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Age-dependent partnering and
the HIV transmission chain:
a microsimulation analysis

Anna Bershteyn†, Daniel J. Klein† and Philip A. Eckhoff

Institute for Disease Modeling, 1555 132nd Avenue NE, Bellevue, WA 98005, USA

Efficient planning and evaluation of human immunodeficiency virus (HIV)

prevention programmes requires an understanding of what sustains the epi-

demic, including the mechanism by which HIV transmission keeps pace

with the ageing of the infected population. Recently, more detailed popu-

lation models have been developed which represent the epidemic with

sufficient detail to characterize the dynamics of ongoing transmission.

Here, we describe the structure and parameters of such a model, called

EMOD-HIV v. 0.7. We analyse the chains of transmission that allow the

HIV epidemic to propagate across age groups in this model. In order to pre-

vent the epidemic from dying out, the virus must find younger victims faster

than its extant victims age and die. The individuals who enable such trans-

mission events in EMOD-HIV v. 0.7 are higher concurrency, co-infected

males aged 26–29 and females aged 23–24. Prevention programmes that

target these populations could efficiently interrupt the mechanisms that

allow HIV to transmit at a pace that is faster than the progress of time.
1. Introduction
Pharmacological prophylaxis [1,2] and expanded treatment [3] were recently

added to the world’s human immunodeficiency virus (HIV) prevention toolbox.

Despite the optimism ignited by these findings, the immediate reach of these tools

in the generalized epidemic setting of sub-Saharan Africa is limited by funding

constraints and scale-up time from current programme capacity [4]. An affordable

and efficient strategy for interrupting transmission has yet to be established.

The difficulty of choosing a strategy for allocating transmission-blocking

interventions stems from an incomplete picture of the epidemiological drivers

of generalized HIV epidemics. Several detailed agent-based models have

been created to simulate generalized epidemics with heterogeneous risk

[5–9]. However, no model or trial has determined why the HIV epidemic has

become widespread in the general population in a subset of African countries:

whether the drivers are biological or behavioural, historical or still present,

immutable or open to intervention. This makes it difficult to predict which

strategies will succeed at interrupting transmission.

In the light of this urgent need for characterizing epidemic drivers, more

detailed models are being developed to explore the behavioural properties of

the HIV contact network and the biological properties of transmission. One

such model, documented here for the first time in peer-reviewed literature, is

called EMOD-HIV after the family of similarly structured models developed

by the Institute for Disease Modeling, Bellevue, WA.

The goal of the EMOD-HIV model is to compare a broad set of structural and

parametric modelling assumptions in order to identify a set of possible explana-

tions for the epidemic—whether they centre on behavioural drivers, biological

drivers or synergies between the two. Mapping this range of possible epidemic dri-

vers will help us identify the data required to narrow down the possibilities. It will

also allow for a range of predictions about the potential impact of interventions
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given present-day knowledge, thus helping to quantify the

structural uncertainty in model predictions.

The HIV Modelling Consortium has brought together

authors of a dozen different epidemiological models, in order

to perform joint modelling efforts in policy-relevant areas

and to investigate the sensitivity of the outcomes to model

assumptions. The first of these formal model comparisons

examined a dozen models’ estimates of the potential impact

of treatment as prevention [10], including results from

EMOD and other individual-based microsimulations [5–7].

Unlike other models, EMOD-HIV predicted both a high

cost and a greater potential impact of very early treatment as

a way to avert future HIV infections. The version of EMOD-

HIV used to produce these results (termed v. 0.7) made similar

assumptions to other models about HIV progression rates,

transmission rates and the effects of antiretroviral therapy

(ART). It differed primarily in the way that the transmission

network was constructed and HIV risk was distributed. We

hypothesize that the age-driven heterogeneities in partnership

assortativity distinguished EMOD-HIV by creating a relatively

young group of ‘key transmitters’. Early ART initiation

allowed for suppression of infectivity in these early years of

infection, but also led to higher programme costs because of

the many life-years of ART consumed by those who initiate

at young ages.

This difference in model outcomes is a salient example of

the importance of underlying epidemic drivers in population

models of HIV. Although all the models were able to

reproduce similar baseline trends such as prevalence and

incidence, they responded differently to an intervention

because different mechanisms were driving the simulated

epidemics.

To convey these drivers in EMOD-HIV v. 0.7, we first

describe the model in detail, with a complete parameter table

and descriptions of the model structure. We then explore how

these assumptions distribute transmission potential among the

simulated agents. After an in-depth look at the transmission

pathways of HIV, we identify the key transmission events

through which the epidemic is able to sustain itself in younger

age groups, and thus propagate more efficiently through transi-

tory and informal partnerships. We then determine the most

efficient subpopulations to target with transmission-blocking

interventions, in order to break transmission chains that main-

tain infections in these age groups. We conclude with a

hypothesis about ageing of the HIV epidemic in the face of

age-based assortativity, and discuss the possible sensitivities of

this outcome to model structure.
2. Methods
All simulations were performed using EMOD-HIV v. 0.7: a

detailed agent-based model of partnership formation, HIV trans-

mission and disease progression with and without treatment. A

detailed model description is provided in the electronic sup-

plementary material S1 in order to document the structural

assumptions of this model. This supplement also shows the

model’s fit to national-level data disaggregated by age, sex and

year. The key parametric assumptions are listed in the electronic

supplementary material S2.

Briefly, the components that are described include the overall

model implementation, the model’s structural assumptions, the

progression of a single simulation in time and our approach to

model calibration. The major structural assumptions include the
setting-specific demographics, individual properties, partnership

formation rules and rates, partnership properties, individual-

level properties, coital frequency and dilution assumptions,

disease progression, transmission rates and cofactors, and mor-

tality. A full mathematical description of the pair formation

algorithm (PFA) was published recently [11], and the supplement

includes a diagram and description of the algorithm.

The assumptions of EMOD-HIV v. 0.7 were not based on any

preconceived notion of epidemic drivers, but instead were

intended to construct a mechanistic model of HIV transmission

that leverages available data. The epidemic drivers analysed in

this paper were implicitly formed by the model assumptions

about individual-level heterogeneities, such as age, sex, concur-

rency levels, circumcision status, other sexually transmitted

infection (STI) status and so forth. Where possible, we used avail-

able data to parametrize individual properties, partnership

formation, HIV progression and HIV transmission. When data

were unavailable, conflicting or unreliable, we prioritized the cor-

responding parameters for calibration, choosing the parameter set

that best matched population-level epidemic trends.
3. Results and discussion
3.1. Distribution and properties of high transmitters
In the electronic supplementary material, we compare outputs

from EMOD-HIV with demographic and epidemiological

estimates of the population and HIV prevalence in South

Africa by age, sex and year. Despite agreement with other

models about population and prevalence in South Africa,

EMOD-HIV responds differently to interventions such as

rapid scale-up of ART [10]. This is hardly surprising: though

calibrated to match similar baseline trends, the different

models rely on different underlying epidemic mechanisms to

produce these trends. These mechanisms are embodied in

assumptions about the nature of the contact network (or other

form of mixing), heterogeneities among individuals (and their

change over time) and transmission rates.

Because of the lack of a preconceived hypothesis about

epidemic drivers, this analysis presents an opportunity to

explore the drivers that are implicitly formed by a mechanis-

tic model that implements several relevant individual-level

heterogeneities. These include concurrency, STI status, male

circumcision status and age to help define subpopulations

that experience different levels of HIV risk.

Other than age, all of these factors were assigned inde-

pendently of each other at birth. These ‘assigned’ properties

impact ‘derived’ properties such as concurrency status, part-

ner count, disease prognosis and transmission rate per

contact, which, in turn, determine the transmission potential

of individuals.

Age is a particularly interesting form of risk heterogeneity

because it changes over time for individuals, and because its

assignment of risk is indirect. Age determines the rate at

which an individual is recruited into transitory, informal

and marital partnerships, and therefore determines both

the frequency of partnership formation and the level of

assortativity with other age groups.

3.2. Effect of risk factors
We inspected the distribution of HIV transmission potential

among agents according to their properties. This analysis is

summarized in figure 1. In this analysis, individuals are stra-

tified according to the number of HIV transmissions caused
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Figure 1. Heterogeneity in HIV transmission potential among individuals in the EMOD-HIV model. (a) The distribution of the number of times an infected individual
transmits HIV. Faded x’s show individual simulation results, whereas o’s show the mean of 20 simulation results. The colours used to plot the number of non-
transmitters, single-transmitters, etc. are used for the same transmitter groups in subsequent panels. Next, transmitting couples are categorized based on static
properties: the transmitter’s concurrency ‘flags’ (marital, informal or transitory), STI status of the transmitter or recipient, sex of the transmitter and circumcision
status of a male transmitter or recipient. In (b), the proportions of transmitters and recipients who transmit zero, one, etc. times are shown as stacked bar charts,
whereas the proportions of zero, one, etc. transmitters who have the indicated property are shown as individual simulations (x’s) and means (o’s). Similarly, the
stacked area chart in (c) shows the proportion of each age group of transmitters and recipients who transmit zero, one, etc. times, whereas the curves show the age
distributions for zero-, one-, etc. transmitters, with faded lines representing single simulations and dark lines showing the mean. These are shown as a function of
the transmitter’s age, recipient’s age and transmitter’s age at the time that the transmitter was originally infected.
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by the individual within a single simulation. This allows

for an intuitive, objective measure of the ‘risk’ of transmitting

HIV. The number of lifetime HIV transmissions originating

from a single HIV-infected individual in EMOD-HIV ranges

from zero to more than a dozen. The number of transmis-

sions is well approximated by an exponential distribution,

with roughly double the number of non-transmitters when

compared with single-transmitters, double the number of

single-transmitters compared with double-transmitters, and

so forth (figure 1a).
Next, we examined the effect of concurrency ‘flags’

on transmission. Documented in the supplemental model

description, these static properties allow individuals in

the corresponding partnership type to acquire additional

partnerships of any type, up to a maximum of six simulta-

neous partnerships. This ‘flag’ is common for transitory-type

partnerships and rare for marital partnerships. The rate

at which this potential for concurrency is realized depends

on the PFA, which recruits younger individuals to tran-

sitory partnerships and older individuals to marital
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Figure 2. Comparison of age-mixing patterns used for model input, realized
as model output, and occurring during transmission of HIV. A MOPAD (a) is
used as input for the PFA forming each partnership type. On average, tran-
sitory relationships recruit the youngest individuals, create the smallest age
gap between partners and have the shortest durations, whereas marital part-
nerships recruit the oldest individuals, create the largest age gap between
partners (approx. 5 years) and have the longest durations. The age-mixing
pattern upon formation of these partnerships (b) is close to the MOPADs,
but with added noise reflecting the stochastic nature of the simulation.
The age pattern of couples at the time of HIV transmission (c) is older, as
HIV is transmitted after partnerships have formed. This age lag can also
be seen after averaging across the three types (d).
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partnerships, with the net effect that concurrency is higher in

younger individuals.

The effect of concurrency ‘flags’ on transmission is shown

in figure 1b in two ways: the proportion of people with

specific concurrency ‘flags’ who transmit once, twice, etc.

times during a simulation, and the proportion of single-,

double-, etc. transmitters who have specific concurrency

‘flags’. The same analysis was performed according to the

concurrency ‘flags’ of the recipient of infection.

As expected, high transmitters tend to be those who were

‘assigned’ concurrency flags and transmission-enhancing STIs.

For example, in the first type of analysis, individuals who

became infected and had no concurrency ‘flags’ did not transmit

the epidemic further in 62% of cases, and transmitted two or

more times in less than 10% of cases. Meanwhile, those with

all three concurrency ‘flags’ had zero forward transmissions in

23% of cases, and two or more forward transmissions in 49%

of cases. In the second analysis, 14% of non-transmitters were

assigned no concurrency flags, compared with 0.8% of those

transmitting five or more times (figure 1b). Conversely, 1.6%

of non-transmitters harboured all three concurrency flags,

compared with 11% of those transmitting five or more times.

Similarly, transmission-enhancing STIs were over 10-fold

less prevalent in non-transmitters (5.3%) than in 5þ transmit-

ters (57%). High transmitters were more likely to be male:

41% of non-transmitters were male, compared with 58% of

5þ transmitters. Circumcision, despite protecting against

60% of transmissions, exhibited little variation among the

different classes of transmitters, because the modelled effect

of circumcision was on acquisition rather than on trans-

mission, and thus had no impact on the transmission

potential of already infected males.

We also examined the proportion of female transmitters

who infected circumcised males, as a fraction of total

female transmitters in each class. Although circumcision

reduces acquisition rates, there was little difference in the

proportion of circumcised partners among female single-

transmitters versus 5þ transmitters. Similarly, the proportion

of recipients who had STIs or particular concurrency flags

varied little by the class of transmitters who infected these

recipients, because these attributes were implemented as

static flags without correlation between partner choice and

STI or circumcision status.

The absence of variability in the recipient’s risk factors as

a function of transmission count can be explained by the lack

of relationship assortativity by these risk factors in EMOD-

HIV. Individuals with STIs, high concurrency and other

risk factors had no increased probability of pairing with

other individuals with similar STIs, concurrency and so

forth. Owing to the paucity of data defining such assortativ-

ity properties, a range of assumptions about risk-based

assortativity could be explored. It is important to note, how-

ever, that, in a network-based model such as EMOD-HIV,

such assortativity does not arise naturally as a result of

heterogeneous HIV risk; it must be explicitly defined as a

pair formation rule in order to be observed in the resulting

HIV transmission chains.

Similar risk stratifications can be explored using derived

rather than assigned properties in the model. For example,

the number of recent or lifetime partnerships, though not

directly specified, are a direct consequence of assigned rules

about concurrency and rates of recruitment into PFAs.

In the electronic supplementary material, figure S6, the
number of transmissions coming from individuals with one,

two, three, four or five or more lifetime partners or recent

partners is shown, as well as the number of transmissions

coming from those infected by such individuals. Again,

because there is no assortativity by partner number, trans-

mission risk grows strongly with the transmitter’s partner

count, but the recipient’s transmission risk does not grow

with the transmitter’s partner count.

3.3. Effect of age
Age was the only ‘assigned’ property for which pair formation

obeyed assortativity rules, which were dictated by the data-

driven matrices of partnership age distributions (MOPADs).

As shown in figure 1c, high transmitters tended to be younger

at the time they caused transmissions. Owing to assortativity

by age, the partners they infected also tended to be younger.

Predictably, high transmitters were not only younger at the

time they transmitted to others, but also younger at their

time of infection, relative to low and non-transmitters. The pro-

portion of individuals of each age who transmitted a given

number of times is shown in the electronic supplementary

material, figure S1, and reveals a similar trend.

The MOPADs that dictate these age-mixing patterns are

shown in figure 2. The input MOPADs (figure 2a) are similar
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to the realized age pattern among relationships formed in the

model (figure 2b), except that the model output includes

some noise owing to stochastic fluctuations in the randomly

formed partnerships. This verifies that the PFA is able to

form partnerships according to the MOPADs. The age pat-

tern of transmitting couples at their time of transmission

(figure 2c) is, predictably, older than that of partnerships

upon formation, because significant time often elapses in a

partnership prior to transmission of HIV.

These patterns provide some initial insights into the ages at

which HIV transmission occurs in the heterosexual network.

To further our understanding of these patterns, we next explore

HIV transmission in the context of the overall network and the

age dynamics of the population.
3.4. Chains of transmission
The history of transmission can be seen as a tree, rooted in

one of more introductions of HIV into the population, grow-

ing forward in time when an individual infects another, and

branching when one transmitter infects multiple recipients.

This perspective allows us to further investigate the role of

age-based risk from both an individual-level perspective

and a simulation-wide transmission ‘tree’ perspective.
An individual can be viewed as a timeline of relationship

formation, infection and onward transmission, as shown in

figure 3a,c from the perspective of a male and female individ-

ual, respectively. In figure 3a, the male has an extra-transitory

flag (which 80% of individuals are given in the model), allow-

ing him to acquire additional partnerships while already

involved in one or more transitory partnerships. The female

in figure 3c has both the extra-transitory and the extra-

informal flag, a property shared by 24% of individuals in

the model. Both individuals’ numbers of lifetime partners

are relatively high, allowing us to see multiple forward

transmissions of HIV.

The relatively high partner counts are in part attribu-

table to the lack of marital partnership formation in these

two individuals. As discussed earlier, extramarital flags are

relatively rare and marriages are relatively long, reducing

the additional partnerships taken on by individuals after

marriage. (The risk of transmission in a discordant marriage,

however, is relatively high owing to its long duration and

lower rate of condom usage.)

Figure 3b,d shows the tree of transmissions that can be

traced back to the ‘root’ individual in figure 3a,c, respectively.

Note that eliminating infections from the root individual

would not necessarily have prevented all these individuals
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from becoming infected, as they could have been infected

later by a different individual—a superinfection event that

would have become a primary infection if the transmission

from the root had been blocked.

In figure 3b, it is striking that the ages at the time of

infection increase over time. This ‘ageing’ of the infection

can occur even with negative age gaps, if the time inter-

val between transmission events is greater than the age

gaps between partners. For example, if an individual is

infected at age 20 and transmits the infection 5 years later,

then the partner must be more than 5 years younger in

order to receive a ‘non-ageing’ infection. Examples of such

‘non-ageing’ transmissions can be seen in figure 3d.
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3.5. Non-ageing transmissions
From examples of transmission trees, we have shown how

non-ageing transmissions (in which the transmitter was

older than the recipient at their respective infection times)

maintain the epidemic in young age groups. What follows

is a quantitative characterization of these transmission events.

We begin by analysing the distribution of partnership age

gaps relative to the time intervals between infection and

onward transmission. Non-ageing transmission events require

a negative age gap (transmitter older than recipient) that is

greater than the time since infection of the transmitter. In a

scatter plot of time since infection versus age gap in figure 4a,

non-ageing transmissions lie below the diagonal line that

forms the black triangle. Overall, one-third of transmissions in

a simulation are ‘non-ageing’, falling inside the triangle.

Although the cloud of all transmissions is symmetric

about the horizontal axis, the subset of male-to-female trans-

missions (blue dots) is more likely to have a negative age

gap: 5% of male-to-female transmissions are non-ageing,

compared with 15% of female-to-male transmissions.

Age influences both the average partnership age gap and

the average time between transmissions. For example, the red

dots in figure 4a show transmissions from 20-year-old males,

and the green dots show transmissions from 30-year-old

males. Transmissions from the 30-year-old males land further

out along the horizontal axis, causing some of them to fall out-

side the non-ageing triangle, but they are also more dispersed

along the vertical axis, with a pronounced and sex-biased age

gap, enabling male-to-female transmissions to fall within the

non-ageing triangle.
3.6. The ‘tug-of-war’ of an ageing epidemic
As we have already discussed, younger individuals are

recruited more frequently by the transitory and informal

PFAs, leading to higher concurrency and higher rates of part-

ner turnover, and consequently shorter gaps of time between

transmissions. These MOPADs, however, tend to pair individ-

uals of similar age, whereas the marital MOPAD, recruiting

older individuals, creates the largest age gaps. This creates a

‘tug-of-war’ between two opposing effects: older individuals

form larger age gaps in partnerships, but also tend to exhibit

longer times between transmission events.

The outcome of the ‘tug-of-war’ is shown in figure 4b: the

proportion of forward transmissions that are non-ageing, as a

function of the age of the transmitter. This proportion is high-

est in 26-year-old males (blue curves) and in 21-year-old

females (red curves).
Non-ageing transmissions are overall more likely to come

from males than from females owing to the MOPAD-driven

sex bias in partner age gaps. Thus, HIV may infect a younger

individual when transmitting from a male to a female, but

the next female-to-male transmission event could negate

this non-ageing by infecting a new male who is older than

the original male in the chain. The long-term effect would

be a transmission chain that traces a zigzag, increasing in

age. To study the overall ageing of the epidemic in a trans-

mission chain, independent of sex biases in partner age, we

will now focus our discussion on non-ageing round trips

(NARTs).
3.7. Non-ageing round-trip transmissions
Round trips are defined as transmission chains from a male to

a female and back to another male, or from female to male

to another female. Note that the term ‘round trips’ refers to

infection returning to the sex of origin, not the individual
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of origin. Round trips are considered non-ageing if the first

individual’s age at infection is older than the third individ-

ual’s age at infection. The diagram in figure 5 illustrates a

possible male–female–male NART.

In this analysis, we exclude round trips in which the first

individual was seeded with HIV as part of the initialization

of the simulated epidemic, in order not to bias the analysis

by the chosen ages of the seed individuals. This excluded

1.5% of round-trip transmission chains from analysis, all of

which originated during the early epidemic.

We independently counted every round trip leading to a

unique third individual, even if the first one or two individ-

uals are the same. For example, if the second individual

in the round trip infects two people during the simulation,

the analysis would count two round trips beginning

with the same first and second individual, but ending in

different third individuals.

Figure 5a shows the total number of round trips in a simu-

lation as a function of the age of the first individual when

initially infected. Below these shaded areas, it shows the

subset of these that are non-ageing. Figure 5c shows the

same round trips and NARTs, but as a function of the first

individual’s age when transmitting to the second individual.

Intuitively, one may think that half of transmission

events must infect younger individuals in order to sustain an

epidemic. However, this is not the case for the simulated

HIV epidemic in EMOD-HIV. Overall, non-ageing trans-

missions constitute fewer than 40% of one-way transmissions

(figure 4b) and fewer than 30% of round trips beginning and

ending in the same sex (figure 5a,c).

The mechanism by which the epidemic is sustained under

these circumstances is illustrated in figure 3d. In this tree of

transmissions, a small number of non-ageing transmissions
give rise to a cascade of ageing transmissions. Each chain of

ageing transmissions has the potential to eventually age out

of the population, as in figure 3b, but is ‘rescued’ by another

non-ageing transmission, allowing the process to continue.

Because round trips start and end in individuals of the

same sex, the number of non-ageing male–female–male and

female–male–female round trips is approximately equal:

hence the equal areas under the blue and red curves in figure

5a and, similarly, in figure 5c.

Round trips that begin in males are more likely to begin in an

older individual, pass through a younger individual, and then

return to an older individual, as in the diagram in figure 5.

This explains why female–male–female round trips begin in

individuals who are younger when first infected (figure 5a)

and when transmitting (figure 5c) when compared with

male–female–male round trips.

For example, the greatest number of round trips begin with

females initially infected between ages 18 and 21 (figure 5a,

red-shaded area), and transmitting at age 24 (figure 5c, red-

shaded area). By contrast, the ages for which the greatest

number of male-initiated round trips begin are 23–25 years

at initial infection (figure 5a, blue-shaded area) and 27–29

years at transmission (figure 5c, blue-shaded area). These

age ranges, for their respective sexes, represent the optimal

window of time to intervene in order to prevent the initiation

of a round-trip transmission.

The optimal age to prevent an NART is slightly older

than the age for preventing round-trip transmission chains

overall, because the youngest individuals are unlikely to

find even younger individuals with whom to partner. The

greatest number of overall round trips begin in females

initially infected at age 23–24 (figure 5a, red lines), and trans-

mitting at age 24 (figure 5c, red lines). For males, this age
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interval for interrupting the greatest number of round trips

(ageing or not) is age 26 at infection (figure 5a, blue lines)

and age 29 at transmission (figure 5c, blue lines).

3.8. Using antiretroviral therapy to reduce non-ageing
round trips

From the standpoint of intervention cost-effectiveness, it may

be most helpful to know the number of NARTs initiated in a

given age group, per infectious person-year that fall within

that age group. This accounts for the population of a given

age group in the denominator of the calculation, in order to

measure the efficiency of providing a transmission-blocking

intervention for which cost scales with duration, such as

suppressive ART.

The number of initiators of NARTs of a given sex and age

at infection, per infectious (i.e. sexually active and HIV-

infected) person-year of that age and sex in a simulation is

shown in figure 5b. Similarly, the number of NARTs for

which the first transmission occurs at a given age and sex,

per infectious person-year at this age and sex, are shown in

figure 5d. Based on this analysis, the most efficient age

range for preventing NARTs in females is approximately

age 18–22, and in males is age 23–28.

The spike in NARTs per person-year in figure 5b, which

occurs only in a subset of the 20 simulation results shown,

is due to small numbers in the denominator of infected

person-years of a given age and sex. In EMOD-HIV v. 0.7,

it is rare for sexual debut, let alone infection, to occur as

early as age 14. When the number of person-years in the

denominator fluctuates near zero in the subset of stochastic

simulations, the resulting ratio fluctuates widely, although

the mean is small.

3.9. The evolving epidemic
The analysis in figure 5 combines all transmission events over

the course of an epidemic. However, the elements of this
calculation, including age structure of the infected population

and incidence rates across age groups, can vary over time. We

therefore performed this analysis for different time periods of

the simulation, shown in figure 6. As in figure 5b, spikes in the

number of NARTs per person-year are seen at early ages

owing to small numbers in the denominator of infected

person-years of a given age and sex.

In 1985–1995, the epidemic grows rapidly, spreading

from the initially infected subpopulation to a broader popu-

lation. Because incidence is overall higher, the incidence of

non-ageing transmission chains is also higher than in later

years. In 1995–2005, condom usage increases, especially in

transitory and informal partnerships, and the incidence rate

declines. The 2005–2015 interval is characterized by a gener-

alized, mature epidemic, with prevalence reaching its peak

and incidence declining.

Despite these changes, the age range that produces the

greatest number of NARTs remains relatively constant through-

out the epidemic: ages 18–22 in women and 23–28 in men. If

no major preventative programmes are rolled out, the model

predicts no change in this age range in the next decade.
4. Discussion
We have documented the structure and parameters of a

mechanistic individual-based model of heterosexual HIV

transmission, and analysed the heterogeneities in transmission

that result from our model assumptions. Characteristics such

as circumcision, STIs and concurrency capabilities influenced

transmission potential in intuitive ways.

Age, however, was a particularly interesting dimension

for heterogeneity because of its change over time, its link to

demographics and disease progression rates, and the complex

assortativity dictated by data about partnership formation.

Therefore, we chose an age-based analysis to best expose

the dynamics of HIV transmission that result from our

model assumptions.
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Our results indicate the existence of implicit hetero-

geneities produced by age structuring. When compared

with models that were calibrated to similar epidemic data

but lack age structure (and may or may not stratify the popu-

lation into risk groups), our age-structured model responded

differently to the hypothetical intervention of universal ART.

EMOD-HIV predicted a higher impact of very early treat-

ment (within 1 year of infection), but also a higher cost of

such a programme. The effect of treatment as prevention in

EMOD-HIV was not only a decline in incidence, but also

an increase in the age of infected individuals.

Based on the analysis of age-based heterogeneities pre-

sented here, we hypothesize that the early ART initiation

was highly effective because it permitted treatment initia-

tion at young enough ages to reach the key transmitters in

our model. Ongoing model comparison work through the

HIV Modelling Consortium will explore this hypothesis by

investigating the points of divergence between EMOD and

other models as a result of its assumptions.

We have provided an important starting point for this

analysis by documenting the assumptions of EMOD-HIV

and identifying the mechanism of epidemic propagation

that results from these assumptions. Having understood the

epidemic drivers that are created implicitly by the structure

of EMOD-HIV, we can now compare these with structurally

different models, to understand why models produce

disparate predictions about the HIV epidemic.

This analysis has focused on a baseline scenario with no

interventions such as ART, and the future projections of

this analysis are under the assumption of no large-scale roll-

out of preventative interventions over the coming decade.

While it is likely that future programmatic change and expan-

sion will influence the dynamics of the HIV epidemic, there is

considerable uncertainty as to the properties, scales and time

courses of these programmes. Exploration of the range of

these possible programmes and their impacts has been left

for a future study, because of the considerable scope of this

analysis. This limitation of the current analysis is important

to consider, however, when placing the current analysis in

the context of an expanded programme.

The analysis presented here is also limited to the stated

assumptions, such as the models of within-host progression

and infectivity, PFAs and concurrency, and demographics.

These were the assumptions used to produce results for

the model comparison published in 2012. However, these

assumptions are not the only ones that are consistent with

the known mechanisms and measurements of the epidemic,

nor are they the only modules available for EMOD-HIV.

Future work will explore the impact of changing PFAs,

within-host disease staging and transmission mechanisms.

For example, these is strong evidence that high viral load is

associated with both shorter survival time [12–14] and

increased transmission rate [15–17]. Like the majority of

models compared in the 2012 analysis, EMOD-HIV determines

per-contact transmission rate as a function of disease stage.

Although the duration of the latent stage is age-dependent,

there is no correlation between survival time and per-contact

transmission rate in the model. We hypothesize that adding

this correlation would reduce the epidemiological importance

of younger transmitters, because their long survival time

would be offset by lower per-contact transmission rates.

The long-term goal of EMOD is to map the range of poss-

ible epidemic drivers that are consistent with measurable
properties of the epidemic, but use different structural and

parametric model assumptions. This analysis is necessary to

identify strategies for targeting interventions, quantify the

uncertainty in programme impact, and plan future studies

that would best reduce these uncertainties.
5. Conclusion
Interrupting HIV transmission in the generalized epidemic

setting of sub-Saharan Africa will probably require scale-up

of HIV prevention/treatment programmes beyond their

current capacity.

In a systematic comparison with other models, EMOD-

HIV v. 0.7 predicted higher cost and higher impact of early

ART for preventing HIV transmission. We hypothesize that

this was driven by its structural assumptions, particularly

about age-based relationship formation rates and assortativity.

In EMOD-HIV, high transmitters are more likely to be

male, co-infected with an STI and able to form concurrent

partnerships. Through examples of simulated transmission

trees over time, we observed the importance of traversing

age gaps, either by rapid transmission over small age gaps

or by slower transmission over larger gaps. We analysed

the rates of non-ageing transmissions, observing a ‘tug-of-

war’ between younger individuals, who are more likely to

transmit rapidly after entering high-concurrency relation-

ships, and older individuals, who are more likely to form

partnerships with larger age gaps. In this ‘tug-of-war’, the

intermediate ages of 26 (for males) and 21 (for females) pro-

duced the highest proportion of non-ageing transmissions.

However, the sex asymmetry in partner age meant that the

epidemic could still ‘zigzag’ into older age groups by enter-

ing a younger individual when transmitting from a male to

a female, but negating this age jump when entering a still

older male in the next female-to-male transmission.

To circumvent the sex asymmetry in which male-to-

female transmissions are more likely to be non-ageing, we

analysed round-trip transmission chains, i.e. transmission

from a male to a female and back to another male, or from

a female to a male and back to another female. Again, the

‘tug-of-war’ created an intermediate age in which the highest

number of non-ageing transmission chains were observed.

We divided this count by the number of infectious person-

years in the same age group to calculate the rate that infected

individuals of a given age initiate NART transmissions.

We found that the maximum number of NARTs per

infected person-year were initiated by males aged 26–29

and females aged 23–24. The age range of these windows

of opportunity remained constant over the course of the

simulated epidemic. We hypothesize that these would be

the most efficient groups in which to initially provide a trans-

mission-blocking intervention, in order to minimize NARTs.

This is, however, only one possible hypothesis about drivers

of the HIV epidemic, constructed through the model assump-

tions that we have described. Ultimately, a range of plausible

assumptions and their underlying epidemic mechanisms

must be explored in order to quantify model uncertain-

ties, inspire research and ultimately plan more efficient

intervention strategies.
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