomer concentration remains essentially constant at the
value C1 ≈ CC. The existence of a threshold concentration for

formation of baskets and the distribution of the basket sizes
depend crucially on the N-dependence of GN.

What is the analytic form of the free energy term
GN ≡ N (μ0

N − μ0
1)? In its simplest form, GN can be ex-

pressed as the sum of two terms. First, as before,22 we pre-
sume that baskets are stabilized by interactions between legs
of neighboring triskelia, viz., Gstab

N = −bN , where we rec-
ognize that the number of struts within any particular cage
equals 3N/2. (By “strut” we mean an edge linking two of the
triskelial hubs that lie at the vertices of the polyhedral clathrin
cage; note that each hub is linked to three neighbors, and
that each strut is shared by two vertices.) As previously men-
tioned, for baskets formed under normal conditions, b signi-
fies the favorable energy of interaction between the legs of
four triskelia (viz., two distal and two proximal segments).
Second, we need to account for unfavorable distortion ener-
gies linked to the mechanical perturbation of triskelia when
located in baskets whose mean curvatures differ from that of
a basket of lowest conformational energy. Here we assume
that the mechanical distortion of triskelia can be described by
a Hooke’s Law expression, viz., that the change in free energy
associated with leg bending energies may be postulated as

Gdist
N = hN

(
1√
N

− 1√
n

)2

, (4)

where h is related to the mechanical rigidity of a strut and
n−1/2 is a measure of the natural (i.e., intrinsic) curvature of
a triskelion. The explicit N-dependence of Gdist

N is motivated
by the distortion energy of model membranes. For a closed
spherical membrane of radius R, the distortion energy Gdist

R is
given, to first order, by34

Gdist
R = 8πR2κ

(
1

R
− 1

R0

)2

, (5)

where R0 is the radius of the spontaneous curvature and κ

is the bending modulus of the membrane. By taking 1/R0

as the natural (averaged) curvature of the triskelia and 1/R
as the average curvature of a basket of size N, Gdist

R be-
comes Gdist

N as given by Eq. (4), where the proportionality
(R2 ∼ N) between the average surface area of the basket and
the number of triskelia on the basket has been recognized. h
of Eq. (4) is actually 8πκ and n of Eq. (4) is proportional to
R2

0 . Equation (4) can also be derived by assuming the bend-
ing energy of a strut of length L joining two triskelial hubs
to be 1

2

∫ L/2
0 EI (s)[�C(s)]2 ds, where EI(s) is a position-

dependent flexural rigidity coefficient and �C(s) is the devi-
ation of the curvature of the strut from its natural curvature.20

By taking average (uniform) values for EI and the curvatures,
one can relate h and EI as h = 0.015 · EI · L · (nm)−2 where L
is given in nm, h having the units kBT.35 It must be mentioned
that Eqs. (4) and (5) are in the Helfrich free energy form34 and
differ from the previously used assumption.22

If we add the stabilization energy Gstab
N arising from

neighboring triskelia and the distortion energy Gdist
N arising

from the mechanical deviations away from the naturally pre-
ferred curvature of triskelia, we obtain the following expres-
sion for the (enthalpic) energy associated with the formation
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of a basket of size N:

GN = Gdist
N + Gstab

N =
[
h

(
1√
N

− 1√
n

)2

− b

]
N. (6)

The combined set of Eqs. (2), (3), and (6) allows a com-
plete description of CC and the concentrations of unaggre-
gated triskelia and baskets of any aggregation number N for a
given total concentration C of triskelia in the solution. Results
are given in terms of the three parameters h, b, and n.

