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The regulation of gene expression in cells, including by microRNAs
(miRNAs), is a dynamic process. Current methods for identifying
miRNA targets by combining sequence and miRNA and mRNA
expression data do not adequately use the temporal information
and thus miss important miRNAs and their targets. We developed
the MIRna Dynamic Regulatory Events Miner (mirDREM), a proba-
bilistic modeling method that uses input–output hidden Markov
models to reconstruct dynamic regulatory networks that explain
how temporal gene expression is jointly regulated by miRNAs and
transcription factors. We measured miRNA and mRNA expression
for postnatal lung development in mice and used mirDREM to
study the regulation of this process. The reconstructed dynamic
network correctly identified known miRNAs and transcription
factors. The method has also provided predictions about addi-
tional miRNAs regulating this process and the specific develop-
mental phases they regulate, several of which were experimentally
validated. Our analysis uncovered links between miRNAs involved
in lung development and differentially expressed miRNAs in
idiopathic pulmonary fibrosis patients, some of which we have
experimentally validated using proliferation assays. These
results indicate that some disease progression pathways in id-
iopathic pulmonary fibrosis may represent partial reversal of
lung differentiation.

systems biology | network modeling

Many experiments now routinely profile both mRNAs and
microRNAs (miRNAs) when studying various conditions,

diseases, and biological processes. Most miRNAs target the
genes they regulate by either degrade them or preventing them
from being translated (1). It is estimated that miRNAs regulate
the expression of half of the genes in the human genome (2).
Although a single miRNA can target hundreds of genes, miR-
NAs often have overlapping targets and are acting combinato-
rially, thus creating a rich and complex regulatory network (3, 4).
Several computational methods were developed to identify

miRNA targets using sequence analysis (1). Because of the small
number of bases in the interface, such predictions often contain
both false positives and false negatives (5) and, because they are
context-independent, are less suitable to the analysis of specific
responses and conditions. Because miRNAs often inhibit their
direct targets, integrating sequence, mRNA and miRNA ex-
pression data are one way to improve such an analysis (6–8).
Several methods, mostly based on (anti-) correlation or regression
analysis, have been developed to use expression data when pre-
dicting targets of miRNAs (8–10). A representative example is
GenMIR++ (5, 6), one of the first methods to integrate miRNA
and mRNA expression profiles in a unified probabilistic model.
GenMIR++ employs a generative model in which miRNA ex-
pression profiles are used to explain the expression of a putative
target inferred from sequence analysis. Other methods search for
anticorrelation (8, 9).
Although the methods mentioned were successfully applied to

study gene regulation by miRNAs, they do not address the temporal

dynamics of miRNA-regulated networks. Specifically, although
these methods look for global relationships between the expression
levels of an miRNA and its targets, they may miss important tem-
poral aspects. Similar to other causal events (11), shifts in miRNA
and mRNA profiles in a specific developmental stage or disease
state can happen in a sequential manner. Static, correlation-based
analysis may miss key regulatory miRNAs when these change at
an earlier stage and so their global expression levels do not
correlate with their targets.
To address this problem, we developed the MIRna Dynamic

Regulatory Events Miner (mirDREM), which reconstructs dy-
namic regulatory networks that model the effects of transcription
factors (TFs) and miRNAs on their targets over time. Such dy-
namic network models have been used for studying TF activity
(12, 13); however, they have only used the TF data as static in-
formation (i.e., whether a TF can bind a gene or not). Although TF
activity is often posttranscriptionally regulated (12), miRNA ex-
pression levels are an excellent indicator of their activity level and
so can be used to determine if a specific miRNA is actively regu-
lating genes. We have developed computational methods for using
dynamic activity information and for restricting the assignments
of miRNAs to targets based on their expected inhibitory effects.
To test our method, we generated expression data for lung

development in mice. When applied to these data, mirDREM
was able to identify several miRNAs that were controlling major
developmental stages, several of which we have experimentally
validated.

Results
The Dynamic Regulatory Events Miner (DREM). mirDREM extends
the dynamic regulatory events miner (DREM) (12, 13) to model
regulation by miRNAs. DREM integrates time series gene ex-
pression data with protein–DNA interaction data (from ChIP-
CHIP, ChIP-Sequencing, or motif information). DREM uses an
input–output hidden Markov model (IOHMM) to identify bi-
furcation events, which are places in the time series where a set
of genes that were previously coexpressed diverges. These split
events are annotated with TFs that are predicted to regulate
genes in the outgoing upward and/or downward paths, allowing
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us to associate temporal information (the timing of the splits,
Fig. 1) with the often static protein–DNA interaction data. Unlike
standard HMMs, which rely on a transition probability matrix,
DREM uses an L1 logistic regression classifier to determine tran-
sition probabilities.
Although DREM can be used to model regulation by miRNAs

(using a set of predicted targets as static data), such an approach
does not fully use miRNA expression data. DREM does not use
the expression levels of TFs because several TFs are posttran-
scriptionally regulated and so their expression levels do not al-
ways correspond to their activity level (12). In contrast, miRNAs
are transcriptionally regulated and in the majority of cases their
expression levels directly correspond to their activity. In addition,
unlike TFs that can serve as activators or repressors, miRNAs
directly repress their targets, leading to anticorrelated expression
levels between miRNAs and their targets (1, 8, 9, 10, 14). Finally,
miRNAs often target fewer genes than TFs and their impact on
each of their targets is limited (6, 15). Thus, to fully use miRNAs,
we developed computational methods as discussed in the fol-
lowing section.

mirDREM: Dynamic Regulation by miRNAs.To fully use the temporal
miRNA information when modeling dynamic regulatory net-
works, we developed regression-based scaling methods that es-
timate the activity levels of miRNAs based on their expression
changes relative to a previous time point (Fig. 1). We designed
a logistic model that combines the miRNA expression level and
its binding affinity to a predicted mRNA target to determine its
activity level (Materials and Methods).
To model that miRNAs inhibit their targets, we defined

a constraint optimization problem for learning L1 classifiers in
which the constraints (negative coefficients) are restricted to the
miRNA parameters, whereas TF parameters can still be positive
or negative. As we discuss in Materials and Methods, the new for-
mulation and solver is guaranteed to converge to a global
(constrained) optima and is computationally efficient.
To reflect the different sizes of the sets regulated by miRNAs

and TFs, we use a different significance cutoff for their inclusion
in the final model. Note that because our model allows for the
assignment of multiple miRNAs to the same split node, several
of the splits in the model reconstructed by mirDREM are con-
trolled by multiple members of the same family, in agreement
with experimental studies (4, 16).

A Dynamic Regulatory Network for Lung Development in Mouse. To
test mirDREM, we studied the tightly orchestrated process of
lung development and alveolar development. The murine model
is ideal to study the latter stages of lung development because
alveolar septation is postnatal in rodents. This process has also
significant relevance to human disease. In premature infants, this
stage of lung development is compromised (17, 18), leading to
surfactant deficiency and respiratory distress syndrome as well as
to bronchopulmonary dysplasia (18). Although significant work

has been performed to study various regulatory networks activated
during lung development (19), relatively little is known about the
temporal role miRNAs play in this process.
We measured lung mRNA and miRNA expression levels at

five developmental time points with four to five biological rep-
licates collected for each time point (0, 4, 7, 14, and 42 d;
Materials and Methods). We used mirDREM to combine the
temporal mRNA and miRNA expression data with static TF–
gene interaction data (20) and miRNA–gene interaction pre-
dictions from the Microcosm database [which uses the miRanda
algorithm (21)]. The reconstructed dynamic network is shown in
Fig. 2. mirDREM identified a network with eight split nodes (SI
Appendix, Dataset S1), with the biggest changes occurring in the
week 1 to week 2 transition. This agrees well with current knowl-
edge regarding lung development. Rapid alveolar septation is
known to occur between postnatal days 7 and 14 (P7–P14), and
the majority of alveolar septation is complete by P14 (22), al-
though some alveoli are added until P28. The reconstructed
network contains several TFs that were previously reported to
control lung development. For example, FOX transcription
factors (splits 1,2 in Fig. 2) are required for foregut formation
and are critical for differentiation of respiratory epithelium.
Similar to FOX proteins, GATA6 is also expressed in the epi-
thelium and influences sacculation and alveolarization (23). Gli
proteins, mediating Hedgehog signaling, are expressed mainly in
the lung mesenchyme and regulate smooth muscle differentia-
tion. The ETS family members are expressed in peripheral lung
buds. The dominant negative form of Erm, a family member, is
known to inhibit type II cell differentiation (24).
Several of the miRNAs identified by mirDREM have also

been shown to regulate lung development. These include mem-
bers of the miR-17–92 cluster (25) and the miR302/367 cluster
(26). Overexpression of the miR-17–92 cluster promotes cell
proliferation and inhibits lung epithelial progenitor cell differ-
entiation. GATA6, a key transcription factor for formation of ma-
ture alveoli, transcriptionally regulates the miR-302/367 cluster (26).
Transgenic mice with no expression of this miRNA cluster had
smaller lungs prenatally and displayed reduced cell proliferation.
Interestingly, in the day 4 to week 1 transition of the mirDREM
model, GATA6 and miR-302c are both identified as controlling
paths in the model.
In Fig. 2, we labeled the nine different paths in the model with

the letters A to I and computed significantly enriched gene on-
tology (GO) terms for these paths (SI Appendix, Table S1). For
example, path A (up-regulated genes) contains genes involved in
remodeling extracellular structures, which is an important pro-
cess during lung development (27). In contrast, genes on path I,
which is down-regulated in the week 1 to week 2 transition, are
enriched for the GO terms cell-cycle regulation and cell differ-
entiation. This is likely the result of the reduction in alveolar and
fibroblast proliferation from week 1 onward and increased dif-
ferentiation at this later stage of development.

Fig. 1. Method overview. mirDREM models tran-
scriptional and posttranscriptional regulation of
mRNA expression levels. Using an IOHMM model, it
combines regulatory interactions (1) for TF–gene
(Upper) and miRNA–gene relationships (Lower), with
(2) time series expression data of genes (Upper) and
miRNAs (Lower) to reconstruct a dynamic network
(3). mirDREM annotates split nodes (black circles in
3) in which gene expression diverges with the miRNAs
and TFs that it predicts to control this time-specific split
event. This leads to a network model that identifies
the key TFs and miRNAs controlling the biological
process being studied, their targets, and their time
of activation.
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The Advantages of Modeling miRNA Dynamics. We tested whether
the dynamic models constructed by mirDREM provide insights
beyond those that can be gained from current correlation or
regression-based methods. We compared our models with results
obtained by two other approaches: GenMiR++, which uses a
Bayesian regression method (28), and Pearson correlation to find
anticorrelated mRNA–miRNA target pairs (8, 9).
Fig. 3 presents the overlap between the miRNAs identified by

each of these methods. All methods predict a large fraction of
unique miRNAs. No single miRNA is predicted by all three
methods, which points to the different rationales underlying the

approaches. The miRNAs uniquely identified by mirDREM in-
cluded miR-30d, which has been previously reported as abun-
dant during mouse lung development (29), and miR-466d, which
was also previously connected to mouse lung development (9).
On the other hand, constitutively expressed miRNAs, including
miR-21 and members of the let-7 family that are also known to
be important for lung development (29), were not found by
mirDREM. We attempted to compare these predictions with
experimentally verified miRNA–gene interactions from the
miRecords (30) and miRTarbase (31) databases. However, be-
cause of the very low coverage of these two databases, overlap
for all methods was very low (SI Appendix, Table S2).
Although no “gold standard”-validated lung development

