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Recently, there has been much debate about the prospects of
eliminating HIV from high endemic countries by a test-and-treat
strategy. This strategy entails regular HIV testing in the entire
population and starting antiretroviral treatment immediately in all
who are found to be HIV infected. We present the concept of the
elimination threshold and investigate under what conditions of treat-
ment uptake and dropout elimination of HIV is feasible. We used a
deterministic model incorporating an accurate description of disease
progression and variable infectivity. We derived explicit expressions
for the basic reproduction number and the elimination threshold. Using
estimates of exponential growth rates of HIV during the initial phase
of epidemics, we investigated for which populations elimination is
within reach. The concept of the elimination threshold allows an as-
sessment of the prospects of elimination of HIV from information in the
early phase of the epidemic. The relative elimination threshold quan-
tifies prospects of elimination independently of the details of the trans-
mission dynamics. Elimination of HIV by test-and-treat is only feasible
for populations with very low reproduction numbers or if the repro-
duction number is lowered significantly as a result of additional inter-
ventions. Allowing low infectiousness during primary infection, the
likelihood of elimination becomes somewhat higher. The elimination
threshold is a powerful tool for assessing prospects of elimination from
available data on epidemic growth rates of HIV. Empirical estimates
of the epidemic growth rate from phylogenetic studies were used to
assess the potential for elimination in specific populations.

HIV elimination | mathematical model | primary HIV infection |
treatment coverage

Recently, there has been much debate about the prospects of
eliminating HIV from high endemic countries by a test and treat
strategy (1-6). The rationale of the test-and-treat strategy is to offer
regular HIV testing to entire populations and immediate anti-
retroviral treatment (ART) to all those found positive. As viral loads
decline to undetectable levels under ART, the probability of onward
transmission is reduced to very low levels. The latter has been con-
firmed in discordant couples’ studies, where no transmission was
observed in those couples of which the HIV-positive partner was on
treatment (7, 8). The test-and-treat strategy is a particular form of the
more general approach of “treatment as prevention” that emphasizes
the impact of treatment on the transmission dynamics of HIV in
populations, i.e., it is focused on the indirect effects of treatment.
Treatment of large groups of an infected population may have sub-
stantial impact on numbers of HIV diagnoses, as a recent ecological
study from Canada suggested (9), or on risk of HIV acquisition, as
shown in a cohort study in South Africa (10). However, to judge the
prospects of eventual elimination, we would like to know whether or
not incidence will decrease to zero with a reasonable intervention
effort. In addition, cost-effectiveness of treatment as prevention de-
pends sensitively on whether or not elimination is feasible in the long
run and how long it takes to reach that goal. If HIV remains endemic,
continuous investments will be needed in the future, whereas in the
case of elimination a point of zero costs may be achieved.
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Mathematical modeling has played a key role in the discussion
of the impact of treatment as prevention strategies, highlighted by
the paper by Granich et al. (2), and followed up by others (11-14).
These models all set out to assess the impact of treatment on
population prevalence and incidence using simulations with pa-
rameter values estimated from various data sources. Although this
approach is useful to compare quantitatively various intervention
strategies or for cost-effectiveness analyses (14), it does not allow
the answer to a more generic question, namely, under what con-
ditions upon transmission rates is elimination possible at all (15)?
To address the latter question an analytic approach is required.

We developed a modeling approach that allows assessment of
the prospects of elimination given that some information is avail-
able on the initial phase of the epidemic. We generalized the model
by Granich to allow for a more flexible description of the natural
history of infection. We defined elimination as a threshold phenom-
enon and related the elimination threshold to the basic reproduction
number R,. We showed how basic reproduction number and expo-
nential growth rate are related given our knowledge on disease pro-
gression and transmission. We investigated how the feasibility of
elimination depends on the distribution of infectivity during the
infectious period. Finally, we used published estimates of epidemic
growth rates from incidence data or genetic sequence data to judge
the prospects of elimination thresholds in specific populations.

Methods

Model Formulation. Our model is a direct generalization of the model in ref. 2
in that it allows for an arbitrary number of stages of infection with variable
duration (Fig. 1 and S/ Appendix). The model describes progression through
n stages of infection, background mortality, additional mortality from HIV
infection, and the uptake and dropping out of treatment. We formulated
the model as a system of differential equations as follows:
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Here, s is the susceptible population, iy the infected population in stage k of
the infection, and ay the population on ART who would revert to an
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infection of stage k (for k = 1,2,...,n) in case of treatment failure. The force
of infection is determined by j, which is defined as

n
j= hkik+Eak.
k=1

Here, parameter e quantifies the reduced infectivity for an individual on
ART, whereas the hy describe the infectivity in stage k of infection. The px
and the oy denote transition rates from stage k to stage k+1 for untreated
and treated individuals, respectively. The parameter z represents the rate of
moving from the untreated to the treated population, i.e., a combination of
screening and treatment uptake. The parameter ¢ is the rate of moving
from the treated back to the untreated population, i.e., the rate of dropping
out of treatment. Finally,  denotes the recruitment into the population and
u the background mortality rate. A key parameter is 4, the transmission rate
between susceptible and infected individuals. A summary of parameters and
their default values are given in S/ Appendix, Table S2. The model used by
Granich is obtained from the above formulation by setting n = 4 and by
assuming that px = p and o4 = ¢ for all k (SI Appendix). Also, Granich’s model
was formulated in terms of numbers and took varying population size into
account, which we avoid by using population proportions. Finally, Granich’s
model included a prevalence-dependent exponential term in the transmission
parameter that served to capture density dependence and saturation effects
for high prevalence. Density dependence does not play a role near threshold,
so we simplified the model in that respect.

We then analyzed the threshold behavior of the model using theory de-
scribed in refs. 16, 17. We showed that the threshold can be computed ex-
plicitly as a function of the model parameters for arbitrary values of n. We
analyzed the threshold as a function of treatment-related parameters. In the
absence of treatment, the threshold quantity is simply the basic reproduction
number Ry, whereas in the presence of treatment it defines the elimination
threshold quantity R.. We parametrized the model for the case n = 4, because
for this choice good estimates were available from literature on duration of
stages and transmission rates per stage. We finally used the model to in-
vestigate how the elimination threshold depends on intervention parameters
and how infectivity during primary infection impacts on possible intervention
success. For details of the analysis we refer the reader to S/ Appendix.

Natural History of Infection. To parametrize the model we made use of
investigations into progression rates from infection to death (18, 19) and
estimates of the duration of stages with high and low infectivity, i.e., the
(time-varying) potential for transmission given contact (20). Following Hol-
lingsworth and colleagues we distinguished four stages of infection with
varying duration and transmission rates, where the last two stages together
defined the symptomatic AIDS stage. The AIDS stage is subdivided into an
infectious and a noninfectious period (due to severe illness leading to ces-
sation of sexual activity). The durations of the primary infection and the
asymptomatic chronic stage were chosen based on estimated disease pro-
gression by CD4+ counts as estimated by the Concerted Action on Sero-
Conversion to AIDS and Death in Europe (CASCADE) collaboration; these
durations then determined the values of the progression rates between
stages. Furthermore, we determined transmission rates for the different
infectious stages from ref. 20 (Fig. 2 A and B). We assumed that disease
progression is comparable across populations, i.e., that the same transition
rates and infectivities can be used for different populations. The assumptions
on progression rates were based on: the CASCADE study showing that pro-
gression did not differ by risk group, and only depended on the age at in-
fection; a cohort study in Uganda, reporting progression rates in a sub-
Saharan African population not to differ significantly from those in in-
dustrialized countries (21); and a metaanalysis (22), confirming the similarity
in progression between those populations. Reliable estimates of per-contact
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Fig. 1. Flowscheme of the model.
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Fig. 2. (A) Probability of being in a specific stage of infection as a function
of time since infection (red: primary infection; green: chronic asymptomatic
stage; blue: AIDS mild; magenta: AIDS severe); mean durations are stage 1:
0.271y; stage 2: 8.31y; stage 3: 1.18 y; stage 4: 1.32 y. (B) Infectivity of the
different stages of infection. Stage 1 (red): 2.76/y; stage 2 (green): 0.106/y;
stage 3 (blue): 0.64/y; stage 4 (magenta): 0.0/y. (C) Generation time distri-
bution (blue shaded area) and cumulative fraction of secondary infections
(red curve) as a function of time since infection.

transmission probabilities are only available for heterosexual couples. How-
ever, infectivity may be higher for unprotected anal intercourse, the main
transmission route in men who have sex with men. We performed sensitivity
analyses to investigate this possibility and other uncertainties (S/ Appendix).

In the model the stages of the population under treatment have no bi-
ological interpretation. They were chosen such that the survival probability
has a distribution function that agrees with CASCADE data from the time
period after introduction of ART. We made the additional assumption that
individuals dropping out of treatment move into the corresponding non-
treatment stage of infection. Therefore, for individuals under treatment the
proportion of time spent in each stage is similar to that without treatment,
but the absolute duration is longer as it is adjusted to the prolonged survival
under treatment. With these assumptions we estimated the transition rates
for individuals on treatment (for details see S/ Appendix).

Basic Reproduction Number and Exponential Growth Rate. The transmission
parameter A describes the speed of transmission between individuals and
therefore determines the basic reproduction number R,. There are general
methods for estimating Ry directly (23), but for HIV many of the assumptions
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usually made in estimation procedures are not fulfilled. On the other hand,
estimates of incidence and/or exponential growth rates at the beginning
of the HIV epidemic are more readily available and allow a more direct
estimation of Ry. Therefore, we made use of the following relationship
between the basic reproduction number and the exponential growth rate:

1 _ T —rs
Re™ /e g(s)ds. [11
0

Here, g(s) denotes the generation time distribution, i.e., the probability
density for the interval between the time of infection of an index and its
secondary cases (24). The generation time distribution can be computed in
terms of the parameters describing the progression through stages of in-
fection and the transmission rates per stage (Fig. 2C). This means that if we
can estimate the exponential growth rate r from data, the above formula
gives us an estimate of R, and therefore for 1. Once an estimate for 1 is
obtained, we have a formula for the elimination threshold depending on
parameters z and ¢, which are determined by the program specifications,
i.e., screening and treatment uptake and dropping out of treatment (S/
Appendix). We plotted our results in terms of annual treatment uptake and
annual dropout rate. To translate those results into results on coverage of
treatment, we plotted the coverage as a function of annual treatment up-
take for various values of the dropout rate. To do this, we assumed that
coverage is at steady state with a constant force of infection.

So far, we have assumed that all underlying complexity of transmission pat-
terns (i.e., heterogeneity in risk groups and contact patterns) can be subsumed
under one parameter A that links infectivity and exponential growth rate. To
translate this assumption into a statement on elimination, we then start by as-
suming that these underlying transmission patterns have not substantially
changed in between the onset of the epidemic (from when we derive an esti-
mate of r) and the elimination phase. In other words, we assumed that risk
behavior patterns and main risk groups have remained stable over the time of
the epidemic. We then assessed elimination prospects with respect to the
transmission potential in a population as witnessed by the speed of emergence
at the onset of the epidemic. These assumptions can be relaxed to include be-
havioral heterogeneity and changes in risk behavior over time as detailed below.

To test the sensitivity of our results to assumptions on the distribution of
infectivity over the infectious period, we varied the infectivity of the primary
infection by shifting infectivity stepwise from primary infection to the chronic
phase while retaining a constant total infectivity during the infectious lifetime.
We analyzed how the elimination threshold changed with shifting infectivity.

Estimation of Exponential Growth Rates. Exponential growth rates can be
estimated directly from incidence data if available. However, for HIV, incidence
rates are notoriously hard to estimate. There are estimates available for various
populations based on back-calculation approaches (25, 26). These have also
been used to derive basic reproduction numbers and doubling times of the
epidemic (27). Other incidence estimates are derived from cohort studies (28)
or from model fitting to prevalence and HIV surveillance data (29-31).

However, for many populations it is not possible to estimate incidence at
the onset of the epidemic due to a lack of data from that time period. It is
promising therefore to use estimates for the exponential growth rate based
on phylogenetic analysis (32-35). In these studies, the evolution of genetic
diversity of HIV is inferred from coalescent analysis. The coalescent is trans-
lated into a skyline plot showing how effective population size increased
over time. Then a parametric demographic model is fitted to the skyline
plot, allowing estimation of a population growth rate.

SI Appendix, Table S4 shows a compilation of estimates for the exponential
growth rate r, basic reproduction number R,, and the doubling time d of the

epidemic from various data sources. For studies that reported values for more
than one quantity, we tested whether those estimates are compatible with
our model of disease progression and infectivity. From the values reported for
either r or Ry we computed the respective other quantity by making use of the
relationship given in Eq. 1 and compared it to the reported value.

Heterogeneous Populations. We extended our model to also take into account
heterogeneity in sexual activity. This was done by subdividing the population
into m subgroups of proportion g, with differing contact rates ¢, k=1,...,m.
We assumed proportionate mixing between activity classes. As for the ho-
mogeneous population, the basic reproduction number and the elimination
threshold can be computed explicitly. We investigated scenarios where the
level of risk behavior in a small high-risk subpopulation decreased to a lower
level as a consequence of behavior changes after onset of the epidemic. We
studied the degree to which risk levels in the high-risk group need to decline
in order for elimination to be attainable with a test and treat strategy.

Results

Natural History and Generation Time Distribution. Fig. 24 shows
the estimated survival, i.e., the probability to still be alive, to-
gether with the probabilities of remaining in a specific HIV
disease stage as a function of time since infection based on the
estimated transition rates for untreated individuals. The mean
duration of primary infection is 0.27 y, of chronic infection
8.31y, and the time from AIDS to death is 2.50 y. The mean
survival is 11.08 y.

Fig. 2B depicts the infectivity in the four stages of infection as
estimated in ref. 20. The infectivity in the last stage of infection is
zero. Finally, in Fig. 2C these pieces of information are com-
bined to obtain the generation time distribution and the fraction
of secondary transmissions as a function of the time since in-
fection under the assumption that the contact rate is constant
during the infectious period. We observe that a large part of
secondary transmissions are predicted to occur during the pri-
mary infection; almost 30% of secondary infections are produced
in the first 6 mo and 36.4% of secondary infections are produced
during the first year of infection. Our model predicts that even
with annual screening a large part of these secondary infections
will not be prevented by a test-and-treat strategy.

Together, variable infectivity and survival in various disease
stages determine the relationship between epidemic growth rate r
and basic reproduction number R, (Fig. 34). Similarly, this re-
lationship can be shown in terms of the epidemic doubling time
(Fig. 3B). An estimate for the epidemic growth rate or doubling
time can now readily be translated into an estimate for the basic
reproduction number.

General Properties of the Elimination Threshold. Feasibility of elim-
ination is determined by the threshold quantity R, which depends
on all model parameters (SI Appendix). In Fig. 44 the elimination
threshold is shown as a function of annual treatment uptake and
the dropout rate for an exponential growth rate of 0.273 as in ref.
36. For those regions where R.< 1, i.e., where R, lies below the
gray horizontal plane, elimination is possible.

The relative elimination threshold Ry = R./R, depends only on
disease progression with and without treatment, and on the in-
fectivity in those stages, but not on 1 (S Appendix). Ry measures

w

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3
Epidemic growth rate (1/yr)

15540 | www.pnas.org/cgi/doi/10.1073/pnas.1301801110

Epidemic doubling time (years)

4 5 Fig. 3. (A) Relationship between epidemic growth rate and
Ro. (B) Relationship between epidemic doubling time and R,.
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the transmission potential of HIV in a population under treat-
ment with given treatment parameters, relative to the trans-

mission potential of the untreated population. In other words, Ry

describes the relative transmission potential in a treated pop-
ulation compared with the untreated population assuming that
all is equal except the availability of treatment. Ryis always below 1
and is plotted in Fig. 4B as a function of annual treatment uptake
and dropout rate, respectively, whereas the respective other
parameter is kept constant. If an estimate of the exponential
growth rate or of Ry is available, the required annual treatment
uptake needed for elimination given a certain dropout rate can
be found at the intersection of Ry with the constant level 1/R,.
Fig. 4C then shows how coverage depends on annual treatment
uptake for different dropout rates.

We investigated how the elimination threshold quantity R,
changes with decreasing infectivity of primary infection (Fig. 5).
The results shown here are computed for an exponential growth
rate of 0.273/y as reported by Walker et al. (36) for sub-Saharan
African countries and a 5% dropout rate per year. If infectivity is
set at its baseline values (Fig. 2B), we found that annual treatment
uptake of more 70% is needed for elimination which corresponds
to a coverage above 85%. Lower values of treatment uptake
suffice when infectivity is shifted to later stages of infection.

Elimination Thresholds Estimated from Exponential Growth Rates.
For some studies we found a discrepancy between the estimates
for r and Ry (SI Appendix, Table S4) according to our disease
progression model. In those studies, the estimated values of R are
higher than would be expected from the reported exponential
growth rate, possibly due to effects of underlying contact patterns.
Interesting are the results reported in ref. 33, where exponential
growth rates were estimated from genetic data for two HIV-1
subtypes. The two subtypes differed in their growth rates. If an
infectious duration of 3 y was taken to compute the basic repro-
duction number, the estimates were similar to ours (SI Appendix,
Table S4). Adopting a duration of infection of 10 y, the resulting
estimated rates were much higher and inconsistent with ours.
The underlying assumption in ref. 33 was that the probability of
transmission did not change during the infectious period. When
using reported exponential growth rates and model-derived
values of Ry as a basis for comparison, we found that the values
for Ry all lie within the range of 2.0 and 4.5 regardless of geo-
graphical location, population, and methodology of the study.
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treatment uptake and the coverage at a steady state
for different values of the dropout rate.

Elimination thresholds separate the parameter space defined
by annual treatment uptake and dropout rates into the regions
above the curves where elimination is possible, and below the
curves, where elimination is not possible (Fig. 64). With in-
creasing Ry the conditions for elimination become more stringent.
For the Ry values from SI Appendix, Table S1, elimination is
possible for populations with R slightly above 2.0, increasingly
difficult as R, values approach 3.0, and impossible for populations
with Ry > 3.0. However, even for the population with the lowest
estimate of r (36), annual treatment uptake of more than 65% is
required at a dropout rate of 5% corresponding to a coverage of
more than 85%. If transmission probability under treatment is
lower than our baseline value of 0.01 the elimination thresholds
become more favorable (SI Appendix, Fig. SS5). Lowering the re-
production rate by additional interventions shifts the thresholds
downward; we computed the additional effort required (in terms
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Fig. 5. Impact of distribution of infectivity during the infectious period on the
elimination threshold. The infectivity distribution from Fig. 2B leads to the upper
red curve. Then infectivity is shifted stepwise from primary to chronic infection
while retaining a constant total infectivity (coloring of curves shifting from red
to green). With infectivity shifting to later stages of infection the required an-
nual treatment uptake for elimination (dots) decreases. The epidemic growth
rate is again set to 0.273/y and dropout rate is assumed to be 5% per year.
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of lowering the transmission rate) to reach elimination for a given
treatment rate and dropout rate (SI Appendix, Fig. S6).

Heterogeneous Populations. For the type of contact pattern con-
sidered here, namely proportionate mixing among different
subgroups of the population with differing contact rates, the
heterogeneity in contact rates does not impact on the above
analysis. In other words, the relationship between basic repro-
duction number and elimination threshold is not affected by
heterogeneity. This result holds for heterogeneity in contact rates
between individuals and certain forms of mixing. It does not carry
over to situations where there is heterogeneity in how contacts are
spaced in time, for example if there are long-term monogamous
partnerships or if high risk occurs in episodic bursts (37, 38).

If there are differential changes in levels of risk between dif-
ferent risk groups, the relationship between the basic re-
production number and the elimination threshold changes. We
used data from men who have sex with men (MSM) in the
United Kingdom (39) as a basis for considering an example of
a population where 80% have a low partner change rate (defined
to be one new partner per year) and the remaining 20% have
a higher rate (five new partners per year). We assumed an epi-
demic growth rate of 0.273 as in ref. 36, which corresponds to an
Ry of around 2. If intervention succeeds in lowering the partner
change rate of the 20% high-risk population, elimination will
become more feasible, even if 80% of the population does not
change their behavior. If the basic reproduction number is
around 2 at the onset of the epidemic, a reduction of 50% in the
partner change rate of the high-risk group brings elimination
within reach (Fig. 6B). If the basic reproduction number is
around 3, as is estimated for MSM populations in Western
countries, more effort is needed in reducing risk levels in the
high-risk group (SI Appendix, Fig. ST7). This reflects the fact that
the basic reproduction number is largely determined by small
high-risk subgroups in the population. Note that we assume here
that estimates of R, from data—such as genetic sequence data—
already implicitly incorporated heterogeneity in contact rates.

If there is heterogeneity between different strains or subtypes
of the virus with respect to transmission probability and pro-
gression rates, the analysis can be made strain-specific. The
overall basic reproduction number is then determined by the
strain or subtype with the highest reproduction number.

Discussion

We designed a model reminiscent of Granich’s model, but better
suited to describe the natural history and variable infectivity of
HIV infection, to analyze the elimination threshold and its
dependence on treatment-related variables (annual treatment up-
take, dropping out of treatment, and reduction of infectiousness in
treated persons) and transmission rate. The transmission parame-
ter was estimated from exponential growth rates extracted from
the literature. Assuming that exponential growth rates char-
acterize the risk potential of a population, we assessed whether or
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above the lines, elimination is possible; for combinations be-
low the curve it is not possible.

not elimination is feasible in a population with a given growth rate.
We found that elimination is only feasible in populations with
very low basic reproduction number (around 2.0) and high annual
treatment uptake, or if additional interventions substantially re-
duce the reproduction number.

In our modeling approach, basic reproduction number and
elimination threshold both depend linearly on the transmission
parameter, suggesting that both quantities are related to un-
derlying contact patterns in the same way. This is confirmed by
analysis of a model with different sexual activity levels and pro-
portionate mixing. Further generalization of contact heteroge-
neity is possible along the same lines; however, for more general
mixing patterns thresholds can only be computed numerically.
Therefore, the ratio of basic reproduction number and elimina-
tion threshold is independent of transmission patterns. More-
over, the relationship between R, and exponential growth rate is
independent of the underlying model structure and solely reflects
the distribution of infectivity over the infectious period. Our only
assumption regarding contact patterns is that the rate of en-
countering new susceptible partners is time homogeneous. This
may be violated for populations where a majority of individuals
are in long-lasting monogamous partnerships or for so-called
episodic risk (37). Including heterogeneity with respect to timing
of contacts is more difficult and will be the subject of future
research where we plan to combine our approach with models
taking partnership duration into account as in refs. 40 or 41.

Our analysis—conducted for a model with four stages of in-
fection and parameter values comparable to those in ref. 2—
extends the analysis by Granich et al. by taking variable infec-
tivity into account. Incorporating these more realistic assump-
tions hugely influenced the results on feasibility of elimination.
Our results demonstrated that assuming a uniform distribution
of infectivity as in ref. 2 leads to much more optimistic expect-
ations on the prospects of elimination. There is a debate on
whether the estimates used in our model and originally reported
by Hollingsworth exaggerate the infectivity of primary infection
(14, 42), but we are reliant upon them in the absence of better
alternatives. A further limitation is that these estimates were
obtained from heterosexual couples and may therefore not be
applicable for MSM or other risk populations. However, they
represent the only relevant information available at this point.
Assuming that Hollingsworth’s estimates correctly quantify the
infectivity of primary infection, we conclude that in populations
with a basic reproduction number >3 elimination is not feasible
unless additional other interventions succeed in vastly reducing
transmission or if substantial reduction of risk behavior has already
occurred in the highest risk groups. If the basic reproduction
number is 2.62, as computed on the basis of the reported epi-
demic doubling time in South Africa (2), elimination will be very
hard to achieve taking into account the high annual treatment
uptake of at least 80% and low dropout rate needed, which
correspond to a coverage of more than 90%. In comparison, the
World Health Organization estimates that by late 2010 in Africa
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49% (confidence interval 46-52%) of people eligible for treat-
ment were receiving ART (43).

A requirement for the application of the modeling approach is
the availability of information on the exponential growth rate of
the epidemic in its initial phase. The rationale of this approach
can be compared with the concept of the critical vaccination
coverage for vaccine-preventable diseases, where information
from prevaccination epidemiology is used to determine the
vaccination coverage needed for elimination of a disease in the
future. We suggest the use of HIV sequence data to estimate
early growth rates of the epidemic in specific populations. Some
such estimates are available from coalescent analysis and may
become more reliable if demographic processes of the host popu-
lation are also taken into account (44). We expect that rapid
development of sequencing methods and mathematical tools
to use sequence data to gain insight into infection dynamics will
become more important for public health in the future (45).

There are various directions in which the modeling approach
laid out here can be extended. Various other types of population
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heterogeneity can be taken into account, such as age dependency
and specific transmission risk groups. Also, if there is evidence for
differences in transmission potential between different HIV sub-
types, the model could be applied to those subtypes separately if
estimates for exponential growth rates can be obtained. Such ex-
tensions would be useful for analyzing situations where treatment
coverage is heterogeneously distributed or where treatment is
targeted to specific population subgroups or HIV subtypes. The
main conclusions from the work presented here are that elimina-
tion as a threshold phenomenon can be studied using information
from the beginning of the epidemic, and that information from
phylogenic analyses may be helpful for assessing the prospects of
elimination. More research is needed to derive quantitative pre-
dictions that can be used for the design of effective and cost-
effective intervention strategies.
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