III. ANALYSIS

A. Phenomenology

Few quantitative studies of the sizes of reconstituted
clathrin baskets have been published, and even fewer deter-
minations have been made of the minimum concentration at
which clathrin will polymerize. Zaremba and Keen16 used
electron microscopy to measure the sizes of clathrin baskets
formed in the presence and absence of a mixture of assem-
bly proteins (“APs”) containing AP-2 adaptor complexes and,
probably, other constituents that facilitate basket formation.
Figure 2(a) shows the distribution of baskets determined for a
purified clathrin sample maintained at pH 6.5 in MES buffer
to which an equal mass of APs had been added. Note the
sharpness of the size distribution, for which the full width at
half maximum, W1/2 ≈ 11, is less than 20% of the value N∗

≈ 64 for which the distribution is maximal. These data were
obtained at a clathrin concentration of 0.16 mg/ml, which
is several times greater than the minimal concentration, CC,
at which polymerization is likely to occur. The latter, com-
mented on by Zaremba and Keen, is less than 0.06 mg/ml
for such buffer.16 This value is of the same order of magni-
tude as the value of 0.05 mg/ml put forth by Crowther and
Pearse11 for the assembly of purified clathrin in pH 6.2 MES
buffer. Crowther and Pearse not only measured the polymer-

ized fraction and showed that it vanished at CC, but they also
demonstrated that the amount of unpolymerized clathrin did
not increase as C increased beyond CC (see Fig. 2(b)). Based
on knowledge that lower pH and the presence of APs both
favor increased basket formation, we take CC ≈ 0.02 mg/ml
as a representative value for the illustrative calculations that
appear below.

B. General theoretical results

The essential characteristics of the experimental obser-
vations summarized above are captured by the set of Eqs. (2),
(3), and (6). Details of calculations based on these equations
are discussed below, following Eq. (19); here we note the
qualitative features arising from the theory. Figure 3(a) ex-
hibits a predicted critical concentration CC for the formation
of baskets. For C < CC, almost all triskelia are in the unaggre-
gated state and C1, which represents the concentration of free
triskelions, is very close to C. For C > CC, the concentration
of unaggregated triskelia essentially stays at the same value,
C1 ≈ CC, while the concentration of triskelia in the various
baskets, (C − C1), increases linearly with the total concen-
tration C. These properties mimic those of the data shown in
Fig. 2(b). [The dependence of CC on system parameters is
discussed in Secs. III C and III D.]

The distribution of basket sizes for C > CC is illustrated
in Fig. 3(b). The shape of the distribution is analogous to that
observed experimentally (Fig. 2(a)). The mass distribution,
Pm, can be characterized by the basket size N∗

m of maximal
occurrence, width Wm,1/2 at half maximum, average size 〈Nm〉
of the baskets, and the variance σm = √〈N2

m〉 − 〈Nm〉2. The
averages 〈Nm〉 and 〈N2

m〉 are defined by

〈Nm〉 =
∑

N≥Nmin
NCN∑

N≥Nmin
CN

(7)

FIG. 2. Experimental aspects of clathrin basket polymerization. (a) Relative number of baskets of a given size, PN, assembled along with APs (after Zaremba
and Keen16). Theory curve is obtained by data fitting described in Ref. 22, from which this figure was obtained. (b) Polymerized protein and non-polymerized
residual when baskets are assembled from purified clathrin lacking APs. (Data taken from Crowther and Pearse.11) Note the existence of a critical concentration,
CC, below which baskets will not form.
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FIG. 3. Assembly predicted by the model. (a) Polymerized and free clathin concentrations, CP = C − C1 and C1 (mg/ml), obtained by solving
Eq. (10) for b = bs = 21.15 kBT, h = hs = 335 kBT, and n = ns = 90 as a function of C. Triskelion “monomer” at a concentration of 10−6 M corresponds
to approximately 0.6 mg/ml clathrin. Here, CP represents the concentration of triskelions in clathrin baskets, and C1 is the free clathrin remaining in solution.
CC ≈ 0.02 mg/ml is the critical concentration. Note that C1 is approximately equal to CC when C � CC (c.f. Tanford24 and Israelachvili25). (b) Mass weighted
distribution of baskets, CN (relative units), computed for C = 0.5 × 10−6 M and the parameter values used to obtain Fig. 3(a).

and

〈
N2

m

〉 =
∑

N≥Nmin
N2CN∑

N≥Nmin
CN

. (8)

Similar quantities can be used to describe the characteristics
of the number distribution, PN.