miRNA list exists, of the six miRNAs predicted by mirDREM
that we experimentally validated (see the following section),
none was predicted by GenMiR++ and only one (miR-125a-5p)
was predicted by correlation, providing anecdotal evidence that
mirDREM can accurately identify important miRNAs that are
missed by other methods. To more globally compare these three
methods, we looked at the top 300 mRNAs that each method
predicts (Materials and Methods) and analyzed their functional
enrichment. As shown in SI Appendix, Tables S3–S5 and Dataset
S2, the significant GO categories enriched in the top correlation
and GenMiR++ targets correspond to very general biological
processes. On the other hand, significant categories enriched in
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Fig. 2. Dynamic regulatory network controlling lung development in mice. mRNA and miRNA expression data were collected at five developmental time
points. Split nodes are numbered and all paths are marked with capital letters for further reference in the text. On each path emerging from a split node,
a box with miRNA and TF names (in black) indicates gene regulation. miRNAs that are up-regulated (blue) are associated with downward paths out of a node,
whereas down-regulated miRNAs (red) are associated with upward paths.
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Fig. 3. Comparison of miRNA target discovery methods. Venn diagram for the
pairwise and overall overlap between active miRNAs identified by the three
methods.
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genes ranked by mirDREM include a number of categories
related to organ and immune response development, consis-
tent with findings about the relationship between these pro-
cesses during lung development (32). We have also analyzed
the importance of constraining miRNAs to have a repressive
role in regulating their targets (SI Appendix, Fig. S3 and Tables
S6 and S7).

Robustness of mirDREM. We have assessed the robustness of
mirDREM to changes in the input parameter settings comparing
model complexity and the set of predicted miRNAs. Specifically,
we have looked at parameters that impact the complexity of the
models reconstructed (the number of splits) and parameters that
affect the set of miRNAs identified by mirDREM. In both cases,
varying these parameters within a reasonable range did not lead
to large differences between the reconstructed models or predicted
miRNA sets, indicating that the IOHMM learning method is
relatively robust (SI Appendix, Tables S8 and S9 and Fig. S4).

Validation of Predicted miRNAs. Four of the split nodes in our
reconstructed model are associated with the week 1 to week 2
transition, a crucial period in lung development (Fig. 2). This
indicates that a large fraction of the genes change their expres-
sion during this period. We tested eight miRNAs that were
predicted to regulate genes during this transition. Of these, six
were found to be highly expressed in developing lung tissues,
although they were not previously associated with a specific stage
(29)(miR-466d, 466a, 23b, 30a, 30d, and 125a), whereas no
previous connection to lung development was known for the
other two (miR-337 and 476c).
Because our validation experiments were performed in a

mouse lung epithelial cell line (MLE-12), we first measured the
expression levels of these eight miRNAs using quantitative PCR
(qPCR) (Materials and Methods and SI Appendix, Fig. S5). In
these cells, four of the eight miRNAs were expressed (23b, 30,
30d, and 125a), whereas the other four (miR-337, 466d, 466a,
and 467c) had low or undetectable expression levels. To test if
the mirDREM-predicted set of regulated genes is indeed acti-
vated by these miRNAs, we performed knockdown and over-
expression experiments for these miRNAs (depending on their
baseline expression in the cell line) followed by microarray
profiling. For each miRNA transfection experiment, we selected
the top 1,000 affected mRNAs (up-regulated for the knockdown
experiments and down-regulated for the overexpression experi-
ments). We next intersected the set derived for each miRNA
with the genes assigned to a path by mirDREM. These experi-
ments agreed with the mirDREM predictions. As can be seen in
Table 1, six of the eight miRNAs we tested, including the two
that have not been previously implicated in regulating lung de-
velopment, had a significant overlap with paths they were pre-
dicted to regulate. The results for path enrichment did not
change much when using different cutoffs for the hypergeome-
tric statistic (SI Appendix, Table S10).
We have also used Western blots to determine whether the

protein levels of predicted miRNA targets changed after trans-
fection of the miRNAs predicted by mirDREM to regulate them.
For this analysis, we selected nine of the top scoring pairs (miR-
466a-3p, GLI3; miR-466a-3p, AURKA; miR-466d-3p, GLI3; miR-
466d-3p, AURKA; miR-467c, CDT1; miR-467c, POLQ; miR-30a,
FANCD2; miR-30d, FANCD2; miR-125a-5p, SCN2B). Of these,
we were unable to express two of the proteins in the cell lines we
used (POLQ and SCN2B). As for the other seven pairs, six
showed changes in protein levels in the direction predicted by
mirDREM (four were statistically significant in the predicted
direction, P < 0.05). Only one of the seven pairs did not agree
with the direction predicted by mirDREM, and this negative
result was not significant (SI Appendix, Fig. S6).

Overlap with miRNAs Identified in Idiopathic Pulmonary Fibrosis.
Developmental pathways are activated briefly in healthy adults,
primarily during tissue repair. However, analysis of lung gene

expression of patients with idiopathic pulmonary fibrosis (IPF),
a chronic, lethal, and untreatable lung disease, reveals enrich-
ment of developmental pathways such as Wnt, sonic hedgehog,
PTEN, and TGF-β (33). Indeed, there is recent evidence that
IPF can be viewed as a reversal of developmental stages (34, 35)
leading to excessive deposition of connective tissue and de-
struction of the normal tissue structure.
We used three publicly available cohorts (www.lung-genomics.

org/) (36) of patients with IPF to test whether the 56 miRNAs
assigned to paths by mirDREM are differentially expressed (DE)
in IPF patients. In total, 22 of these miRNAs (∼40%) were DE
in at least one of the cohorts, including miR-214, miR-184, and
miR-30d, which were found in all three cohorts (SI Appendix,
Dataset S3). For the two larger cohorts, we found significant
overlap (hypergeometric P value 0.005 for cohort 1, and 0.01 for
cohort 2), indicating that a significant fraction of the miRNAs
predicted to be involved in lung development are also deregu-
lated in IPF lungs.
Interestingly, five of the six developmentally up-regulated

miRNAs we tested (all except miR-467c) are found to be down-
regulated in patients with IPF compared with healthy individuals
(SI Appendix, Table S11). In contrast, one of the down-regulated
miRNAs we experimentally studied, miR-337, is up-regulated in
two of the patient cohorts.

The Role of miRNAs in Proliferation. Path I (down-regulated genes)
was highly enriched for cell-cycle categories. Five of the eight
miRNAs we tested (all except for miR-337, miR-23b, and miR-
125a) were predicted by mirDREM to regulate this path. Fi-
broblast cell proliferation is an active event constantly occurring
in IPF lungs (37). Because most of these miRNAs were also
changed in IPF, we decided to test their involvement in regula-
tion of cell proliferation using a lung epithelial cell line. These
experiments validated the predicted roles for three of the five
miRNAs, whereas no effect on proliferation was seen for the
other two (Fig. 4). Knockdown of both miR-30a and miR-30d led
to a significant increase in proliferation (t test P value 0.016 and
0.006, respectively), whereas overexpression of mir-467c led to
decreased proliferation (t test P value 2.95E-05), indicating that
all three miRNAs are indeed negative regulators of proliferation
and supporting the role predicted by mirDREM.

