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Power and Design Considerations for a General Class of Family-Based
Association Tests: Quantitative Traits
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In the present article, we address family-based association tests (FBATs) for quantitative traits. We propose an
approach to analytical power and sample-size calculations for general FBATs; this approach can be applied to
virtually any scenario (missing parental information, multiple offspring per family, etc.). The power calculations
are used to discuss optimal choices of the phenotypes for the FBAT statistic and its power’s dependence on
ascertainment conditions, on study design, and on the correct specification of the distributional assumptions for
the phenotypes. We also compare the general FBAT approach with PDT and QTDT. The practical relevance of
our theoretical considerations is illustrated by their application to an asthma study.

Introduction

The use of association studies to detect QTLs is an im-
portant component of most strategies for finding the genes
for complex traits. Complex traits are generally multi-
faceted and may, in some cases, be best described by one
or more quantitative traits. Although linkage mapping has
a long history for quantitative traits, interest in association
studies with quantitative traits, especially those studies
using family-based designs, is more recent. Family-based
association tests (FBATs)—in particular, those based on
the transmission/disequilibrium test (TDT), popularized
by Spielman et al. (1993)—are attractive because of their
simplicity and robustness to spurious association, which
can arise with population heterogeneity.

There are two broad categories of methods for FBATs.
The first category builds on early work by Allison (1997),
who described a test for trios that was based on the
comparison of two linear-regression models. A subse-
quent article (Allison et al. 1999) shows how the model
can be modified to allow for sibling controls, by using
random effects for sibships. Fulker et al. (1999) and
Abecasis et al. (2000, 2001) have generalized the linear-
model approach, to test both linkage and association,
and have added terms to the regression model that en-
able them to separate out the within- and the between-
association effects. The test statistics (i.e., quantitative
transmission/disequilibrium tests [QTDTs]) proposed
by Abecasis et al. (2000) are obtained using likelihood-
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ratio tests, on the basis of the assumption of a normal
distribution for the traits. To protect against possible
deviations from either normality or selection on the
trait, Abecasis et al. (2000) have proposed an empirical
P value that is based on the permutation of genotypes.
A related regression approach for the testing of asso-
ciation in samples of complex pedigrees has been de-
veloped by George et al. (1999) and Zhu et al. (2001),
who have used model-based correlation structures, to
account for familial correlation.

The second category of approaches builds more di-
rectly on the original TDT method. The TDT compares
the observed distribution of alleles in affected offspring
with that expected on the basis of parental genotype.
With quantitative traits, it is natural to contrast between
the transmissions among offspring who have high quan-
titative-trait values and the corresponding transmissions
among offspring who have low values. This intuitive
approach can be formally derived as a conditional score
test (see, e.g., Schaid 1996; Rabinowitz 1997). Monks
and Kaplan (2000) generalize this, to allow missing par-
ents and tests of association in the presence of linkage
(i.e., pedigree disequilibrium tests [PDTs]). As shown
by Laird et al. (2000), the score-test approach leads
to a statistic that represents the covariance between ge-
notype transmissions and residual-trait deviations. Both
Rabinowitz (1997) and Monks and Kaplan (2000) use
residuals from the sample mean of the offspring traits.
Lunetta et al. (2000) also use this approach but replace
the sample mean by an arbitrary constant or offset,
which can be chosen to optimize some aspect of the test,
either minimizing the variance under (i.e., FBAT-O)H0

or maximizing the test statistic. Since FBAT-O is easy
to implement and performs well in practice, we use it
in our comparisons.

The goals of the present article include deriving a gen-
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eral FBAT statistic for quantitative phenotypes, provid-
ing power calculations and efficient sampling schemes,
and studying the influence that phenotypic correlation
between siblings has on the power of the general FBAT.
Using the variance model by Fulker et al. (1999), we
generalize the quantitative FBAT approach by Laird et
al. (2000), so that it can incorporate complex within-
family variance structures. Our approach to power cal-
culations for general FBATs, which is an extension of
the approach discussed by Lange and Laird (2002a), is
very general. It can be used for virtually any FBAT for
which the distribution is determined under by theH0

conditional distribution of the offspring genotypes, con-
ditional on the traits and the sufficient statistic for the
parental genotypes. We show how the offset can be
chosen to maximize the power, and we show that the
sample mean is a very powerful choice when full-pop-
ulation samples are studied. The theory also illustrates
why FBATs using the sample mean as the offset do so
badly with highly ascertained samples, such as affected
sib pairs. Furthermore, we provide a comparison be-
tween the FBAT approach and the QTDT and PDT
approaches. The proposed generalizations of FBAT and
the original FBAT (Laird et al. 2000) are illustrated by
their application to an asthma-genetics study.

Remarkably, QTDT and PDT were both designed to
test the null hypothesis of no association when linkage
may be present. The distribution of an FBAT with mul-
tiple offspring per family will depend on which isH0

tested— with no linkage and no association orH H0 0

with linkage but no association (Rabinowitz and Laird
2000). The methodology described here can handle both
situations, but, for simplicity, we focus here on the case
for which the null hypothesis is with no linkage andH0

no association.