As is illustrated in Fig. 3(b), for values of C > CC the
occurrence of small baskets far below N∗ is negligible. This
feature allows us to extend the lower limit in the sums to
zero. Further, an integral (i.e., continuum) approximation to
the sum in Eq. (3) yields

X = X1 +
∫ ∞

0
dN NX1

N exp (−βGN ). (9)

For the functional form for GN given by Eq. (6), this integral
can readily be performed (see the Appendix) and the contin-
uum approximation provides an analytical form for the equa-
tion of conservation of triskelia in the system,

X = X1 + e−βh

μ2

[
(p2 + 1) + √

π

(
3

2
p + p3

)
ep2

[1 + erf(p)]

]
,

(10)

where μ = β[(h/n) − b − ln (X1)], p = β1/2h/
√

nμ, and
erf(p) = 2π−1/2

∫ p

0 e−t2
dt is the error function.36 Formulas

for 〈Nm〉 and 〈N2
m〉 obtained from this analysis are given in

the Appendix.

C. Dependence of CC on energy parameters

How is the critical concentration, CC related to the pa-
rameters of the model? A simple analytical relationship can
be obtained from Eq. (3) if the total concentration of clathrin
is several times greater than the critical concentration, i.e.,
C � CC. In this case, Eq. (3) is given as

X ≈
∑
N

NXN
1 e−βGN , (11)

where we understand X1 to be close to Xc. If, in accord with
Fig. 2(a), we further assume that the basket size distribution
is narrow, then the sum appearing in Eq. (11) can be approx-
imated by αN∗XN∗

1 e−βG∗
N , where N∗ is the size of the most

prevalent basket and α is a constant whose value approxi-
mates the width of the distribution. From Eq. (11) we thus
find X1e

−βGN∗ /N∗ ≈ (X/αN∗)1/N∗
. But, because N∗ is a large

number, the term on the r.h.s. of this equation tends to 1, from
which we infer

XC ≈ X1 = eβGN∗ /N∗
. (12)

As described earlier, the mole fractions X and XC are related to
the concentrations C and CC by a constant multiplicative fac-
tor. Here, GN∗ is the depth of the energy well associated with
the most prevalent (i.e., most stable) baskets. Hence, we im-
mediately see that conditions favoring basket formation and
stability also lower the critical concentration.

Upon substituting the expression for GN from Eq. (6), we
find the form of CC to be

CC ∼ exp

(
β

[
h

(
1√
N∗ − 1√

n

)2

− b

])
. (13)

This equation readily allows us to infer that an increase in
the rigidity of the triskelions, as represented by the parame-
ter h, raises the critical concentration while an increase in the
inter-leg interaction energy, b, lowers CC. Numerical analy-
sis shows that CC is more sensitive to changes in b than to
changes in h or n. In fact, for many purposes, CC probably
can be approximated to be e−βb.

D. Size distributions and their linkage
to energy parameters

The experimental observable presented in Fig. 2(a) is the
relative number of baskets of a given size, which is propor-
tional to the distribution PN. From Eqs. (1) and (2), this quan-
tity may be written as

PN = A exp(−βGN + N ln X1), (14)
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where A is a normalization constant. Therefore, by incorpo-
rating the explicit form of GN given in Eq. (6), we find

PN ∼ exp

(
− β

[
h

(
1√
N

− 1√
n

)2

− b̃

]
N

)
, (15)

where b̃ is defined as

b̃ = b + β−1 ln X1. (16)

In the earlier treatment22 an expression similar to Eq. (15)
was obtained except that, instead of b̃, the symbol b (which
we now refer to as bold) was used. The other difference is
that (1/N − 1/n)2 was used in the earlier treatment22 in-
stead of (1/

√
N − 1/

√
n)2 in Eq. (15). It was noted then

that bold contained, in addition to an enthalpic term, an en-
tropic component which in the present treatment is explicitly
given as β−1ln X1. Correspondence with the previous treat-
ment is clear if we make the association bold −→ b̃, except
that b̃ depends nontrivially on bold through the b-dependence
of X1. Here, b signifies only the enthalpic term. The term
[h(1/

√
N − 1/

√
n)2 − b̃]N represents the change in free en-

ergy occurring when triskelions leave solution to form closed
baskets.

For the model that yields Eq. (15), it is easy to show (see
the Appendix) that the size N∗ at which the number distribu-
tion has a maximum is written as

N∗ = n

(1 − b̃n/h)2
, (17)

with the full width at half maximum, W1/2, being given as

W1/2 = 4n1/4(N∗)3/4

√
ln 2

βh
. (18)

Similarly, one can obtain an expression for the basket size,
N∗

m, for which the mass distribution {XN} = {NPN} has its
maximal value, viz.,

N∗
m = n

4(1 − b̃n/h)2

[
1 +

√
1 + 4h−1(1 − b̃n/h)

]2
. (19)

Based on a fit of Eqs. (17) and (18) to the num-
ber size distribution measured for baskets assembled in the
presence of APs and the assumption that GN = 0 where
Pn → 0, we choose h = hs = 335 kBT, and b̃ = b̃s = 0.24
kBT as“standard values.” (These were obtained by the proce-
dure described in Ref. 22, but for the free energy parameteri-
zation presented in Eq. (6), see Ref. 35.) We also take n = ns

= 90 which, while somewhat arbitrary, approximates the size
of a typical large basket. By taking the critical concentration
to be CC ≈ 0.02 mg/ml ≈ 0.033 × 10−6 M, Eq. (16) yields
bs ≈ 21.2 kBT, which is a measure of the enthalpic energy per
triskelion needed to dissociate a basket in the low salt, pH 6.5
buffer to which the above-stated standard values pertain.16, 22

[As illustrated by Eq. (16), b̃ is the difference between the
enthalpic and entropic free energy changes occurring when
a triskelion is incorporated into a basket.] Interestingly, this
value ( approx 20 kBT) suggests that, in accord with re-
cently published results.37 approximately 1 ATP molecule is

FIG. 4. Dependence of the critical concentration, CC, on the interaction en-
ergy, b. (h = 335 kBT , n = 90.)

hydrolyzed for each triskelion when baskets are dissociated
enzymatically. The value for CC used here in the calculations
is somewhat less than the value CC ≈ 0.05 mg/ml noted by
Crowther and Pearse11 for purified clathrin, but Eq. (16) in-
dicates that the inferred value of b depends only weakly on
CC through a logarithmic term, so for present purposes know-
ing the precise value of CC is of limited importance. Paren-
thetically, we note that these values satisfy the requirement
0 < b̃n/h < 1, in accord with Eqs. (6) and (16), and the ne-
cessity that the sum in Eq. (3) converges.

We illustrate some of the properties of the model in
Figs. 3–5. When needed in the calculations, we chose the
value of the clathrin concentration to be C = 0.3 mg/ml ≈ 0.5
× 10−6 M, which is typical of in vitro assembly condi-
tions and assures that C � CC. (The precise values of
these parameters are not really important, as they princi-
pally are used merely to show trends.) Figure 3(a) shows
the free clathrin concentration, C1, obtained by solving
Eq. (10) with the standard values for h, b, and n, af-
ter converting to concentrations according to CN(mg/ml) =
55.5MXN, where M = 650 kDa is taken to be the molec-
ular weight of a triskelion. As previously indicated, in ac-
cord with classical theory of micelle formation24, 25 clathrin
remains in monomeric form (single triskelions) until a crit-
ical concentration is reached, thereafter remaining more-
or-less constant while an increasing amount of material is
found in baskets. The dependence of CC on the variable
b is shown in Fig. 4. To obtain this figure we used the
approximate expression given by Eq. (13), but similar re-
sults can be obtained by evaluating Eq. (10) (or Eq. (3)) di-
rectly. It is seen that the critical concentration is a strong
function of b, while over the range of variables chosen for
the analysis it is almost unaffected by changes in h and n
(results not shown). The critical concentration decreases with
b as CC ∼ e−βb and increases with h or n, although when the
latter exceed certain values their variations seem to have little
effect on CC.

In principle, quantities connected with the mass distribu-
tion can be related to parameters measured by optical meth-
ods such as dynamic light scattering (DLS) or fluorescence
correlation spectroscopy (FCS). From Eq. (7) we find that
the average size 〈Nm〉 varies only weakly with b, generally



121928-7 M. Muthukumar and R. Nossal J. Chem. Phys. 139, 121928 (2013)

FIG. 5. Dependence of basket size on leg-leg association energy.
(a) Mean mass-weighted size, 〈Nm〉, calculated according to Eq. (A8)
(h = 335 kBT, n = 90). (b) Variance, σm ≡ √〈N2

m〉 − 〈Nm〉2, calculated ac-
cording to Eqs. (A8) and (A9). Note that the mean and variance change in
like manner.

increasing as b increases (Fig. 5(a)). Similar behavior holds
for N∗

m, as well as the equivalent quantities for the number
size distribution PN (results not shown). This behavior also is
apparent in the expression for N∗ given by Eq. (17), where it
also is seen that larger baskets form when the triskelions are
very flexible. However, as the rigidity of the legs increases,
the basket size is closer to that commensurate with the nat-
ural curvature of the individual triskelia. Also, concordant
with Eq. (17), the average basket size increases as the natu-
ral triskelial curvature, n−1, decreases. In Fig. 5(b) we plot
the variance, σ ≡ √〈N2

m〉 − 〈Nm〉2 as a function of b, noting
that if the baskets on average become smaller, their size distri-
bution becomes narrower (and vice versa). The behavior seen
in Fig. 5 suggests that entropic factors might favor the forma-
tion of many baskets of modest size, rather than the assembly
of a few large baskets. These entropic factors predominate, no
matter the magnitude of b once a threshold value is surpassed
which undoubtedly depends on the values of the other system
parameters, h and n.

IV. DISCUSSION

The minimal model used here to describe the energet-
ics of basket formation gives rise to mathematically tractable
analysis and provides good fits to experimental basket size

distributions.22 It also is found to be in accord with a diverse
set of measurements of the physical properties of isolated
triskelions.18, 20–23, 38 The fundamental difference between the
current treatment and the earlier study22 is that we now explic-
itly account for the fact that there may be a critical clathrin
concentration, CC, below which basket assembly will not
occur. Our analysis predicts that this critical concentration
depends much more sensitively on the inter-leg association
energy, b, than on the rigidity parameter, h, or the curva-
ture parameter, n−1/2, and that a lowering of CC occurs if
b increases. Interestingly, we found, independently, that the
strength of the inter-leg associations are significantly greater
when APs are present than when clathrin, alone, is allowed to
assemble.22

Our assumption that the assembly of clathrin baskets
is analogous to the assembly of classical lipid micelles in
thermodynamic equilibrium needs to be viewed with some
caution. In the case of lipids, it usually is assumed that the mi-
celles can readily exchange their constituents with free lipid
molecules in solution without regard to the location of the
lipids in the micelle complex, and that the micelles can readily
adjust their structure to accommodate changes in molecular
number. Except under certain conditions, clathrin exchange
probably is more restricted. However, the use of simple
thermodynamics, as in our earlier analyses of basket recon-
stitution, can be rationalized by assuming that during the
early steps of polymerization a basket rapidly and freely ex-
changes its subunits with triskelions from the environment,
on a time scale commensurate with the establishment of local
thermodynamic equilibrium. Initially the geometry of a bas-
ket can fluctuate, but beyond a certain point (perhaps when
the cage approximates a hemisphere) the emergent mechan-
ical attributes of the partially assembled polyhedral structure
determine the final shape and overall size of the basket. (Par-
tially formed cages are likely to be loose and flexible until a
minimal number of triskelions are inserted.)

den Otter et al. have simulated the assembly of triskelion-
like entities into closed polyhedral cages,39, 40 indeed not-
ing the existence of small nuclei that constantly arise and
dissociate before baskets proceed to completion.39 A recent
simulation study of virus assembly41 also shows that the as-
sembly proceeds by successive addition of basic triangular
building blocks to a growing curved lattice and that a criti-
cal protein concentration is required for assembly. In various
aspects, this view is like that of Shraiman,42 who explained
basket assembly in terms of a kinetic polymerization model
in which pentagonal faces arise by trial and error but then are
fixed in place at specific locations as the baskets grow. (An
energetic analysis of fullerene shapes43 shows that particu-
lar geometries are favored and symmetrical structures gen-
erally are more stable.) den Otter et al. postulate that the
triskelions are rigid and, like the results reported herein, their
computer models indicate a critical triskelion concentra-
tion below which the cages do not form, finding that
the association of triskelions into higher order structures
depends strongly on the magnitude of the energies of inter-
leg interactions.39 Their simulations also demonstrate a no-
table dependence on intrinsic triskelion pucker. In a related
publication,44 these authors also used thermodynamic theory
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to show a critical concentration for basket assembly. How-
ever, their study, which neglected the free energy penalty for
deviations from spontaneous curvature of the clathrin basket
and its dependence on physical variables such as triskelial
rigidity, provided an estimate of about 42kBT for the bind-
ing energy. This is a factor of two higher than our estimate of
21.2kBT, which is closer to the value of 23kBT estimated from
the simulations. A major advantage of performing mathemat-
ical calculations is that, as we have shown, dependences on
well-defined physical variables are explicitly apparent.

Even if the addition and subtraction of triskelions to a
growing basket primarily occurs at its perimeter, because the
partially formed baskets themselves constitute an ensemble,
their growth kinetics in essence recapitulate the exchange that
would occur in completed baskets if the triskelions could add
anywhere in the structure (although the values of the ener-
gies would differ somewhat). Depending on the pH, salt con-
centrations, and other solution conditions, completed baskets
may resist dissociation once they form unless acted upon by
Hsc70 or other biological ATPases, as noted for clathrin struc-
tures on CCVs.45 In general, when assembly starts from dis-
sociated triskelia, the free clathrin concentration decreases as
baskets are completed. However, as long as the concentration
of free triskelions is considerably higher than the critical con-
centration, the remaining triskelions assemble with identical
size distribution until the free clathrin concentration falls to a
value very close to CC. At this point the distribution of newly
completed baskets changes to a smaller average size24, 25 but,
if the starting concentration of triskelions was high relative to
CC, these smaller baskets constitute an inconsequential por-
tion of the total basket population.

The forces determining basket structure may be more
complicated than represented here (e.g., the energy of leg
twisting may be significant), but such details are implicitly
subsumed by other aspects of our model. The central theme
is that inter-leg associations counteract the forces working
against triskelial distortion, a notion that also has been used,
analogously, to quantify aspects of sickle cell hemoglobin
aggregation.46 We seem to be able to take the baskets as being
quasi-spherical (ignoring, e.g., asymmetric structures), which
probably reflects the fact that a subset of relatively strain free,
spherically symmetric baskets predominates.43, 47

In part, we chose Eq. (6) to describe the free energy
change that drives basket formation because it gives rise
to mathematically-tractable analytic expressions. However,
Eq. (6) fails to reflect the expected divergent increase in free
energy linked to mechanical distortion of triskelia if incor-
porated into a basket whose curvature is significantly greater
than the natural curvature. (The first term on the r.h.s. of
Eq. (6) tends to a constant value whereas, by using a slightly
different analytical form, in Ref. 22 it varies in proportion to
N−1.) Moreover, strictly speaking the N dependence of the as-
sociation energy should vary, to first order, as (N − 1)b rather
than Nb. And, our treatment neglects possible small interme-
diates (incomplete baskets) which are implicitly considered
to be unstable and short-lived. In principle each of these con-
cerns can be handled by an extension of the model engendered
in Eq. (6), but for this investigation such considerations are
unnecessary, as the numerical results of the present calcula-

tions should be taken as qualitative indications of the assem-
bly process rather than precise numbers.