Discussion
We presented mirDREM, a unique method for modeling dy-
namic regulation by miRNAs. We used mirDREM to recon-
struct a dynamic regulatory network in lung development and
experimentally tested miRNAs that were predicted to control
a specific developmental stage and cell differentiation. Using
transfection of miRNAs, we showed that the paths and targets
predicted by mirDREM agree with the set of DE genes following

Table 1. Agreement between the mirDREM model and
validation experiments

miRNA
Significant paths’ opposite

direction
Corrected enrichment

P values

miR-125a-5p A, B, C, and E 0.0108, 0.00008, 0.03872
miR-337-5p B, C, and E 0.0332, 0.00008
miR-467c D <10−6

miR-466a-3p D 0.05152
miR-466d-3p D 0.03904
miR-30d H 0.01456
miR-30a — —

miR-23b — —

miRNA knockdown experiments and their agreement with targets on the
mirDREM paths they are predicted to regulate in Fig. 2. The second column
lists all paths that significantly overlap the top 1,000 DE genes after miRNA
transfection (hypergeometric test, corrected P < 0.05), with the P value for
each path listed in the last column.
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perturbation of the miRNAs. For some of these miRNAs, we
were also able to determine a specific functional role in de-
velopment by following up predictions related to the path they
regulate. Several of the miRNAs predicted as regulating de-
velopmental genes are also DE in IPF, often in the opposite
direction. These results add to a growing body of literature that
suggests that miRNAs involved in development may play an
opposite role in diseases (33, 38).
mirDREM, available from the supporting website (www.sb.cs.

cmu.edu/drem), is implemented in Java and currently supports
human and mouse TF and miRNA data. The software has a fully
functional user interface that allows both easy data upload as
well as retrieval of output models and network images.
Our model assumes that miRNAs have a negative (repressive)

influence on expression. Although this appears to be the major
form of miRNA regulation (1), recent studies indicate that some
miRNAs can also positively regulate their targets (7). For the
data analyzed in this paper, constraining miRNAs to only neg-
atively regulate their targets led to more meaningful biological
networks (SI Appendix, Fig. S3 and Table S6). We have also
tested mirDREM using a second set of computationally pre-
dicted miRNA targets [TargetScan (2)]. Similar to previous
analyses, we find that the overlap of computationally derived
miRNA–gene interactions from different algorithms is not high
(39). However, several of the miRNAs we experimentally vali-
dated were also in the TargetScan results (SI Appendix, Fig. S7
and Tables S12–S14). This indicates that using the intersec-
tion of miRNAs identified by multiple computational methods
may improve the accuracy of regulatory models for miRNA
regulation.
mirDREM focuses on the reconstruction of dynamic regula-

tory networks. Our comparison with methods that look at overall
correlations between mirRNAs and their predicted targets
indicates that such methods often identify a complementary set
of miRNAs. Although mirDREM was able to correctly identify
mirRNAs that are active in specific developmental stages, it is
less effective at identifying global-acting miRNAs because it
cannot link these to specific splits. In contrast, methods that look
for global correlation miss important miRNAs that are control-
ling specific stages in development or disease progression. Thus,
although we view mirDREM as a computational method that
addresses an important need in the analysis of time series bi-
ological data, we see cases in which it should be used in com-
bination with other methods that look at global correlations.
Combined, these methods are able to identify both the local
(temporal) activation patterns and the constitutively active ones.

Materials and Methods
Integrating Interaction and Expression Data to Model Dynamic Regulatory
Networks. We introduce an algorithm to learn a dynamic regulatory map
by integrating protein–DNA and miRNA–gene regulatory relationships with

time series expression data of genes and their miRNA regulators. Fig. 1
illustrates the different data sources that are used. Following Ernst et al.
(12), we construct an IOHMM in which the set of hidden states (nodes) are
each associated with a Gaussian output distribution representing the ex-
pression levels of genes assigned to them. The set of states is learned as part
of the algorithm and depends on the biological process being studied. If
a set of genes that has been coexpressed up to a certain time point diverges,
the algorithm designates that point as a split node and learns a L1-logistic
regression classifier (based on the static input data) that assigns genes to the
up or down paths out of this node. The advantage of using a L1-regularized
logistic regression, often called lasso regression, is that it promotes sparsity
by penalizing features that contribute little to the solution. This leads to
models with only few TFs or miRNAs predicted for each split.

