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Designing experiments to understand
the variability in biochemical
reaction networks

Jakob Ruess, Andreas Milias-Argeitis and John Lygeros

Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland

Exploiting the information provided by the molecular noise of a biological pro-

cess has proved to be valuable in extracting knowledge about the underlying

kinetic parameters and sources of variability from single-cell measurements.

However, quantifying this additional information a priori, to decide whether

a single-cell experiment might be beneficial, is currently only possible in sys-

tems where either the chemical master equation is computationally tractable

or a Gaussian approximation is appropriate. Here, we provide formulae for

computing the information provided by measured means and variances

from the first four moments and the parameter derivatives of the first two

moments of the underlying process. For stochastic kinetic models for which

these moments can be either computed exactly or approximated efficiently,

the derived formulae can be used to approximate the information provided

by single-cell distribution experiments. Based on this result, we propose an

optimal experimental design framework which we employ to compare the uti-

lity of dual-reporter and perturbation experiments for quantifying the different

noise sources in a simple model of gene expression. Subsequently, we compare

the information content of a set of experiments which have been performed in

an engineered light-switch gene expression system in yeast and show that

well-chosen gene induction patterns may allow one to identify features of

the system which remain hidden in unplanned experiments.
1. Introduction
Quantitative studies of biological systems with mathematical models strongly

depend on an appropriate characterization of the underlying system, that is on

good knowledge about the underlying mechanisms and kinetic parameters.

While extracting such knowledge from averaged cell population data is

common practice, it has only recently been realized that also the molecular noise

observed in single-cell measurements may be a rich source of information about

the parameters of stochastic kinetic models [1–4]. Mathematically, one way to

quantify the information provided by single-cell experiments is to determine the

precision to which the model parameters can at best be estimated in a given exper-

imental set-up, that is to determine the variances of the best possible unbiased

estimators of the model parameters [5]. Thanks to the Cramér–Rao inequality

these variances can be computed from the Fisher information matrix. To compute

the Fisher information for stochastic kinetic models, one has to solve the chemical

master equation (CME) [6] and take derivatives of its solution with respect to the

model parameters. This is, however, only possible in the simplest cases and even

approximation techniques either remain limited to very small systems [7] or are

based on strong assumptions [8,9], which are not always fulfilled in real appli-

cations. Consequently, experiments are usually designed based on the intuition

of the experimenter, rather than on information theoretic criteria.

A second difficulty in the analysis and design of single-cell experiments is that

stochastic kinetic models are usually based on the assumption that the same pro-

cess governs the evolution in all cells of the population. This, however, is generally

not the case, because the process of interest often interacts with other unmodelled

factors which are themselves subject to fluctuations and differ between the cells.
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For instance, differences in cell size, local growth conditions or

expression capacity [10,11] may lead to additional variability in

the cell population. In many instances, noise resulting from

such extrinsic variability [12–14] has been reported to domi-

nate the molecular noise of the process under study [15–17].

In such situations, methods which assume a homogeneous

cell population and attribute all the observed variability to

molecular noise of the modelled reactions may lead to biased

results. Sometimes, it may be appropriate to assume that

such unmodelled factors are static for the time scales of interest.

For example, in the model of the stress response of budding

yeast to osmotic pressure in Zechner et al. [3], the number

of mitochondria affecting translation changes much more

slowly than species in signalling and transcription cascades.

In this case, the number of mitochondria can be taken as

random but constant in time for the purposes of the model.

In other cases, however, species which are not included in

the model but affect reaction rates may evolve on time scales

comparable to those of the reactions of interest [12,18,19], for

instance global regulators affecting transcription. In theory,

one should include such species in the model but this is often

not practical because it would lead to models of intractable

size. A convenient modelling abstraction may then be to

include a stochastic process for some of the rates, to serve

as a rudimentary abstraction of the complex mechanisms

governing the fluctuations of the reaction rates [11].

In this paper, we propose a framework for optimally design-

ing single-cell distribution experiments for identifying the

parameters of stochastic kinetic models in which the reaction

rates are possibly governed by stochastic differential equations.

To this end, we first demonstrate on systems where one reaction

rate is governed by a stochastic differential equation how

equations describing the time evolution of the moments of the

probability distribution can be derived. We then show how

the Fisher information can be approximated from the first

four moments and the parameter derivatives of the first two

moments without the need of any assumption other than a suf-

ficiently large measured cell population. Finally, we embed the

approximated Fisher information into an optimization algor-

ithm which returns the most informative experiment for a

specified set of model parameters. This allows us to design opti-

mal experiments for identifying specific features of the system.

We demonstrate this by comparing dual-reporter and pertur-

bation experiments in a simple model of gene expression,

where the mRNA production rate is varying according to a sto-

chastic differential equation. Finally, we study the variability in

an engineered light-switch gene expression system in yeast. We

use our methodology to evaluate the experiments that were

performed in Milias-Argeitis et al. [20] and show that they

strongly differ in the information provided about the unknown

parameters. Furthermore, we show that an experiment found

by using our optimal experimental design procedure would

lead to far more information than any of the experiments

reported in Milias-Argeitis et al. [20].
2. Material and methods
2.1. Moment equations for reaction systems with

stochastically varying reaction rates
The time evolution of the probability distribution of stochastic

kinetic models is governed by the CME. If variability in the
reaction rates is present in a population, the distribution for

each cell can be described by a CME, which is conditioned on

the realizations of the reaction rates in the cell. In the study of

Zechner et al. [3], it was shown how population moments can

be computed from this conditional CME under the assumption

that the reaction rates are constant in time. More generally,

assume now that a reaction rate at is governed by a stochastic

differential equation of the form

dat ¼ rðma � atÞdtþ s
ffiffiffiffi
at
p

dWt; ð2:1Þ

where Wt is a standard Brownian motion. This process fluctuates

around its mean ma, where the mean reversion speed r gives the

autocorrelation time of the process, and thereby determines

the time scale of the rate fluctuation. The noise coefficient s deter-

mines the size of the deviations from the mean, whereas the termffiffiffiffi
at
p

prevents the process from taking negative values and is in

accordance with the frequently used Langevin approximation for

chemical reaction networks [9]. Note that this formulation includes

constant reaction rates as for r ¼ s ¼ 0 the process at is constant and

always distributed according to its initial distribution.

The system which jointly describes the time evolution of the

species and the reaction rate is a stochastic hybrid system [21].

The time evolution of the moments can be computed as

d

dt
E[cðat; xðtÞÞ] ¼ E[ðLcÞðat; xðtÞÞ]; ð2:2Þ

where x(t) ¼ [x1(t) . . . xm(t)] is a vector containing the molecule

counts of the m species and c : R� Rm ! R is chosen such that

the left-hand side gives the derivative of the desired moment.

L is the extended generator of the stochastic hybrid system,

given by

ðLcÞða; xÞ :¼ @cða; xÞ
@a

� fðaÞ þ 1

2

@2cða; xÞ
@a2

� s2a

þ
XK

i¼1

(cða; xþ niÞ � cða; xÞ)wiða; xÞ;

where f (a) ¼ r(ma 2 a), ni are the stoichiometric transition vectors

and wi(a, x) the propensities of the K reactions. Note that the

resulting system of moment equations may be non-closed in

the sense that the time evolution of the moments of any order

depends on moments of higher order. In such cases, the

moments cannot be computed exactly and approximation tech-

niques have to be used [22–24].
2.2. Approximating the Fisher information
The amount of information about model structure or parameters,

which can be gained from measurements, may be highly depen-

dent on the experimental set-up that is chosen [25–29]. Carefully

planning an experiment reduces experimental effort and

resources and may even allow one to answer questions which

cannot be answered from unplanned experiments.

One way to assess the information about a vector of

unknown model parameters u ¼ [u1 . . . uN]T that an experimental

set-up can supply is through the computation of the Fisher infor-

mation matrix I(u) [5,30]. The diagonal elements of the inverse of

I(u) give lower bounds for the variances that any unbiased esti-

mators of the model parameters can attain, and thus the Fisher

information gives a measure of the accuracy to which the

model parameters can be estimated in a given experimental set-

ting (for a more detailed discussion, we refer the reader to [5]).

The elements of the Fisher information matrix are given by

ðIðuÞÞi;j ¼ E
@

@ui
log f ðY; uÞ

� �
@

@uj
log f ðY; uÞ

� �� �
;

where Y is the random variable which is experimentally

measured and f (Y;u) is its distribution. In stochastic kinetic

models, the parameter vector u typically contains reaction rates
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and possibly also parameters describing the variability in the

reaction rates, for instance, moments of the parameter distri-

butions [3] or the coefficients r, ma and s in equation (2.1).

Because the values of the elements of the parameter vector

often differ by orders of magnitude, it is sometimes more appro-

priate to compute the derivatives with respect to the logarithm of

the parameters. It can be shown that these derivatives corre-

spond to the sensitivity of the measured output with respect to

the relative, instead of the absolute, changes in the parameters.

The Fisher information matrix for a logarithmic parametrization

can be readily obtained from the original Fisher information

matrix (see electronic supplementary material, §S.1.5) and the

parametrization is therefore not of importance for the formulae

provided in this paper.

Population measurements, such as those provided by flow

cytometry, can be viewed as a large number of independent

samples Y1, . . . ,Yn, which are drawn from a marginal distri-

bution f (Y;u) of the underlying process. The computation of

f (Y;u) requires the solution of the CME, and therefore the compu-

tation of the Fisher information matrix which requires the

parameter derivatives of the logarithm of f (Y;u) is only possible

in cases where the solution of the CME can be computed exactly

or at least approximated accurately. An alternative approach

for computing the Fisher information resorts to a Gaussian

assumption on the underlying Markov process [5,31]. Under

this assumption, the sample mean and variance of the measured

population form a jointly sufficient statistic. Hence, computation

of the Fisher information reduces to solving the differential

equations that describe the dynamics of mean and variance of

f (Y;u) and computing their partial derivatives with respect to u.

There are, however, many systems where a Gaussian assumption

is not appropriate [3,32]. In such cases, the method in [5] may

lead to erroneous results for several reasons. First, the compu-

ted means and variances of f (Y;u) may be inaccurate. Second,

information that can be gained from higher order moments is

neglected. And third, the Gaussian approximation implicitly

assumes that sample mean and variance provide independent

pieces of information, an assumption which is violated for all

non-Gaussian distributions [33]. For instance, for a Poisson dis-

tribution the sample mean is already a sufficient statistic on its

own and the variance adds no new information (see electronic

supplementary material, §S.1.2).

In situations where a Gaussian assumption is not applicable,

it may still be possible to approximate the information which is

provided by sample mean and variance. If the sample size is suf-

ficiently large, the central limit theorem implies that sample

mean and variance are approximately jointly Gaussian. For sim-

plicity, assume that there is only one unknown parameter u and

that only one species is measured (a more general case is treated

in the electronic supplementary material, §S.1.3). The infor-

mation given by the mean Im(u) and the joint information

given by mean and variance IJ(u) can then be approximated

using the special form of the Fisher information for multivariate

Gaussian random variables (see electronic supplementary

material, §S.1.1 and S.1.3), which results in

ImðuÞ �~ImðuÞ ¼ n
(@m1/@u)2

m2

; ð2:3Þ

and

IJðuÞ �~IJðuÞ ¼~ImðuÞ þ n
(m2ð@m2/@uÞ � ð@m1/@uÞm3)2

m2
2ðm4 � m2

2Þ � m2m
2
3

; ð2:4Þ

where n is the size of the sample, m1 denotes the mean and mk the

central moments of order k ¼ 2, 3, 4.

These formulae are valid for any distribution which satisfies

the requirements of the central limit theorem. Furthermore, it can

be shown [34] that ~ImðuÞ and ~IJðuÞ provide lower bounds on the

information of the whole sample. For a Gaussian distribution, as
m3 ¼ 0 and m4 ¼ 3m2
2, ~IJðuÞ reduces to the correct expression

for the complete information. For a Poisson distribution, as

m1 ¼ m2 ¼ m3, ~IJðuÞ reduces to ~ImðuÞ, which again gives the

correct expression for the complete information.
2.3. Designing optimal experiments
The goal of experimental design is to find the experiment which

is optimal according to some criterion reflecting information

about the unknown parameters. The most frequently used cri-

teria are D-optimality, A-optimality and E-optimality which

correspond to maximizing the determinant, minimizing the

trace of the inverse and maximizing the minimal eigenvalue of

the Fisher information matrix, respectively [27,35]. In biological

applications, it is often desirable to design experiments which

are targeted to specific parameters or to subsets of the parameter

set. For instance, one might want to estimate the reaction rates of

the model as well as possible, despite the presence of variability

in some of the rates or parameters of a noise model which have

no biological meaning. An optimality criterion targeted to such

questions is Ds-optimality [36,37]. It is based on partitioning

the parameter vector u ¼ [u1 u2]T in parameters of interest u1

and nuisance parameters u2. The experiment, which allows one

to obtain the confidence region with minimum volume for u1

can then be found by maximizing the determinant of

IsðuÞ ¼ I11ðuÞ � I12ðuÞI22ðuÞ�1I21ðuÞ;

where IðuÞ ¼
I11ðuÞ I12ðuÞ
I21ðuÞ I22ðuÞ

� �
;

9>=
>; ð2:5Þ

where I11(u) and I22(u) are the information matrices for u1 and u2,

respectively, and I12(u) and I21(u) give the cross terms between u1

and u2.

The computation of I(u) and Is(u) requires knowledge of

the true parameters u, which are not available. This difficulty

can be overcome by evaluating the information at some initial

estimate û [30]. If, however, this initial estimate differs signifi-

cantly from the true parameter vector, the resulting experiment

may be far from optimal. This is especially important for biologi-

cal applications where initial estimates, if available at all, usually

involve large uncertainties. Here, we chose an approach which

includes the uncertainty of the initial estimate in the form of a

prior distribution p(u) and computes the expected information

with respect to p(u) [38,39] (for an overview of other methods,

see electronic supplementary material, §S.4). The correspond-

ing optimal experiment e� can then be obtained by solving the

following optimization problem:

e� ¼ arg max
e[E

fEu½det Isðu; eÞ�g; ð2:6Þ

where the expectation is taken over u � p(u), Is(u, e) is the infor-

mation matrix for experiment e evaluated at u and E is the set of

possible experiments. We can now state a procedure for design-

ing optimal experiments for the estimation of parameters of

stochastic kinetic models from single-cell measurements of a

cell population.

Some comments on practical applicability of this procedure

are given in the electronic supplementary material, §S.1.6.

This optimal experimental design procedure can be per-

formed in iterations with experiments. Starting from some

prior distribution p(u), the computations lead to optimal exper-

iments that yield data which can be used in a parameter

inference scheme to compute posterior distributions. These can

then in turn serve as new prior distributions for the computation

of a new optimal experiment. This can be continued until the

uncertainty about the parameters has been sufficiently reduced.



The optimal experimental design procedure

— Define a model, potentially including stochastic

effects in reaction rates as in equation (2.1).

— Derive the differential equations for the required

moments using equation (2.2). If the moment

equations are non-closed and cannot be solved

exactly then use an approximation method [22,23].

— Solve the differential equations to compute the

moments and their partial derivatives with respect

to the parameter vector as functions of u and t.
— Choose a vector u1 of parameters of interest and

specify the distribution p(u) according to prior

uncertainty about u.

— Solve the optimization problem in equation (2.6),

where the total information Is(u, e) is replaced by

the approximated information of sample mean and

variance according to equation (2.4).
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3. Results
3.1. In silico study of a gene expression system
We demonstrate the proposed experimental design frame-

work on a simple example of gene expression. The model

we consider consists of the two species mRNA (M ) and

protein (P) and the four reactions

; at�gðtÞ�! M;
M �b! ;;
M �c! Mþ P;
P �d! ;;

where b ¼ 0.03, c ¼ 0.5, d ¼ 0.04 and at is varying according

to a stationary stochastic process of the form equation (2.1).

The dynamics of the moments of order up to two of M and

P are then completely determined by the mean reversion

speed r and mean ma and variance Va of the stationary distri-

bution of at (see electronic supplementary material, §S.2.1).

Here, we assume that the values of these parameters are

ma ¼ 0.5, Va ¼ 0.1 and r ¼ 0.005. We further assume that the

gene can be switched between an on state (where g(t) ¼ 1)

and an off state (where g(t) ¼ 0) using some external input,

for example, either by adding different nutrients in nutrient

shift experiments [40], by adding salt to induce the osmotic

stress response [41] or with light pulses [20]. Furthermore,

throughout this section, we assume that it is known that no

molecules are present at time t ¼ 0 (loosely speaking, the

gene has been off for some time at the start of the experiment)

and that the degradation rates b and d are known, whereas ma,

Va, r and c have to be determined from the measurements.

Finally, for simplicity, all the computations of this section are

performed locally at the ‘true’ parameter values and prior

uncertainty about the parameters is not included.

We compare four experimental methods in terms of the

information they can provide about the unknown parameters.

For all methods, we assume that the experiments are limited

to a time length of t ¼ 300 time units and that at most 10

measurements of the protein distribution are taken during

that time. The first two methods we consider are standard

time course experiments, where the gene is switched on only
at time zero and measurements are taken in regular time inter-

vals (every 30 time units). In the first method (referred to as

unplanned experiments), we assume that a single reporter

protein is measured, whereas in the second method (unplanned

dual-reporter experiments), an identical copy of the gene is

added to the cells, such that a second reporter protein which

is conditionally independent of P, given the history of at, can

be measured [15,42,43]. These two methods are compared

to more sophisticated experiments where informative gene-

switching patterns and measurement times are identified

using our experimental design framework.

For the optimally designed experiments, we again consider

both single and dual-reporter experiments (referred to as opti-

mal perturbation and optimal dual-reporter experiments,

respectively). In both cases, the search for the most informative

experiments proceeds in two steps. First, we fix equally spaced

measurement times and use a Markov chain Monte Carlo-like

algorithm to perform the optimization on the space of possible

gene-switching pattern. Second, we fix the resulting gene-

switching pattern and sequentially place the measurement

times, where they yield maximal information. More details

on this algorithm are given in the electronic supplementary

material, §S.2.2. Figure 1 gives the resulting optimal pertur-

bation experiments when either r or Va is taken as parameter

of interest (u1 in equation (2.5)) and the remaining parameters

are taken as nuisance parameters (u2 in equation (2.5)). Results

for the remaining parameters and results for the optimal dual-

reporter experiments are given in the electronic supplementary

material, figures S2 and S3. It can be seen that different pertur-

bations and measurement times are optimal for identifying

different parameters.

The results of the comparison of the four methods are

summarized in table 1. Note that the reported values corre-

spond to a logarithmic parametrization to allow one to

compare the information obtained for different parameters

(rows). From the first column, we see that the information

which can be gained from unplanned experiments is very

small. This indicates that the parameters may be practically

unidentifiable (see also the discussion in the electronic

supplementary material, §S.2.3). Unplanned dual-reporter

experiments, on the other hand, lead to much more infor-

mation (second column in table 1) and appear to be

suitable for identifying all the parameters of the system.

Only r potentially remains difficult to identify. In general, r
and Va are harder to identify than ma and c because the

protein mean does not depend on r and Va, and hence they

can only be identified from the protein variance. The infor-

mation of the optimal perturbation experiments which were

found by our experimental design procedure are given in

the third column of table 1, where for all parameters the

first value corresponds to the information which is obtained

if the experiment is specifically targeted at the parameter

(taking all other parameters as nuisance parameters) and

the second value corresponds to the information which is

obtained if the experiment is targeted at estimating all par-

ameters. It can be seen that, compared to dual-reporter

experiments, more information is obtained for the parameter

r, whereas dual-reporter experiments lead to more infor-

mation for ma, Va and c. Hence, depending on the objective

of the study, different experimental strategies are preferable.

The fourth experimental method, which combines optimal

perturbations and dual reporters, naturally leads to the

most information for all parameters (fourth column in
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Figure 1. Optimal perturbation experiments for the parameters r (a,b) and Va (c,d ). (a,c) Gene-switching patterns found by employing the experimental design
procedure. A value of one corresponds to the gene being switched on, a value of zero to the gene being switched off. (b,d ) Information (for a logarithmic para-
metrization) normalized by the sample size n for measurements at N þ 1 time points, where the (N þ 1)th time point is in addition to the N time points which
were already placed. The different lines correspond to N ¼ 2,3, . . . , 9. The blue circles correspond to the measurement time points which were already placed and
the red circles correspond to the best choice for the (N þ 1)th measurement time point.

Table 1. Comparison of different experimental approaches. Information normalized by the sample size n. Rows: information for different parameters of interest.
Columns: information which can be gained by different experimental approaches. Computations corresponding to unplanned experiments were performed with
the gene being switched on only once at time zero and equally spaced measurement times. Optimal experiments include optimal gene-switching patterns and
sequentially placed measurement times (see electronic supplementary material, §S.2.2).

unplanned
experiment

unplanned dual
reporter

optimal perturbations targeted to
particular parameter / all parameters

optimal dual reporter targeted to
particular parameter / all parameters

ma 0.0009 2.5776 1.1125 / 0.4063 2.7201 / 2.4877

Va 0.0002 0.1869 0.1286 / 0.0704 0.3690 / 0.3496

c 0.0009 2.8303 1.1817 / 0.4047 3.1083 / 2.7248

r 0.0012 0.0068 0.0129 / 0.0096 0.0244 / 0.0262
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table 1). Note, however, that the increase in information com-

pared to unplanned dual-reporter experiments is very small if

ma or c are the parameters of interest, which indicates that

additionally perturbing the system may not be worth the

effort. Furthermore, contrary to the optimal perturbation

experiments, targeting the dual-reporter experiment at speci-

fic parameters (first value in the fourth column) yields only a

minor increase in information compared with an experiment

which is targeted at all parameters (second value in the

fourth column). The experiment targeted at identifying r
even leads to less information about r than the experiment tar-

geted at all parameters which shows that the optimization

algorithm used for finding informative experiments converged

to a local minimum in the former case.

The maximum-likelihood estimator for the parameter

vector is asymptotically normally distributed with covariance
matrix equal to the inverse of the Fisher information matrix.

We can therefore further visualize our results by computing

confidence regions for the maximum-likelihood estimator in

the different experiments. Figure 2 shows two-dimensional

95% confidence ellipses for all pairs of parameters for the

optimal perturbation experiments targeted at each of the par-

ameters where we assume that at each time point a cell

population of size n ¼ 10 000 is measured. The red ellipses

correspond to the experiment which is targeted at all par-

ameters and are therefore overall the smallest. However,

the variance in the direction of each of the parameters can

be reduced by specifically targeted experiments. The most

significant difference can be seen in the experiments targe-

ted either at ma or c (black and magenta) where the size of

the ellipses is reduced in both the directions of ma and c
at the cost of making r and Va much harder to identify. The
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parameter r is the hardest to identify and can only be reason-

ably constrained by experiments targeted either directly at r
or at all parameters. Figure 3 shows two-dimensional 95%

confidence ellipses for all pairs of parameters for the

unplanned experiment, the unplanned dual-reporter exper-

iment, the optimal perturbation experiment targeted at all

parameters and the optimal dual-reporter experiment tar-

geted at all parameters. Again, we assume that at each time

point a cell population of size n ¼ 10 000 is measured.

As already indicated by the information values in table 1,

the parameters are almost unidentifiable from unplanned

experiments. All the other experiments, on the other hand,

can constrain the parameters to relatively small regions.

Finally, we also computed the information under a

Gaussian assumption. Our results (electronic supplementary

material, table S1 and figure S4) show that for many objec-

tives a Gaussian assumption leads to information estimates

which are overly optimistic. This is most probably owing to
the independence assumption of sample mean and variance

which is implicitly imposed by a Gaussian approximation

and is not valid for the system in question.

3.2. Characterizing variability in a light-induced gene
expression system

Next, we study a light-switch gene expression system which

has been engineered in yeast [20]. The authors used a light

responsive module to initiate transcription by shining red

light on the yeast culture and to terminate transcription by

shining far-red light. They then proposed a control scheme to

regulate the mean amount of protein in the population. The

development of more sophisticated control schemes (for

example, to allow one to also control the protein variance)

requires a proper characterization of the sources of variability

in the system. To this end, our framework can be used to com-

pare the utility of different experiments, and ultimately to
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Figure 3. Comparison of the different experimental approaches. Ninety-five per cent confidence ellipses for all pairs of parameters are shown in the different panels.
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with a different scaling of the axes.
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design the experiments which are optimal for the characteriz-

ation of the different noise sources. We thus developed a

stochastic version of the model [20] which includes a stochastic

differential equation of the form equation (2.1) for the mRNA

production rate. This introduced four additional parameters

which were not identified in Milias-Argeitis et al. [20]. To

characterize uncertainty about these parameters, we chose

independent uniform prior distributions and computed the

expectation of the information (for a logarithmic parametriza-

tion), which is provided by the experiments reported in fig. 1

of Milias-Argeitis et al. [20] about each of the additional par-

ameters according to equations (2.5). Thereby, the remaining

parameters which were already identified in Milias-Argeitis

et al. [20] were fixed to their known values (see electronic sup-

plementary material, §S.3.1 and §S.3.2). The results are shown

in tables S2 and S3 in the electronic supplementary material.
Which experiment is best again depends on the objective. For

instance, the experiment where a red light pulse is applied at

the beginning and a far-red light pulse after 30 min is best for

identifying the protein production rate but worst for identify-

ing the mean reversion rate r of the mRNA production rate.

This is most probably owing to the fact that if the gene is

switched off, the mRNA production rate is set to zero and

the parameters describing this rate do not influence the

dynamics anymore.

Furthermore, our results show that even though the exper-

iments in fig. 1e of Milias-Argeitis et al. [20] were performed

over a shorter time and contain fewer measurements than the

experiments in fig. 1c of Milias-Argeitis et al. [20], they provide

much more information about the parameter r. This suggests

that experiments where the gene is expressed for short time

intervals with silent periods in between could allow one to
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determine r, and thus to test whether the mRNA production

rate can be assumed to be constant or whether a stochastic pro-

cess description as used in this paper is required. Our results in

the electronic supplementary material, §S.3.3 indicate that

indeed, contrary to other experiments, the variance measured

in the experiments in fig. 1e in Milias-Argeitis et al. [20]

cannot be explained very well by a model with constant

mRNA production.

Finally, we also employed our experimental design fra-

mework to search for experiments which carry high

information about r. The light-pulse pattern and measure-

ment times we determined with our method are shown in

figure 4. They lead to an experiment which carries close to

four times more information than any of the experiments in

Milias-Argeitis et al. [20] suggesting that our experimental

design framework can be a valuable tool for characterizing

variability in this system.
4. Discussion
While knowledge about biological mechanisms is constantly

growing, our understanding of the stochasticity of biological

systems and its influence on system dynamics remains rather

limited. Many different sources of variability may play a role

and neglecting any one of them may lead to over- or under-

estimating the effect of others. In the gene expression model,

for instance, one could use the methods of Friedman et al. [44]

to estimate the protein burst size and frequency from

measurements of the stationary protein distribution, under

the assumption that the mRNA production is the same for

all cells in the population. If, however, the data actually

come from a population with variable mRNA production

rate these estimates would be biased—potentially by more

than an order of magnitude (see electronic supplementary

material, §S.2.3). Allowing reaction rates to vary between

individuals in a cell population offers a way to incorporate

variability stemming from unknown factors and enables

model-based studies of heterogeneous cell populations. We

showed how the information about unknown parameters of
such models which is provided by means and variances of

measured populations can be approximated if the first four

moments and the parameter derivatives of the first two

moments of the underlying process can be computed. The

derived formulae are applicable as long as the measured

population is of sufficient size for the application of the cen-

tral limit theorem. This opens up the possibility to pose many

interesting questions: do the measurements contain enough

information to separate different noise sources? How much

information can be gained by measuring the variance in

addition to the mean? And most importantly: what is the

most informative experiment? By means of examples, we

demonstrated that unplanned experiments may not contain

enough information to identify the model parameters and

that designing experiments based on intuition alone may

not be sufficient. For instance, placing all the measurements

either very early or very late in the experiment turns out to

be better for identifying the mean reversion speed in our

examples (figures 1 and 4) but appears very unintuitive at

a first glance.

Our results (table 1 and figure 2; electronic supplemen-

tary material, figure S2) show that the optimal experiments

are highly dependent on the chosen objective. In some

cases, introducing a dual reporter yields high information,

in other cases perturbing the system with input stimuli is pre-

ferable. A study of the system using the experimental design

framework presented in this paper allows a comparison of

the different experimental approaches and enables one to

choose the approach which is most likely to be successful

for the given objective. The resulting experiments can in

turn be used to refine the model and to update the parameter

estimates, giving rise to an iterative procedure of successive

rounds of computations and experiments.

In the light-switch gene expression system, the computa-

tion of the information contents of the different experiments

shows that perturbing the system with different light-pulse

sequences can highlight different features of the system.

This suggests that well-chosen gene induction patterns may

allow one to uncover features of the system which remain

hidden in unplanned experiments. For instance, the electronic

supplementary material, figure S5 suggests that temporal

fluctuations in the mRNA production rate may play a role

for this system. Perturbing a system with light pulses to under-

stand the variability may seem to be limited to this specifically

engineered system. However, a similar strategy could also

be employed by exploiting naturally occurring biological

mechanisms. For example, in the study of Zechner et al. [3],

the authors studied gene expression in yeast in response to

osmotic pressure. Different salt concentrations led to different

residence times of the signalling molecule Hog1 in the nucleus,

and thereby created different input signals to the downstream

gene expression system. In that system, multiple subsequent

salt stresses, which can for instance be implemented using a

microfluidic device as in Uhlendorf et al. [41], could serve as

the equivalent of the multiple light pulses used in this paper

and might give further insights into the specific nature of

the system.
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