
rsif.royalsocietypublishing.org
Research
Cite this article: Rozhnova G, Metcalf CJE,

Grenfell BT. 2013 Characterizing the dynamics

of rubella relative to measles: the role of

stochasticity. J R Soc Interface 10: 20130643.

http://dx.doi.org/10.1098/rsif.2013.0643
Received: 17 July 2013

Accepted: 20 August 2013
Subject Areas:
biomathematics, computational biology,

biophysics

Keywords:
rubella and measles, stochasticity, recurrent

epidemics, childhood diseases, spectral analysis
Author for correspondence:
Ganna Rozhnova

e-mail: ganna.rozhnova@manchester.ac.uk
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2013.0643 or

via http://rsif.royalsocietypublishing.org.
& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Characterizing the dynamics of rubella
relative to measles: the role of
stochasticity

Ganna Rozhnova1,2, C. Jessica E. Metcalf3 and Bryan T. Grenfell4,5

1Theoretical Physics Division, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
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Rubella is a completely immunizing and mild infection in children. Understand-

ing its behaviour is of considerable public health importance because of

congenital rubella syndrome, which results from infection with rubella during

early pregnancy and may entail a variety of birth defects. The recurrent

dynamics of rubella are relatively poorly resolved, and appear to show consider-

able diversity globally. Here, we investigate the behaviour of a stochastic

seasonally forced susceptible–infected–recovered model to characterize the

determinants of these dynamics and illustrate patterns by comparison with

measles. We perform a systematic analysis of spectra of stochastic fluctuations

around stable attractors of the corresponding deterministic model and compare

them with spectra from full stochastic simulations in large populations. This

approach allows us to quantify the effects of demographic stochasticity and to

give a coherent picture of measles and rubella dynamics, explaining essential

differences in the recurrent patterns exhibited by these diseases. We discuss

the implications of our findings in the context of vaccination and changing

birth rates as well as the persistence of these two childhood infections.
1. Introduction
Rubella is a completely immunizing, directly transmitted viral infection, generally

presenting as a mild and potentially even asymptomatic childhood disease [1].

As a result, rubella tends to be underreported, and its recurrent dynamics are

fairly poorly characterized. Nevertheless, because infection during early preg-

nancy may cause spontaneous abortion or congenital rubella syndrome (CRS),

which may entail a variety of birth defects [2], understanding the dynamics of

rubella is of considerable public health importance. Dynamical features of rubella

may alter the CRS burden via their effects on the average age of infection. Episodic

dynamics may increase the average age of infection, as the intervals between

larger outbreaks provide the opportunity for individuals to age into later age

classes [3,4]. Likewise, local extinction dynamics can allow individuals to

remain susceptible as they age into their childbearing years [5,6], resulting in

the potential for a considerable CRS burden once rubella is reintroduced.

Empirically, rubella seems to be linked to either (i) annual dynamics, as in

Mexico [7], Peru [5] or parts of Africa [8,9]; (ii) spiky dynamics, as in Canada

[10]; and (iii) some hint at multi-annual regularity, as in Japan [11], England

and Wales [12], and various European countries [13]. In figure 1, we show

three time series that represent the range of observed rubella dynamics. Spectral

analyses of time series are particularly useful for understanding temporal pat-

terns exhibited by different data [14,15]. The characteristic feature of rubella

spectra is an annual peak at 1 year and a multi-annual peak at 5–6 years exhib-

ited by all data in figure 1. Rubella also seems to experience regular fade-outs [7],
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Figure 1. Time series of the case reports of rubella and the corresponding spectrum in (a,d ) the Hidalgo district, Mexico; (b,e) Japan and (c,f ) the province Ontario,
Canada. To resolve low-frequency periodicities, these time series include short intervals of vaccination (years 1998 – 2001 for Mexico and 1989 – 1992 for Japan).
Before the spectrum was taken, each series was normalized, setting the mean to zero and the variance to unity. The smooth spectrum (thick black lines) was
obtained from the raw spectrum (thin grey lines) using two passes of a three-point moving average of the spectral ordinates. The dashed black lines are
90% confidence limits on the smooth spectrum. The confidence intervals represent the uncertainly in the observations. The method of computation of the spectra
and confidence limits is described in detail in [14, ch. 4].
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which is of great epidemiological importance, particularly in

the context of increasing global control efforts. The propensity

for stochastic extinction is characterized by the critical commu-

nity size (CCS), below which the infection tends to go extinct

in epidemic troughs. Analyses of dynamics in Mexico and

Peru suggest a CCS of over 106 for rubella [5,7].

Measles provides a natural comparison for rubella, as it is

another viral childhood disease with a very similar life cycle

(particularly, direct transmission). In addition, it is perhaps

the most extensively studied of the childhood infections,

and its dynamics are very well understood [3,16–27]. Before

the start of vaccination in England and Wales, both bien-

nial dynamics (e.g. in London) and annual dynamics (e.g. in

Liverpool) were observed [18,20,24,26]. The underlying

driver of this variability has been identified as differences in

birth rate, combined with annual seasonality in transmission

driven by school term times [18,19,26,28]. In sub-Saharan

Africa, chaotic dynamics have been shown to result from a

very high birth rate, combined with extreme seasonal forcing

[21]. Both highly irregular dynamics [16,20] (e.g. following

vaccination in England and Wales) and triennial dynamics

[29] (e.g. in Baltimore between 1928 and 1935) have also

been reported. The spectral analyses of measles data exhibit-

ing the described dynamics can be found now in the

standard textbook [12]. The CCS of measles is rather smaller

than that of rubella, estimated by Bjørnstad et al. [18] to be

between 3 � 105 and 5 � 105 for England and Wales.

The two key ingredients underlying models of childhood

diseases such as rubella and measles are (i) seasonality in trans-

mission owing to schooling patterns and (ii) demographic

stochasticity arising from the discrete nature of population

[26,28,30,31]. Although various approaches have been used

to understand the dynamics of rubella [10,32–34], most of

the analyses have been essentially deterministic. Keeling et al.
[32] considered a term-time forced susceptible–infected–

recovered (SIR) model and compared its dynamics with rubella
data in Copenhagen. From this, they concluded that the

dynamics of rubella may result from switching between two

cyclic attractors (annual and multi-annual limit cycles) of the

deterministic model. Although the deterministic analysis they

present is comprehensive, there is only a limited amount of

evidence to suggest that the switching will occur in contexts

that include demographic stochasticity. In particular, in this

study [32], stochasticity was introduced into the model as

multiplicative noise of arbitrary amplitude instead of using,

for instance, standard stochastic simulations based on the

Gillespie algorithm (for unforced models) [35] and its exten-

sions (for seasonally forced models) [36]. Such simulations

produce exact realizations of the stochastic process, whose

full dynamics is given by the solution of the master equa-

tion as described in §2.2. For large populations, the master

equation is approximated by the deterministic model with

additive noise [37,38].

Bauch & Earn [10] studied a term-time forced suscep-

tible–exposed–infected–recovered model and showed that

frequencies obtained from the linear perturbation analysis

of the deterministic model are in good agreement with pos-

itions of the peaks in spectra of data records of various

childhood infections. The application of this approach to

rubella data for Canada predicted two distinct peaks at

1 and 5.1 years, close to what we see in figure 1f. With the

exception of [10], where stochastic simulations for Canada

parameter values were also performed, there has been no

work on rubella using a fully stochastic approach dealing

with demographic stochasticity.

Here, we use this approach to characterize different rubella

dynamics and illustrate patterns by comparison with measles.

To this end, we perform the theoretical analysis of spectra

of stochastic fluctuations around stable attractors of a season-

ally forced deterministic SIR model and compare them with

spectra obtained from full stochastic simulations based on

a modification [36] of the algorithm by Gillespie [35]. The
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Figure 2. