L T

/

D\

Dislocation reactions, grain boundaries, and
irreversibility in two-dimensional lattices using

topological tweezers

William T. M. Irvine®', Andrew D. Hollingsworth®, David G. Grier®, and Paul M. Chaikin®

Physics Department and James Franck Institute, The University of Chicago, Chicago, IL 60605; and ®Center for Soft Matter Research, Department of Physics,

New York University, New York, NY 10003

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved August 2, 2013 (received for review January 23, 2013)

Dislocations, disclinations, and grain boundaries are topological
excitations of crystals that play a key role in determining out-
of-equilibrium material properties. In this article we study the
kinetics, creation, and annihilation processes of these defects in
a controllable way by applying “topological tweezers,” an array of
weak optical tweezers which strain the lattice by weakly pulling
on a collection of particles without grabbing them individually. We
use topological tweezers to deterministically control individual
dislocations and grain boundaries, and reversibly create and de-
stroy dislocation pairs in a 2D crystal of charged colloids. Starting
from a perfect lattice, we exert a torque on a finite region and
follow the complete step-by-step creation of a disoriented grain,
from the creation of dislocation pairs through their reactions to
form a grain boundary and their reduction of elastic energy. How-
ever, when the grain is rotated back to its original orientation the
dislocation reactions do not retrace. Rather, the process is irrevers-
ible; the grain boundary expands instead of collapsing.

topological defect | colloidal crystal | holographic trapping

Topological defects such as disclinations and dislocations play
an essential role in determining the allowed phases and the
elastic and rheological properties of materials (1-6). They are
particularly important for understanding the nature of phase
transitions in 2D systems and their thermodynamics have been
studied extensively. However, the dynamics and reactions of such
defects are less well known. Topological defects in a lattice are
nonlocal imperfections which correspond to singularities in an
order parameter characterizing a broken symmetry, e.g., dis-
clinations (rotation) or dislocations (translation). These defects
have quantized “charges” which interact with the stress field. As
nonlocal objects they cannot be controlled simply by acting on
particles near the singularity. As charges, however, they can be
manipulated by controlling the surrounding fields. Here, we
produce stress fields which create and manipulate dislocations.
Further, we induce reactions corresponding to fission and fusion
leading to the formation of more complex structures such as
grain boundaries. Although all defect motion and reactions are
dissipative, we find that simple two-defect reactions tend to be
reversible whereas more complex reactions are irreversible.

Optical tweezers (7) have proven a flexible tool to control
colloidal particles in a wide variety of condensed matter ex-
periments (8). Typically used to grab individual particles in
strong traps, they have been used in the study of lattices to grab
a particle and remove it from a lattice to produce a vacancy (9,
10). A different mode explored here is the use of tailored pat-
terns of traps (produced holographically, refs. 11-13) that weakly
interact with many particles in a lattice to create stress fields
designed to manipulate topological defects (where by weak we
mean that each individual trap is capable of displacing an in-
dividual particle by ~10-20% of the distance to its nearest
neighbor, at which point the interparticle potential results in the
particle exiting the trap).
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Colloidal crystals (14) offer a unique opportunity to study
basic problems in condensed matter and in particular the physics
of 2D statistical systems (3-5, 15-18). The colloidal crystals used
here (Fig. 1) consist of a monolayer of charged micrometer-sized
poly(methyl methacrylate) (PMMA) particles (19) bound to an
oil (cyclohexyl bromide/dodecane)-water interface by electro-
static forces. Because the particles are superhydrophobic they sit
entirely in the oil phase, minimizing wetting-induced interactions
(20). Both the image-charge binding and the surface tension that
resists deformation of the interface are very strong compared
with any residual optical force perpendicular to the interface
plane. We prepare a millimeter-scale, flat oil-water interface on
a microscope coverslip (Materials and Methods); the particles
bind to the interface and organize into a hexagonal lattice. A 3D
confocal view of a sample cell, with the interfacial crystal at
the bottom, is shown in Fig. 1B. Fig. 1 C and D shows a section of
the lattice that has a single dislocation “frozen-in” by the fab-
rication process.

A dislocation in a hexagonal lattice consists of a pair of extra
half-rows of particles that meet at the “core” (Fig. 1C). A dis-
location disrupts crystalline translational order, and has as to-
pological charge the Burgers vector (Fig. 1C), which has length
a (the lattice constant) and can point in one of the six crystal-
lographic directions. A single disclination results from an extra
(missing) 60° wedge in the lattice and disrupts orientational or-
der; its elementary topological charge is a multiple of 2. Dis-
clinations are not usually seen in a flat 2D lattice owing to the
large elastic energy cost of accommodating an extra wedge in the
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Fig. 1. Lattice used in the experiments presented here. (A) Charged PMMA
particles in CHB/dodecane are bound, by image charge attraction, to an oil-
water interface formed on a glass coverslip. (B) Confocal image of a sample
cell shows the lattice on the interface with a few dislocations frozen in by
the fabrication process. Above (displaced by a vertically applied electric field
to better view the 2D lattice) is a 3D Wigner lattice of the PMMA particles in
CHB/dodecane. (C) Bright-field image of a section of the lattice showing
a single dislocation. The extra half-rows that give rise to the dislocation
(shown in black) meet at the core, which is also characterized by a pair of
particles having five and seven nearest neighbors. A dislocation will be
represented interchangeably by a bound (5-7) pair of Voronoi cells (over-
laid), or by a line parallel to the Burgers vector and a V along the extra half-
rows. The corresponding topological charge of the dislocation, its Burgers
vector, is also shown. (D) Lattice can be represented through its Voronoi
cells, colored by orientation. (E) In this picture the dipole in orientation
which surrounds a dislocation is clearly visible. Only cells with six nearest
neighbors are colored this way. Cells with five and seven neighbors are
colored white and gray, respectively.

lattice. The disclinations proliferate on entering the isotropic
liquid phase.

The core of a disclination can be found by Voronoi tessellation
and corresponds to a single cell having five or seven nearest
neighbors. The core of a dislocation corresponds instead to
a neighboring pair of cells with five and seven nearest neighbors.
This is because a dislocation can be seen as a dipole of dis-
clinations, which is visible in the orientational order surrounding
a dislocation shown in Fig. 1D. We represent dislocations in-
terchangeably either as a line along the glide plane (parallel to
the Burgers vector) with a “V” along the missing half-rows, or as
the Voronoi cells of the 5-7 pair (Fig. 1C).

In a continuum model of a 2D lattice, the elastic energy is
given by (21)

K
F= /dA{Muij—5ijtr(uij)|2+§tr(uij)2 s

where u;; =%(0iuj + dju; + JuiOjuy ) is the strain tensor defined in
terms of the particle displacement field u;, p is the shear modu-
lus, and K is the bulk modulus. The particle displacements can be
determined either from a single experimental image by compar-
ing each Voronoi cell to an ideal one, by Fourier analysis (22), or
from a sequence of images as the difference between instanta-
neous and mean position of each particle. From these measure-
ments, fluctuations in area and orientation of a subset of the
lattice can be obtained and used to determine the elastic moduli
(23) 4 and K. We find typical values of ~200 and ~ 1,800k, T /a?
for p and K, respectively.

As a symmetric two-by-two matrix, the strain tensor can be
expressed as the sum of two terms: an isotropic component
(compression/dilation) proportional to the identity matrix, and
a symmetric traceless (shear) part which can in turn be repre-
sented as a reflection matrix about an axis with orientation 26
multiplied by a magnitude y:
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o’=(x<(1) (1)) +yR(20)((1) é)R‘l(ZH).

To visualize the strain tensor field u; in a single image, we de-
veloped the following scheme (Fig. 2): we represent the com-
pressive part with color and the shear component by a rod along
the direction of the shear elongation (which is aligned with the
reflection axis) having length proportional to the magnitude of
the shear strain (Fig. 2B). Fig. 24 shows an image of a 2D lattice
and Fig. 2C shows the corresponding strain field. The visualiza-
tion makes immediately apparent strains which are not evident
to the eye. What appears is a combination of long-range strains
created either by boundary conditions or by defects outside of
the field of view, and shorter-range strains induced either by
local defects or, as will be seen below, by the application of
topological tweezers. The long- and short-range components
can be separated by Fourier analysis. Fig. 2 D and E shows the
filtered strain field induced by imposing shear with two domains
of optical traps (Fig. 2E) and an incommensurate (dilating) po-
tential on the lattice (Fig. 2D).

Glide, dislocation motion along a Burger’s vector, involves
a slight rearrangement of the particle positions. Climb, motion
perpendicular to the Burgers vector, involves mass transport of
the two additional half-rows out to the end of the crystal. Typi-
cally, only glide is observed in most crystal deformations. With
our tweezers we can easily produce a simple shear strain around
an isolated dislocation and induce glide. The glide is in the di-
rection in which the shear rod and extra half rows are closest.
(Fig. 34 and Movie S1). Using the tweezers to relax the strain
field by bringing the lattice back to its original position, we find
that the dislocation returns to its original position. Glide in our
system is reversible, implying a very small periodic Peierls
potential.
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Fig. 2. Representation of the strain field. Starting from an image of the
lattice (A), the particle displacement field was determined by comparing
each Voronoi cell to an ideal one. We represent the strain tensor, derived
from the displacement field, as follows. (B) The isotropic (compression/di-
lation) part is represented with color and the shear component by a rod
along the direction of the shear elongation having length proportional to
the magnitude of the shear strain. (C) Visualization of the strain field of the
lattice shown in A makes immediately apparent strains which are not evi-
dent from the bright-field image. The strain is a combination of long-range
strains created either by boundary conditions or by defects outside the field
of view and shorter-range strains induced either by local defects or the
application of topological tweezers (D and E). (D) Application of an in-
commensurate dilated potential produces a patterned dilation (blue) strain.
The patterns visible in the strain have a length scale corresponding to a beat
frequency between the incommensurate potentials. (E) Application of shear
stress produces a matching shear strain visible in the region in between the
shearing traps.
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Fig. 3. Control of dislocations with topological tweezers. (A) (See also Movie S1.) Glide can be induced by shearing the lattice on either side of a dislocation.
This corresponds to a stress represented schematically on the right. (B) (See also Movies S3 and S4.) A climb force applied by dilating the lattice on one side of
the dislocation results in the fissioning of the dislocation into a pair which by its joint gliding motion moves in the climb direction of the original dislocation.
(C) (See also Movie S2.) Fissioning of a pair of dislocations by shearing a defect-free region of the lattice beyond the elastic regime. (D) (See also Movie S6.)
Opposing shear stresses trap a dislocation which can then be moved along its glide plane. (E) (See also Movie S7.) Application of a commensurate potential,
aligned with one side of a grain over a grain boundary, is capable of moving the grain boundary.

If a simple shear moves a dislocation to the right and the
opposite shear displaces it to the left, then application of the first
on the left and the second on the right makes a “dislocation
tweezer” (Fig. 3D and Movie S6) capable of trapping the dislo-
cation or moving it anywhere in its glide plane. Our dislocation
tweezer grabs a nonlocal object by generating a stress pattern
around its core and is an example of a topological tweezer.

We now focus on dislocation reactions. In all reactions the
Burgers vector, like charge, is conserved. There are two reaction
types: (i) creation (annihilation) of a dislocation pair with op-
posite Burgers vectors laying on the same glide line and (i)
fission of a single dislocation in a hexagonal lattice to form two
dislocations with 60° between their Burgers vectors whose sum is
equal to the original. Likewise, a noncollinear (60°) pair can
undergo fusion. The pair creation can be demonstrated by ap-
plying shear to a dislocation-free region as in Fig. 2E. When the
shear strain exceeds a certain threshold, pairs of dislocations
unbind and glide in opposite directions to relieve the strain (Fig.
3C and Movie S2). When the applied shear strain is relieved by
moving the tweezers and lattice back to their original positions,
the dislocations glide toward each other and annihilate. So,
simple creation and annihilation are reversible.

We have found two configurations that induce the fissioning of
a dislocation. Dilating the lattice in the vicinity of the dislocation
induces a Peach-Koehler force (24) Fpx=¢X (ob) in the climb
direction in which the dislocation cannot move. Once this force
reaches a certain threshold, the dislocation reacts by fissioning
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into two which can, by their combined glide motion, effectively
“climb” by gliding (Fig. 3B and Movies S3 and S4). A different
method is to impose a periodic potential on top of the disloca-
tion that is commensurate with the defect-free lattice. This cre-
ates an anisotropic stress field which corresponds to the strain
field of a dislocation with opposite Burgers vector. A pair of
dislocations that would attract and react to form the original
dislocation will be repelled by this inverted stress. The disloca-
tion under this stress therefore fissions in either of the two
possible configurations (Movie S5). Typically the fission products
separate sufficiently fast and far enough that relaxing the stress
does not reverse the process.

Beyond controlling individual defects, it is also possible to
control groups of interacting defects aligned along a grain
boundary. Fig. 3E and Movie S7 show how the application of
a commensurate potential, aligned with one of the two sides of
the grain boundary, moves the boundary. This can be used to
“clean up” a lattice by selectively growing a particular grain and
was used in the preparation of many of the experiments pre-
sented here.

The creation of a grain in a perfect lattice is a complex process
involving formation of dislocation pairs, cooperative reactions,
and dislocation organization into a grain boundary. We study this
process in detail by using topological tweezers to rotate a region
of the crystal clockwise by 60° and subsequently reversing the
rotation returning the region to its original orientation, allowing
us to probe how collective defect dynamics can achieve the
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formation of a grain and how irreversibility can arise from such
coordinated dynamics (Movies S8-S11). Naively, one could ex-
pect the following sequence of events in a reciprocated rotation
by 60° in a hexagonal lattice: (i) creation of dislocations in re-
sponse to the applied shear (ii) correlation of the defects to form
a grain boundary (iii) increase of dislocation density along the
boundary to a maximum as the rotation approaches 30°, (iv)
reversal of the dislocation orientation beyond 30° (v) decrease of
the dislocation density as the rotation approaches 60°. (vi) Dis-
locations disappear as perfect registry is restored at 60°. (vii) A
similar (reverse order) process on the way back.

We observe that steps i—iii proceed as expected, with the or-
ganization of unbound dislocations into a boundary revealed to
proceed through a minimal set of reactions (Fig. 4B). The pro-
cess is simple and elegant in our hexagonal lattice. A hexagonal
region is trapped and rotated. A shear strain field with maxima

along the edges surrounds the region and the elastic energy
increases. Further rotation of the topological tweezer array to an
angle that is offset by 12° from the far-field crystal orientation
induces a lattice rotation of ~10° within the tweezer array
(corresponding to an angular strain between the crystal orien-
tation inside the array and the far field of ~10°), increases the
energy, and after a short time there is dislocation pair creation
along the edges. The strain field forces the pair to separate by
gliding to opposite corners of the edge. At the corners, fusion of
dislocations from adjoining edges produces dislocations oriented
in the clockwise pattern of a grain boundary. The linear density
of dislocations (Fig. 4C) dictates the orientational mismatch of
the crystal on crossing the grain boundary. The creation and
rearrangement of the dislocations lowers the elastic energy. With
further rotation the density increases by reactions creating more
dislocations.
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Fig. 4. Topological defect dynamics in the formation and rotation of a grain. (See also Movies S8 and S9.) A commensurate set of traps was rotated counter-
clockwise from 0° to 60° in 6° steps (D, gray line), giving rise to a grain with boundary. A cartoon of the idealized process is shown in A. The initial response is an
elastic pure-shear deformation (B) with a corresponding build-up in shear elastic energy Es/u= [ y*dA (E). At a rotation angle of 12°, the shear stress makes defects
unbind along the edges after a short delay (A and B), glide to relieve the stress (E, blue line), and react to form a grain boundary (A and B). Further unbindings,
annihilations, and glide movements produce an oriented dislocation line density (C, purple line) along the grain boundary that mediates the difference in angle
between the lattice and grain A¢ (D, red line). As the rotation angle reaches 30° (A9 = + 30°), A0 reaches a maximum and becomes ambiguous in sign. The defect
density reaches a corresponding maximum. Beyond 30°, A9 becomes negative and the defect orientation must change from clockwise (black) to counterclockwise
(red). If all defects along the boundary are in contact (the appropriate density to mediate a difference in orientation of 30°), simple disclination reassociation from
clockwise to counterclockwise reverses the dislocations smoothly (A, step v). In the experiment we observe this mechanism along part of the boundary; however, in
regions in which the defect density does not reach unity, the defects unbind into disclinations separated by a lattice constant (F) and these recombine with their
counterparts from a neighboring dislocation. For further rotation, the dislocation line density is reduced as the defects are pushed outward.
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The maximum density occurs when the grain is oriented at 30°
from the surrounding lattice. Because of the sixfold symmetry of
the hexagonal lattice, this orientation could likewise have been
obtained by a rotation of 30° in the opposite sense, which would
have produced a counterclockwise set of dislocations on the
grain boundary. Further rotation should decrease the density of
this counterclockwise boundary. If the dislocations formed a
touching ring of fives and sevens, then the reversal just involves
changing partners from right to left. However, the reversal in
step iv (Fig. 4F) in our case is seen to occur partly by 5-7 reas-
sociation and partly by an unusual “ionization” of dislocations
into unbound disclinations as depicted in Fig. 4.

Importantly, the remaining steps v and vi are not simply the
reverse of the initial rotation (from 0° to 30°); in particular, we do
not observe the dislocations to fission and annihilate, but rather
their number remains fixed and they are repelled by the grain. Note
that the mismatch in orientation of the grain relative to the outside
crystal is governed by the linear dislocation density in the grain
boundary. The density can decrease either by keeping the boundary
the same length and lowering the number of dislocations or by
fixing the number of dislocations and increasing the circumference,
hence radius, of the boundary. In our experiment we see that the
dislocations remain and move away from the boundary.

We start with a perfect lattice, no local defects, rotate the
grain by 60° so it again matches the lattice, but we end up with six
dislocations within a distance of several grain sizes. To complete
the picture we rotate the grain by 60° back to its original ori-
entation. The local dislocations are pulled back to form a grain
boundary, reverse direction at 30°, but rather than annihilate as
we approach 0° they are again repelled from the grain. The cyclic
rotation of the grain 0°— 60°— 0° is irreversible, leaving the
originally perfect lattice littered with dislocations. The origin of
the irreversibility appears to be associated with the interactions
of many dislocations, because in our study each of the isolated
reactions, creation, annihilation, fission, and fusion is reversible.

In conclusion, we have shown that whereas local individual
dislocation reactions are reversible, complex reactions are not.
(All dislocation motions are dissipative.) Simple reciprocating
motion can lead to the proliferation of dislocations even in a 2D
crystal. We have also presented topological tweezers acting on
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multiple particles simultaneously to generate stresses capable of
completely controlling individual dislocations. Beyond applica-
tions in controlling and studying defects, the lattice stress twee-
zers can be used to apply a variety of potentials, including random,
periodic, or aperiodic to study problems such as pinning and
formation of Larkin domains (25, 26). Such sets of tweezers can
also be used to study defect dynamics in curved spaces (27-29) and
probe the local rheology of disordered systems (30, 31).

Materials and Methods

Lattice Preparation. PMMA particles (diameter ~2 pm) prepared using the
methods of refs. 19, 32 were suspended in a mixture of cyclohexyl bromide
(CHB) and dodecane (80/20 wt/wt). A glass coverslip was cleaned by soni-
cation in acetone, followed by rinsing in isopropyl alcohol, followed by
oxygen-plasma etching. The coverslip was then glued onto a channel (height
~ 100 pm, width ~2 mm, length ~20 mm) formed by bonding two additional
coverslips to the surface of a glass microscope slide. The channel was first
filled with deionized water (Millipore 18.3 MQ) and then cleared by wicking
with a thin piece of absorbent paper inserted into one end. This procedure
leaves a thin coating of water on the coverslip surface. The channel then is
filled with the oil-phase colloidal dispersion, and the sample is allowed to
equilibrate for 30 min. This procedure yields uniform regions of oil-water
interface on the coverslip that extend for several millimeters on a side.

Tweezer Pattern Preparation. To project tailored patterns of traps, we used
a holographic optical tweezer setup (8). To calculate the trap positions ap-
propriate for each operation, the following steps were taken. A bright-field
image of the lattice, taken immediately (15 s) before the experiment, was
used to determine the particle positions (33) from which the lattice spacing
and the positions of defects could be determined by triangulation. A partic-
ular defect was then selected by user input. A fast Fourier transform of the
lattice image was then used to determine the lattice vectors, in terms of which
the absolute trap positions appropriate for a given configuration relative to
the defect can be easily computed. The relevant hologram was then numer-
ically computed (12) and projected on the Spatial Light Modulator.
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