As first pointed out by Crowther and Pearse,11 cellular
clathrin concentrations might be close to a critical value CC

when in the cytoplasm. In this case, the formation of the
clathrin polyhedra that appear in the coats of CCVs could
be easily regulated by the action of cellular factors that
change CC. Our analysis indicates that factors that increase
the strength of stabilizing interactions between triskelions
tend to lower CC. Studies of the biogenesis of clathrin lattices
at the plasma membrane (“coated pits”) indicate that such
factors also play an important role in determining whether
clathrin coats that nucleate on the surfaces of mammalian
cells proceed to complete CCVs.19
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APPENDIX: THE CONTINUUM APPROXIMATION

In this section we derive the expressions that have been
used to generate Figs. 3–5. To simplify the presentation, we
here suppress the term β by expressing h and b in units of kBT.

Use of the expression for GN from Eq. (6) in Eq. (9)
yields

X = X1 +
∫ ∞

0
dN N (X1)N

× exp

(
−

[
h

(
1√
N

− 1√
n

)2

− b

]
N

)
. (A1)

By writing XN
1 as an exponential and combining all arguments

of the exponential terms, we then obtain

X = X1 + e−h

∫ ∞

0
dN N exp

[
− μN + 2h√

n

√
N

]
, (A2)

where μ = (h/n) − b − ln (X1). The integral in Eq. (A2) can
be rewritten in a more convenient form, by changing the inte-
gration variable N to t2, as

I =
∫ ∞

0
dN N exp

[
− μN + 2h√

n

√
N

]

= 2
∫ ∞

0
dt t3 exp

[
− μt2 + 2h√

n
t

]
. (A3)

The r.h.s is evaluated by noting that

I = −∂I0

∂μ
, (A4)
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where

I0 = 2
∫ ∞

0
dt t exp

[
− μt2 + 2h√

n
t

]
. (A5)

The integral in Eq. (A5) is readily obtained in terms of the
error function,33

I0 = 1

μ

[
1 + √

πpep2
(1 + erf(p))

]
, (A6)

where p = h/
√

nμ. Substitution of Eq. (A6) into Eq. (A4)
yields

I = 1

μ2

[
(p2 + 1) + √

π

(
3

2
p + p3

)
ep2

[1 + erf(p)]

]
.

(A7)

Combining Eqs. (A2), (A3), and (A7), we get the result given
by Eq. (10).

By a similar procedure, the calculations of the mass-
weighted quantities 〈Nm〉 and 〈N2

m〉 involve ∂I/∂μ and
∂2I/∂μ2, leading to the analytical forms

〈Nm〉 = 1

μ3I

[(
2 + 9

2
p2 + p4

)

+√
π

(
15

4
p + 5p3 + p5

)
ep2

[1 + erf(p)]

]
(A8)

and

〈
N2

m

〉 = 1

μ4I

[(
6 + 87

4
p2 + 10p4 + p6

)
+ √

π

(
105

8
p

+ 105

4
p3 + 21

2
p5 + p7

)
ep2

[1 + erf(p)]

]
, (A9)

where I is given by Eq. (A7).
Expressions for N∗ and W1/2, the value of N at which the

number density is maximal and the width at half-maximum of
that distribution, can be written as follows (cf., also, Ref. 22).
First, we recall that, according to Eqs. (6) and (14), PN may
be written as

PN = Ae
−[hN( 1

N1/2 − 1
n1/2 )2−b̃N]

. (A10)

Hence, the expression for N∗, given by Eq. (17), is ob-
tained by taking the derivative of the exponent in Eq. (A10)
with respect to N, setting the resulting expression equal to
zero, and then identifying N as N∗. It then follows that

PN∗ = Ae−h(1−h/b̃n)−1
. (A11)

Thus, to find the width W1/2 ≡ (N+ − N−) (determined
from PN+ = PN− = 1

2PN∗ ), we solve the quadratic equation
2χ − ψχ2 = −h−1ln 2 + 1/ψ , where χ± ≡ (N±/n)1/2 and
ψ ≡ (1 − b̃n/h) = √

n/N∗. The roots of this equation yield

N± = nψ−2(1 ±
√

ψ ln 2/h)2 (A12)

from which the expression for W1/2 appearing in Eq. (18) then
follows.
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