Family-Based Tests for Quantitative Traits

To keep the derivations and equations simple, we assume
here a biallelic marker with alleles A and B, and we as-
sume that the marker locus is the disease locus. The allele
frequency of the disease gene is denoted by p. Further-
more, n independent families are given, and the ith family
has offspring. The number of transmitted A alleles formi

the jth offspring in the ith family is denoted by , withXij

, and the corresponding quantitative trait isX p 0,1,2ij

denoted by . The parental information for the ith familyYij

is given by and . For biallelic markers, the possibleP Pi1 i2

values of and are also characterized as 0, 1, or 2,P Pi1 i2

for the number of target alleles.
For FBATs, Rabinowitz and Laird (2000) proposed

the use of a very general condition for the computation
of the conditional marker mean, , and covari-E (X )0 ij

ances, , under the null hypothesis—that is,Cov (X ,X )′0 ij ij

the minimal sufficient statistic of the available genetic

information. Loosely speaking and without loss of gen-
erality, the minimal sufficient statistic (Rabinowitz and
Laird 2000) can be understood as a function of the set
of offspring genotypes and available parental genotypes
that is held constant when and areE (X ) Cov (X ,X )′0 ij 0 ij ij

computed. When both parents are observed, the suffi-
cient statistic is given by the parental genotypes, andPi1

, and and are computed on theP E (X ) Cov (X ,X )′i2 0 ij 0 ij ij

basis of transmission probabilities defined by andPi1

and by Mendel’s law of random segregation. WhenPi2

the parental genotypic information is missing, the com-
putation of the transmission probabilities conditional
on the sufficient statistics is as described by Rabinowitz
and Laird (2000) and Lange and Laird (2002b). For the
ith family, we will denote the minimal sufficient statistic
as “ .”Si

Under the assumption that the effect of the underlying
QTL is additive, the standard genetic model (Falconer
and Mackay 1997) is given by

( )E Y pm�ax , (1)ij ij

where m is the overall mean and a is the additive effect
size. Denoting the vector of phenotypes for the siblings
in the ith family by , Fulker et al. (1999)y p (y , … ,y )i i1 imi

assumed that the phenotypic variance is given for the
ith family by

Var (Y ) p V , (2)i i

where is an variance matrix with componentsV m # mi i i

that are attributable to the putative QTL, shared en-
vironmental, and polygenic effects. Fulker et al. (1999)
decomposed the genotype score into two orthogonal
components: the between-family component and thebi

within-family component . Here, rep-w p X � b bij ij i i

resents the average within-family genotype. Its specifi-
cation depends on what family data are available (see
Abecasis et al. 2000). This decomposition is motivated
by the idea that the within-family part is not sensitivewij

to population structures and is significant only in the
presence of linkage disequilibrium. The mean model can
be written as follows (Abecasis et al. 2000):

( )E Y pm�b b � b w . (3)ij b i w ij

The testing of the null hypothesis of no association,
, typically involves one of three test statistics:H :b p 00 w

likelihood-ratio statistic, score statistic, or Wald test sta-
tistic. Assuming normality of the phenotypes, Abecasis
et al. (2000) derived the QTDT by computing the like-
lihood-ratio test statistic for in mean model (3).bw

On the basis of the likelihood model defined by equa-
tions (2) and (3), the general FBAT can be obtained as
a score test, as follows: First, the normal score forS bw
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in the model defined by equations (2) and (3) is com-
puted. Then, setting and , we haveb p E (X ) b p 0i 0 ij w

[ ]S p S with S p X � E (X ) (z � t )� ij ij ij 0 ij ij ij
ij

and t p (z � t ) ,ij ij ij

where and are defined byz tij ij

�z p (z , … ,z ) p V yi i1 im i ii

∗ �and t p (t , … ,t ) p V m , (4)i i1 im i ii

with an -dimensional offset vector .m m p (m , … ,m )i i i1 imi

The offset values may depend on other predictorm ij

variables for the phenotype. For the questions discussed
here, it is sufficient to look at the case in which all offset
values are identical—that is, . Likewise,m p m p m ′ ′ij i j

we consider a relatively simple structure for , whereVi

depends on i only through its dimension , the di-V mi i

agonal elements are all equal, and the off-2j p Var (Y )ij

diagonal elements are exchangeable.2j r p Cov (Y ,Y )′ij ij

For the computation of the general quantitative FBAT,
the marker score is the random variable of interest,xij

and is treated as fixed. The general quantitative FBATtij

is then given by

2S∗FBAT p with
Var (S)0

( )Var (S) p t t Cov X ,X . (5)′ ′�0 ij ij 0 ij ij′ijj

Importantly, a quantitative FBAT disregarding the en-
vironmental correlation within families (i.e., assuming
that is the identity matrix) can be obtained by settingVi

. We will denote FBATs that ignore environ-t p y � mij ij

mental correlation by “FBAT” and FBATs that take
environmental correlation into account (i.e., eqq. [4]
and [5]) by “FBAT*.” The quantitative FBAT-O by
Lunetta et al. (2000) then takes the special form wherein

and m is chosen to minimize .t p y � m Var (S)ij ij 0

The PDT by Monks and Kaplan (2000) can essen-
tially be interpreted as a Wald test statistic for the co-
variance between the marker residuals andx � E (X )ij 0 ij

the phenotypic residuals . Under the null hypoth-—y � yij

esis, the covariance is 0 (Monks and Kaplan 2000) and
can be estimated by

ˆ [ ]Cov X � E (X ) ,(Y � m){ }ij 0 ij ij

Ŝij —p with m p y , (6)�
nij info

where is the number of informative offspring. Then info

variance of the estimate can be computed by the ob-
served empirical variance, so the PDT is given by

2ˆ( )� Sij ij
2PDT p ∼ x .12ˆ� Sij ij

Asymptotic Comparisons of the Quantitative FBAT,
PDT, and QTDT

In this section, we discuss the asymptotic properties of
the quantitative FBAT, PDT, and QTDT. We provide
conditions under which all three tests become equivalent
and point out scenarios under which one test might be
invalid and permutation testing should be used to obtain
valid P values (Abecasis et al. 2000). We focus here ex-
clusively on the asymptotic properties of the tests. Given
the large number of tests that are typically done and
given the enormous amount of computation time that
permutation tests can incur relative to the asymptotic
tests, the asymptotic properties of FBAT*/FBAT, PDT,
and QTDT are of high practical relevance.

For total population samples (i.e., those with no
ascertainment conditions depending on ), we show,Yi

in appendix A, that FBAT, PDT, and QTDT are as-
ymptotically equivalent under the null hypothesis when
there is no population heterogeneity and no phenotypic
correlation within a family—that is, .2 2V p diag(j , … ,j )i

In the presence of phenotypic correlation, QTDT and
FBAT* remain asymptotically equivalent under the null
hypothesis. This holds also for PDT if we replace yij

with in equation (6).zij

However, in the presence of population admixture
and/or stratification, the three tests behave differently.
For the quantitative FBAT, importantly, since the phe-
notypic information in FBAT and FBAT* is treated as
a fixed/deterministic variable, the validity of the test
does not depend on the choice for or on the correct-tij

ness of any distributional assumption made in equations
(2) and (3). The distribution of any FBAT under isH0

based solely on the assumption of random Mendelian
transmissions and on some weak regularity conditions
for the asymptotic distribution, which have been dis-
cussed by Lange and Laird (2002b). By treating astij

fixed weights in the test statistic, m, , and r become2j

offset and scale parameters that are specified by the user.
Although the validity of any FBAT does not depend on
the choice of m, , and r, the power of FBAT depends2j

strongly on these parameters. The influence that the
offset choice has on the power will be investigated in
the “Interaction between Ascertainment Condition and
Offset Choice” section, and the influence that a correct
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specification of the variance matrices has will be inves-
tigated in the “Efficient Sampling Designs” section.

Like the score-based FBAT, PDT does not rely on any
distributional assumption for the phenotype and uses
the assumption of Mendelian transmissions exclusive-
ly. PDT and the quantitative FBAT* differ only in two
main points. First, they differ in the computation of
the phenotypic residuals; whereas PDT assumes the
offset to be the phenotypic mean, , and does not—m p y
use information on phenotypic correlation within fam-
ilies, FBAT* allows any value for the offset and can
use phenotypes that are adjusted for within-family cor-
relation. Second, the quantitative FBAT* computes the
variances of the marker scores on the basis of Men-
delian transmissions, whereas PDT estimates the var-
iance on the basis of the empirical variance; this is also
the FBAT approach when linkage is present under the
null hypothesis.

Using solely Mendelian transmissions for the com-
putation of the test statistic, FBAT*, FBAT, and PDT
are robust against population admixture and/or stratifi-
cation. The QTDT is based on a full-likelihood model
linking the marker information with the phenotypic in-
formation, and its validity therefore depends on all model
assumptions—for example, the normally distributed phe-
notypes and the alternative hypothesis. Therefore, per-
mutation tests should be used to assess the statistical
significance of the QTDT, especially when the conditions
are not met. Thus, conclusions that pertain to the QTDT
should be based on its performance under both the per-
mutation and the asymptotic distribution.

We note that, because the distribution of any FBAT
statistic depends on discrete random variables (i.e., off-
spring’s genotypes), exact tests can be statistically imple-
mented with small samples. With larger samples, they
are not needed for the validity of the test.

Power Calculations for Continuous Traits

First, assume that the conditional marker means and var-
iances (i.e., and , respectively), the phenotypes,E Cov0 0

and the data defining the sufficient statistic are known.
Then, the asymptotic distribution of FBAT* as defined
in equation (5) can be computed under both hypotheses
by using the results of our previous work (Lange and
Laird 2002a, 2002b). The distribution under the null
hypothesis is conditional on the sufficient statistic2x1

and the phenotypes. Under the alternative hypothesis,
FBAT* has a scaled, noncentral distribution given2x

by with∗ 2qFBAT ∼ x1,g

2[ ]� t E (X ) � E (X )ij A ij 0 ij{ }
ij

g p (7)�� t t Cov (X ,X )′ ′ij ij A ij ij′i j,j

and

�� t t Cov (X ,X )′ ′ij ij 0 ij ij′i j,j
q p , (8)�� t t Cov (X ,X )′ ′ij ij A ij ij′i j,j

where and denote the conditional marker meansE CovA A

and covariances under the alternative hypothesis. Note
that, since we compute here the power conditional on the
phenotypes, the distribution of FBAT* under the alter-
native is also given by equations (7) and (8) when isz ′ij

computed on the basis of an estimate for and , forˆ ˆV V mi i

m based on the null model where .b p 0
The conditional power of FBAT* for the significance

level a is given by

2 ( )P p P x � q q 1 � a , (9)∗ [ 2 ]FBAT dY,S 1,g x1

where and . Since ,Y p (Y , … ,Y ) S p (S , … ,S ) E11 n,m 1 n 0n

, , and are computed conditionally on Y andE Cov CovA 0 A

S, the conditional power defined in equation (9) can be
computed only when the phenotypes Y and the data de-
fining S are observed. For the computation of the un-
conditional power, these variables have to be integrated
out—that is,

( )P p E P F d A , (10)∗ ∗FBAT dA FBAT Y,S

where A is the ascertainment condition for the pheno-
type Y (i.e., ). We make the assumption that theY � A
ascertainment condition depends only on the phenotype
Y, but the approach can be extended to allow it to
depend on the phenotypes of the parents. The technical
details of unconditional power calculation are given in
appendix B. The computation of , , , andE E Cov0 A 0

for dichotomous traits has been discussed by LangeCovA

and Laird (2002a) and extends straightforwardly to
continuous traits.

The Interaction between Ascertainment Condition
and Offset Choice

Assuming a fixed sample size, one has several possibil-
ities to influence the power of FBATs. In this section, we
discuss how the offset choice and the ascertainment con-
dition jointly influence the power. Furthermore, we pro-
vide rules of thumb for selecting a powerful offset in a
given ascertainment condition. We will illustrate the in-
fluence that the offset and the ascertainment condition
have on the power in two examples. For simplicity,
we assume, in this section, that trios are given—that is,

, which means that .∗m p 1 FBAT p FBATi

The strength of an additive effect a, relative to the
phenotypic variance in model (1), is usually measured
by the heritability (Falconer and Mackay 1997). For-2h
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mally, is defined as the proportion of phenotypic2h
variation explained by the genetic variation—that is,

( )Var aXi
2h p . (11)

( )Var Yi

Under the assumption of an additive model, equation
(11) can be solved for a, to obtain an analytical expres-
sion for a, given and p, as follows:2h

21 1 h
a p j ,� � 2� ( ) ( )p 1 � p 1 � h2

where p denotes the allele frequency of the disease gene
in a total population sample.

A common definition of the disease status for a
quantitative phenotype is to denote individuals as af-
fected when their phenotypic observation is in some
upper or lower b tail of phenotypic distribution. Using
the upper for illustration, we can code theb p 10%
quantitative trait Y as a dichotomous trait , whereYd

is 1 when the offspring is affected and 0 otherwise.Yd

Because of the nonparametric character of FBAT, it is
straightforward to modify FBAT so that it can be ap-
plied to dichotomous data. Replacing Y by , in equa-Yd

tion (5), and selecting an offset m between 0 and 1, we
obtain the FBAT for dichotomous traits that is iden-
tical to the TDT for affected and unaffected offspring
that has been proposed by Whittaker and Lewis (1999)
and Lange and Laird (2002a).

We will discuss the power of the quantitative FBAT,
the dichotomous FBAT, PDT, and QTDT. The power for
the quantitative FBAT and the dichotomous FBAT is
computed as a function of the offset choice. Whereas the
power of the quantitative FBAT is assessed by the ap-
proach described above, the power of the dichotomous
FBAT is obtained by the approach proposed by Lange
and Laird (2002a). The power of PDT and QTDT is
obtained by simulation experiments that are based on
100,000 replicates.

The power of these four tests will be compared for
two different ascertainment conditions: a total popula-
tion sample and only affected offspring (i.e., offspring’s
phenotypes are in the upper 10% tail of the distribution).
For both scenarios, we will assume that the heritability
is and that the allele frequency of the disease2h p 0.1
gene is 0.3. For marker score , the phenotypicx p 0
mean is 0, and the phenotypic variance is 1. In the total
population sample, the overall phenotypic mean is then
0.31, and the overall phenotypic variance is 1.13. Off-
spring whose phenotypes are greater than y p 1.76min

(i.e., whose phenotypes are in the upper 10% tail of the
distribution) are considered to be affected. When only

affected offspring are ascertained, the phenotypic mean
is 2.2.

Figure 1a shows the power curves as a function of m

for the quantitative FBAT and for the dichotomous FBAT
when a total population sample is analyzed. Figure 1b
contains the same information when only affected off-
spring are ascertained. The power of FBAT-O, PDT, and
QTDT is given in the legends of the plots. The power
varies substantially for the two ascertainment schemes.
When a total population sample is given, the quantitative
FBATs, PDT, and QTDT perform much better than the
dichotomous FBAT. Abecasis et al. (2001) made the same
observation in their simulation experiment. Lange and
Laird (2002b) showed that the optimal offset choice for
total population samples is the phenotypic mean. This
theoretical result is also confirmed by our power calcu-
lations. However, the power curve for quantitative FBAT
shows a relatively small sensitivity to the offset choice m

in the region of the phenotypic mean (0.39). Thus, the
observed sample mean is always a powerful offset choice
for total population samples. The offset for FBAT-O is
essentially a weighted sample mean, where the weights
are determined largely by the number of heterozygous
parents. FBAT-O and FBAT with are there-—z p y � yij ij

fore asymptotically equivalent.
When only affected offspring are ascertained, the sit-

uation is reversed. Then, the dichotomous FBAT per-
forms much better than PDT and QTDT. This reversed
order has also been observed in Abecasis et al. (2001).
The power of FBAT is highly dependent on the offset
choice. For offset choices smaller than the ascertainment
condition ( ), the power of the quantitativey p 1.664min

FBAT is virtually identical to the power of the dichot-
omous FBAT. However, for offset choices within the
phenotypic range, the power of the quantitative FBAT
becomes highly sensitive to the offset choice. For ex-
ample, for offset choices close to the phenotypic mean
( ), the power of FBAT is virtually 0. For offset—y p 2.2
choices outside the phenotypic range (i.e., m is smaller
than ), the power of the quantitative FBATy p 1.664min

and the power of the dichotomous FBAT are identical.
This totally different effect that the offset choice has

on the quantitative FBAT under the two ascertainment
conditions can be explained intuitively. Under the as-
sumption that a total population sample is given, the
observed marker distribution does not deviate, on av-
erage, from the marker distribution under the null
hypothesis—that is, (Lange andE (� X ) p E (� X )ij ij1 ij 0 ij

Laird 2002b). When we select an offset m outside the
phenotypic range, all phenotypic residuals, � m,yij

are either positive or negative. Then, the quantitative
FBAT is a weighted average of , and it holdsx � E (X )ij 0 ij

. FBAT is therefore powerless.E {� t [x � E (X )]} ≈ 0ij1 ij ij 0 ij

However, when the offset m is approximately identical
to the population mean, the correlation between posi-
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Figure 1 Asymptotic power calculations for a continuous trait. The disease-allele frequency is 0.3, and the heritability, , is 0.1. The2h
dotted line shows the power of the dichotomous FBAT for offset choices between 0 and 1. Significance level a, Additive model—a p 0.01
total population sample with mean , maximal power of FBAT 0.75, power of FBAT-O 0.74, power of PDT 0.73, and power of QTDT—y p 0.39
0.74 ( ). b, Additive model—affected sample with phenotypic mean , maximal power of FBAT 1.00, power of FBAT-O 0.04,—n p 200 y p 2.2
power of PDT 0.034, and power of QTDT 0.10 ( ).n p 200

tive and negative phenotypic residuals, , and ge-y � mij

netic residuals, , is an ideal yardstick for thex � E (X )ij 0 ij

measurement of the genetic effect on the phenotypes.
When only offspring with phenotypes in the upper 10%
of the distribution are ascertained, the phenotypic in-
formation about the underlying genetic model is re-
stricted by definition. In the presence of association, the
sampling of offspring with high phenotypic values will
change the observed marker distribution; it will deviate
from the marker distribution under the null hypothesis.
The actual phenotypes provide little information. Se-

lecting an offset outside the observed phenotypic range
will diminish the effect of observed phenotypic values—
that is, all are either positive or negative. Then,y � mij

the quantitative FBAT is mainly driven by the deviations
in the marker distribution—that is, FBAT is a weighted
average of —and is therefore a powerful testx � E (X )ij 0 ij

that is asymptotically equivalent to the standard TDT by
Spielman et al. (1993).

Because of the similarities between FBAT, FBAT-O,and
PDT, the arguments in the present discussion can also be
applied toward understanding the behavior of PDT and
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FBAT-O under both ascertainment conditions. The small
power of QTDT for the affected-offspring sample can be
explained by the violated model assumption. When only
offspring whose phenotypes are in the upper 10% of the
distribution are ascertained, the observed phenotypic dis-
tribution is heavily skewed. This violation of the nor-
mality assumption results in inconsistent parameter es-
timates that lead to inaccurate test results. When as-
certainment conditions are used to obtain the sample,
the use of a QTDT that is based on permutations is
strongly recommended (Abecasis et al. 2001).

We repeated the power calculations shown in this
section for a variety of different allele frequencies and
genetic models. Our findings for the powerful offset
choices were confirmed in all these calculations. Thus,
a rule of thumb might be to use the continuous version
of FBAT only for total population samples or for sam-
ples with “weak” ascertainment conditions. Because of
the potential danger of choosing a power-reducing offset
for affected samples or for samples obtained on the basis
of a strong ascertainment condition, either the dichoto-
mous FBAT/TDT or the quantitative FBAT with an offset
outside the ascertainment condition should be used when
such data are analyzed.

Efficient Sampling Designs: Power of FBATs
for Continuous Phenotypes When Extremely
Discordant Sib Pairs Are Sampled

In this section, we assess the power of sampling designs
for quantitative phenotypes when each family has at
least two offspring and when phenotypic correlation is
present. We will concentrate on the power for quan-
titative FBATs when extremely discordant sib pairs are
sampled (Risch and Zhang 1996; Abecasis et al. 2001).
Originally introduced for linkage analysis, the design has
been shown to be very powerful also for association
studies that are based on family data (Abecasis et al.
2001). We focus here on four aspects of the design that
have not yet been investigated for family-based associ-
ation studies: (i) the influence that the ascertainment con-
dition has on the power, (ii) the influence that environ-
mental/within-family correlation has on the power of the
design, (iii) the importance of accounting for environ-
mental/within-family correlation in the test statistic (i.e.,
using FBAT* or FBAT), and (iv) the influence of missing
parental information.

For the power calculations, we assume that n fam-
ilies with two offspring are given and that the parental
genotypes are either known or unknown. For each off-
spring, we observe one continuous phenotype: foryi1

the first offspring and for the second offspring. Theyi2

marker score of the first offspring is denoted by ,xi1

and the marker score of the second offspring is denoted

by . When the marker scores and are given,x x xi2 i1 i2

the phenotypes and can be modeled by a mul-y yi1 i2

tivariate normal distribution—that is,

Y a x 1ri1 i1 2∼ N , j ,( ) ( ) ( )[ ]Y a x r1i2 i2

with additive effect , environmental variance ,2a 1 0 j

and environmental correlation r. For simplicity of ex-
position, we assume here the absence of variance com-
ponents attributable to polygenic effects (Fulker et al.
1999).

Since we want to compare the FBAT approach’s power
for highly ascertained samples and its power for total
population samples, the choice of the nuisance parame-
ters becomes important. Whereas the covariance param-
eters j and r will be estimated by moment-based esti-
mators, the offset m is selected on the basis of the rules
f thumb that were derived, in the previous section, for
total population samples and ascertained samples.

Risch and Zhang (1996) have proposed the sampling
of extremely discordant sib pairs. The ascertainment
condition A can be written as

{ }A p y ,y : y � y ,y � y , (12)i1 i2 i1 min i2 max

where is the lower threshold for the phenotype ofymin

the first offspring and is the upper threshold for theymax

phenotype of the second offspring. A sample obtained
on the basis of ascertainment condition A is therefore
highly discordant, so we select an offset m that is outside
the sampled tails of the phenotypic distribution—that
is, between and . So that the contributions ofy ymin max

both tails are equally weighted, the offset is set equal
to the average of the lower and upper limits—that is,

. For total population samples, we select(y � y )/2min max

as offset m as the sample mean.
In the computation of the power of FBAT* for total

population samples, the variance parameters, and2j

r, are estimated by their empirical estimators—that is,
and2 2 ˆĵ p � (y � m) /(2n � 1) r p � (y � m)(y � m)/ij iij i1 i2

. For samples ascertained on the basis of2ˆ[j (n � 1)]
condition (12), it is important to note that the phe-
notypic mean and variance can be different in the
upper tail and the lower tail when the ascertainment
condition is not symmetric; for example, is in theyi1

upper 10% of the tail, and is in the lower 30%yi2

of the tail. For power calculations for ascertained
samples, we therefore estimate the phenotypic mean
in each tail by . Then, the variance—y p � y /n,j p 1,2ij ij

within each tail is computed by p /—2 2ĵ � (y � y )ij ij j

, and the covariance is computed by(n � 1), j p 1,2
.— —ĵ p � (y � y )(y � y )/(n � 1)i12 i1 1 i2 2

Using the approach for power calculations that is out-
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Table 1

Sample Sizes Required in Order to Achieve 80% Power at Significance Level 57a p 1 # 10
When Two Probands and Both Parents Are Given

ASCERTAINMENT CONDITION A

SAMPLE SIZE REQUIRED IF

r p .0 r p .4

h p .05 h p .10 h p .05 h p .10

One sib in top 10% tail, one sib in lower 10% tail:
:P p .1

FBAT* 250 132 110 58
FBAT … … 112 61

:P p .5
FBAT* 235 116 108 55
FBAT … … 110 57

One sib in top 10% tail, one sib in lower 30% tail:
:P p .1

FBAT* 324 170 158 83
FBAT … … 171 92

:P p .5
FBAT* 341 172 165 85
FBAT … … 169 92

Total population sample:
:P p .1

FBAT* 854 485 643 356
FBAT … … 821 462

:P p .5
FBAT* 841 463 613 352
FBAT … … 780 432

NOTE.—r denotes the environmental correlation.

lined in the present article, we computed the sample sizes
for FBAT* and FBAT that are required in order to achieve
80% power for a significance level for a va-�7a p 10
riety of allele frequencies p, heritabilities h, and ascer-
tainment conditions A (tables 1 and 2). Whereas table
1 shows the sample sizes for FBAT* and FBAT that are
required in order to achieve 80% power when parental
genotypes are known, table 2 gives the required sample
size for FBAT under the same scenarios but when the
parental information is missing. Since the noncentrality
parameter d and the scaling parameter q are invariant
under linear transformation of the phenotypes when
two offspring without parental information are given,
the required sample sizes for FBAT* and FBAT are iden-
tical under this scenario.

Tables 1 and 2 clearly demonstrate the importance of
all four issues for the study design: ascertainment, en-
vironmental correlation, accounting for environmental/
within-family correlation in the test statistic, and miss-
ing parental information. The ascertainment condition
has a very strong effect on the power (table 1). Although
the required sample sizes are relatively high for the total
population samples, they decrease substantially when
discordant sib pairs are ascertained. This effect becomes
even stronger in the presence of positive environmental
correlation. In general, positive environmental corre-
lation decreases the required sample sizes. When strong

ascertainment conditions are applied, there is no ad-
vantage in modeling the phenotypic variance matrix V.
FBAT and FBAT* have almost the same power. How-
ever, for total population samples, inclusion of the phe-
notypic variance V in the test statistic raises the power
of FBAT*, and FBAT* clearly outperforms FBAT.

Table 2 shows the power for the same parameter
choices as in table 1, but it is assumed that the parental
genotypes are missing. Although the strength of the
effect that environmental correlation has on the power
remains the same, the effect of the ascertainment con-
dition becomes even stronger. Furthermore, when two
sibs are sampled from the extreme tails of the phe-
notypic distribution, missing parental information has
only a minor influence on the required sample size—for
example, 58 families with parental information (i.e.,

loci to be genotyped) versus 94 families4 # 58 p 232
without parental information (i.e., loci2 # 94 p 188
to be genotyped) (tables 1 and 2). When only a fixed
number of subjects can be genotyped and extremely dis-
cordant sib pairs are given, it may be more cost-effective
to genotype additional pairs of offspring, rather than the
parents. The drawback of this strategy—that is, selecting
a phenotype with positive environmental correlation and
genotyping only extremely discordant sib pairs without
parents—is the additional screening (Risch and Zhang
1996). Since extremely discordant sib pairs are not fre-



1338 Am. J. Hum. Genet. 71:1330–1341, 2002

Table 2

Sample Sizes in Order Required to Achieve 80% Power at Significance Level 57a p 1 # 10
When Two Probands Are Given and No Parental Information Is Available

ASCERTAINMENT CONDITION A

SAMPLE SIZE REQUIRED IF

r p .0 r p .4

h p .05 h p .10 h p .05 h p .10

One sib in top 10% tail, one sib in lower 10% tail:
(FBAT)P p .1 300 177 152 94
(FBAT)P p .5 265 145 135 81

One sib in top 10% tail, one sib in lower 30% tail:
(FBAT)P p .1 376 207 200 121
(FBAT)P p .5 368 193 190 110

Total population sample:
(FBAT)P p .1 1,657 876 971 570
(FBAT)P p .5 1,537 779 865 458

NOTE.—FBAT* and FBAT are identical for two sibs and missing parental genotypes. r denotes
the environmental correlation.

Table 3

Testing for Association between Total
Eosinophil Count and IL13

Test Statistic P Value

FBAT 6.48 .011
FBAT*a 7.84 .006
FBAT-O 6.86 .009
QTDT 6.55 .010
PDT 5.65 .018

a Estimated environmental correlation ( ) .34.r̂

quently observed in total population samples, one has to
screen many families to find such pairs. The additional
screening cost must therefore be weighted versus the ad-
ditionally achieved power.

Again, we repeated the power calculations shown in
this section for a variety of different allele frequencies,
environmental correlations, and genetic models (reces-
sive and dominant). All these power calculations suggest
that it is a good rule of thumb to choose FBAT* for
total population samples and FBAT for highly ascer-
tained samples, where V and m are estimated as above.
FBAT* provides some reduction in sample size with
weak ascertainment conditions (e.g., upper 10% and
lower 30%) but has only a small effect with stronger
ascertainment conditions.

Using simulation experiments, we also assessed the
power of FBAT-O, PDT, and QTDT, for the scenarios
considered in tables 1 and 2. When based on , FBAT,yij

FBAT-O, and PDT showed virtually the same power
for all of these scenarios. The same holds for FBAT*
and QTDT.

Data Analysis: Childhood Asthma Management
Program (CAMP)

We applied the quantitative FBAT approach to a col-
lection of parent/child trios in the CAMP Genetics An-
cillary Study. The CAMP study randomized asthmatic
children to three different asthma treatments (CAMP
Research Group 1999). Blood samples for DNA were
collected from 696 complete parent/child trios from
640 nuclear families in the CAMP Ancillary Genetics
Study. Baseline phenotype values, before randomiza-
tion to treatment groups, were used in this analysis.
Genotyping was performed at a polymorphism located
at the IL13 gene. Asthma is a clinical condition often

associated with an atopic predisposition; we have se-
lected one phenotype, total eosinophil count, related
to the allergic response. Since the ascertainment con-
dition for CAMP was mild-to-moderate asthma, the
total-eosinophil-count data can be considered as a total
population sample of children with such disease status.

With 312 informative families and no evidence for
population stratification, the regularity conditions for
the asymptotic convergence (Lange and Laird 2002b)
are certainly met, and one can therefore focus on the
asymptotic distributions of the tests. For setting m p
, the test results of FBAT* and FBAT are shown in—y

table 3. Furthermore, the P values for FBAT-O, PDT,
and QTDT are given. The advantages of using FBAT*
instead of FBAT are clear and are of practical rele-
vance. Note that 56 families (8%) had two offspring,
illustrating that using the phenotypic correlation can
have a substantial effect even with only a small per-
centage of siblings in the data set.

Discussion

We have presented an approach to unconditional power
calculations for FBATs that is applicable to almost any
scenario. We have illustrated the flexibility of our ap-
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proach by discussing the optimal FBAT statistic under
popular ascertainment conditions and the importance of
parental information and environmental correlationwhen
extremely discordant offspring are sampled. We have al-
so illustrated the methodology by an application to an
asthma study.

The methodology for power calculations proposed
here is fully general—hence, extensions to sampling
designs and power calculations for multiallelic loci are
straightforward. We have implemented our approach to
power calculations in a software package called “PBAT,”
which is available at the FBAT Web Page. In addition to
the scenarios discussed here, PBAT can also be used in
power calculations for binary traits, when parental in-
formation is missing and when marker locus and disease
locus are not identical.