Incorporating miRNA Expression Levels. We integrate the temporal miRNA
expression data with static, sequence-based predictions to obtain a prior on
the probability that a specific miRNA regulates a target mRNA at a specific
time point t. Of particular interest are miRNAs that change their expression
behavior during the time course and whose targets are changing in response
to this change (SI Appendix, Fig. S1). Our model assumes that changes in
miRNA expression levels lead to changes in their regulatory effect on target
genes. In addition to their expression levels, the strength of the regulatory
effect of a miRNA may be dependent on its likelihood of binding a specific
target. Therefore, we combine the two values (activity and predicted bind-
ing) in a unified logistic function. Note that even though we only model
down-regulation of mRNAs by miRNAs, the regulatory effects of a specific
miRNA can be either positive or negative, depending on the change in ex-
pression from the prior time point (see SI Appendix, section I, for details).

A Constraint-Based Approach to Lasso Logistic Regression in mirDREM. Because
we expect that direct regulation by anmiRNA leads to inhibition of the target
genes, we only allow for negative regression coefficients for miRNAs, as
opposed to TFs that can be either activators or repressors (SI Appendix, Fig.
S2). This leads us to use constrained logistic regression (40) and, in particular
instances, constrained lasso logistic regression. To solve this constrained
optimization problem, we modified the approach described by Krishna-
puram et al. (41) for lasso logistic regression. In ref. 41, they introduce an
efficient iterative method that optimizes one entry in the weight vector at
a time. Such an iterative assignment allows us to introduce the nonpositivity
constraints because by working sequentially we can require that each
weight remains smaller than, or equal to, zero. In the SI Appendix, we
show that such a procedure guarantees that our learning method still
converges to a global optimum.

Enrichment Computation for miRNAs at Split Nodes. We use the hypergeo-
metric statistic to select significant TFs and miRNAs assigned to split nodes in
the model. In addition, for miRNAs, we also test if the change in their ex-
pression level agrees with the direction of the split.

Comparison with Other Methods.We compared mirDREMwith other methods
that use expression data to identify active miRNAs and miRNA-regulated
genes. The first, GenMir++ (28), uses a Bayesian regression method to
identify functional miRNA targets from a set of miRNA–gene interactions. In
our experiments, GenMir++ uses the same miRanda miRNA–gene inter-
actions. Another common approach to find active miRNAs is to search for
anticorrelated miRNA–mRNA expression pairs using Pearson correlation (9).
We have implemented such an analysis in R, again using the miRanda pre-
dicted interactions. Because there is no systematic annotation of miRNAs, we
relied on the predicted target mRNAs to more globally compare these
methods. We ranked genes according to the significance or interaction
strength provided by each method. For GenMiR++, we ranked genes by the
strongest association found among all of the miRNAs tested. Similarly, for
correlation analysis, genes are ranked by the strongest (negative) correlation
value found among all miRNAs tested. In mirDREM, genes are ranked by the
gene likelihood in the IOHMM model. To rank miRNAs for GenMiR++ and
correlation, we reversed the role of the gene and miRNA (i.e., we ranked the
miRNAs by the strongest association or correlation that was found for one of
its target genes).

GO Analysis of Path Enrichment and Ranked Genes. We used Ontologizer
software version 2.0 (42) to compute GO enrichment for all paths in the
mirDREM model and the top 300 ranked genes of all methods. The enrich-
ment statistic used was the parent–child–union method with Benjamini–
Hochberg multiple testing correction. Terms are considered enriched if P ≤
0.05 after correcting for multiple testing.
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Fig. 4. Cell proliferation experiments. Results of cell proliferation for miRNA
knockdown (miR-30a/d) and overexpression (466a/d, 467c) experiments
in lung epithelial cells. The difference in cell proliferation to the controls—
scr inhibitor for knockdown and scr precursor for overexpression—are
shown as ratio on the y axis. Errors bars show variation from eight replicates.
*miRNAs with a significant difference to control (t test, P < 0.05).
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Microarrays.MiRNA profiling was performed using the Agilent Mouse miRNA
microarray, which contains 627 mouse miRNAs and 39 mouse viral miRNAs
(Sanger miRBase Release 12.0), following the manufacturer’s protocol (Agilent).
Briefly, 100 ng of total RNA was dephosphorylated using calf intestinal al-
kaline phosphatase, denatured with DMSO and labeled with pCp-Cy3 using
T4 RNA ligase at 16 °C for 2 h. The labeled RNA was purified using Micro Bio-
spin columns (BioRad) and hybridized on Agilent miRNA microarrays at 55 °C
for 20 h. After washing the microarrays with Gene Expression Wash Buffers,
the slides were scanned on the Agilent Microarray Scanner. The scanned
images were processed using Agilent’s Feature Extraction software version
10.7.1.1. For gene expression arrays, 500 ng of total RNA was used as the
starting template for cDNA synthesis. This cDNA was used as a template to
synthesize Cy3-labeled cRNA that was hybridized on 8 × 60K SurePrint G3
Mouse Gene Expression microarrays at 65 °C for 17 h. The dataset was de-
posited in the Gene Expression Omnibus (GEO) (accession no. GSE41412).

Cell Line and Reagents. MLE-12 was purchased from the American Type
Culture Collection (ATCC), frozen at an early passage, and each vial was then
used for experiments was cultured for a limited number of passages (less than
eight). For maintenance, cells were cultured in ATCC complete growth me-
dium containing hydrocortisone, insulin, transferrin, estrogen, and selenium
(HITES) medium supplemented with 2% (vol/vol) FBS, at 37 °C with 5%
(vol/vol) CO2.

RNA Isolation. Total RNA were extracted from cell and tissue samples with
miRNeasy mini kit (Qiagen). Integrity of RNAwas assessed by using an Agilent
BioAnalyzer 2100 (Agilent Technologies) (RNA integrity number above nine).

Transfections. PremiR-337, premiR-466a, premiR-466d, premiR-467c, anti-miR-
30a, anti-miR-30b, anti-miR-125a, anti-miR-23b, and controls (miRNeg# 1)
were purchased from Ambion. MLE-12 cells were grown in ATCC complete

growth medium and transfected at 30–50% confluency in six-well plates
using Lipofectamine 2000 (Invitrogen) with miRNA precursors and miRNA
inhibitors at a final concentration of 20 nM. The dataset identifier in the
GEO database is accession no. GSE41607.

Transfection Experiments Analysis. Gene expression measurements with
microarrays from the transfection experiments were normalized and the top
1,000 genes (overexpressed genes after knockdown and underexpressed
genes after miRNA precursor transfection) were used for the intersection
with mirDREM predictions. Enrichment was computed using the hyper-
geometric statistic and corrected for multiple testing using the Bonferroni
procedure.

Proliferation Assays. MLE-12 cells were plated in a 96-well cell culture plate.
The cells were serum starved overnight and transfected with 25 nM of the
respective miRNA inhibitors and miRNA precursors the next day. Twenty-four
hours following transfection, 20 μL of the CellTiter 96 AQueous One Solution
Reagent (Promega) was added to each well; 1 h later, the absorbance at 490
nm was measured with a plate reader.

Real-Time qPCRs. Overexpression of miR-337, miR-466a, miR-466b, miR-467c,
and inhibition of miR-30a, miR-30b, miR-125a, and miR-23b was evaluated
using TaqMan MicroRNA Assay (Applied Biosystems) as specified in their
protocol. Real-time PCR was performed using Universal Master Mix (Applied
Biosystems). Expression levels of mature miRNAs were evaluated using the
comparative CT method (SI Appendix, Fig. S5).
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