Using our approach to power calculations and using
simulations, we compared the statistics PDT, QTDT,
and the general FBAT. All three tests show virtually the
same power in the absence of population structures and
no ascertainment bias. With extreme ascertainment, they
can differ substantially. The score-based statistics (PDT
and FBAT) differ largely in how the trait is defined. The
phenotype’s being model free, the flexibility of modeling
or not modeling the phenotypic correlation within a fam-
ily, and the flexibility of the offset choice are the crucial
advantages of the continuous FBAT approach. For ex-
ample, when multiple offspring per family are available
and when neither assumptions about environmental cor-
relation within each family nor assumptions about shared
genetic components are made, the quantitative FBAT re-
mains a valid approach; however, when these assump-

tions are made and are reasonable, a substantial gain in
power for FBAT* can be achieved.

The flexibility of the offset choice allows the quan-
titative FBAT approach to be adapted to the ascertain-
ment condition used in the study. When a strong as-
certainment condition is used in the study design, a
smart offset choice can make FBAT* more powerful
than PDT and QTDT, but a bad offset choice may result
in even lower power. We have given rules of thumb that
should give FBAT* reasonably good power under com-
mon ascertainment settings. Furthermore, the generic
character of the FBAT approach allows nonparametric
extension to other scenarios—such as FBAT-GEE, for
multivariate traits (Lange et al., in press), and FBAT-
LOGRANK, for time to onset (C. Lange, D. Blacker,
and N. M. Laird, unpublished data).
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Appendix A

Asymptotic Equivalence of PDT, QTDT, and FBAT* When There Is No Population Admixture

Standard asymptotic theory (Cox and Hinkley 1974) implies that score tests, likelihood-ratio tests, and Wald
tests are asymptotically equivalent under the null hypothesis. For the equivalence of FBAT*, PDT, and QTDT under
the null hypothesis, it is therefore sufficient to show that all three association tests are asymptotically equivalent
to one of these tests when model (3) is true.

For simplicity, we will assume here that trios are observed, and we show the equivalence of FBAT, PDT, and
QTDT. The QTDT proposed by Abecasis et al. (2000) is the likelihood-ratio test for and is equivalent to thebw

corresponding score test for , which is defined bybw

2 22 [ ] [ ][ ]� w y � E(Y) � x � E (X ) y � E(Y){ } { }[ ]S � E(S) i ii i i 0 i i

p p . (A1)2 2 2 2[ ]Var (S) � w j j � x � E (X )i ii i 0 i

When the offset choice for FBAT is , the numerator of FBAT and the score test (A1) are identical. Them p E(Y)
denominator of FBAT can be simplified for ,n r �

Var (X )0 i2 2lim (y � m) Var (X ) p lim Var (X ) lim (y � m)� � �i i i i[ ][ ] � Var (X )i i i knr� 0 nr� 0 nr� 0 k
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Under the null hypothesis, b can be interpreted as a weighted average of . Since the weights satisfy the2(y � m)i

Lindberg condition (Billingsley 1995; Lange and Laird 2002b), b converges to as . Furthermore, standard2j n r �
asymptotic arguments imply that

2[ ]lim Var (X ) p lim x � E (X ) .� �0 i i 0 i
i inr� nr�

Thus, under the null hypothesis and in the absence of population substructure, the score tests for and FBATbw

are asymptotically identical. QTDT and FBAT are therefore asymptotically equivalent under the null hypothesis.
Because of the similarity between PDT and FBAT, it is straightforward to show that PDT and FBAT also are
equivalent under the same conditions.

Appendix B

Unconditional Power Calculations for Quantitative FBATs (Technical Details)

The unconditional power (eq. [10]) is defined as the integral over the conditional power with probability measure
—that is, . Since the values are defined by the observed markernp (y,s d A ) p � p (y , … ,y ,s d A ) P p (y,s d A ) s∫i i1 im i y,s in

scores, they are discrete random variables and (10) can be rewritten as a finite sum of continuous integrals

Yd s,A ( ) ( )P p P F P y p s d A . (B1)∗ ∗�FBAT dA � FBAT y,s[ ]s
y

The conditional probabilities and can always be computed under the alternative hypothesis byY d s,Ap (s d A ) P
repeated applications of Bayes-theorem and Mendelian transmissions. By definition of family types on the basis of

and the use of a multinomial distribution, the computation of the sum in equation (B1) can be simplified furthersi

(Lange and Laird 2002a, appendix B). Nevertheless, when designs with many different family types and so-
phisticated ascertainment conditions are analyzed, the numerical computation of equation (B1) can become very
time-consuming. In such situations, equation (B1) can be computed by Monte Carlo methods or Markov-chain
Monte Carlo. Since it is always possible to simulate random samples from and , these techniquesYd s,Ap (s d A ) P
can be used for the computation of equation (B1) at all times. Note that this is always computationally faster
than a pure simulation study—wherein a dichotomous 0-1 variable (significant/nonsignificant), rather than Monte
Carlo integration of the conditional power when the variable of interest is a continuous variable (the conditional
power), is performed (Lange and Laird 2002a).

Electronic-Database Information

The URL for data presented herein is as follows:

FBAT Web Page, The, http://www.biostat.harvard.edu/˜fbat/
default.html (for the PBAT software package)
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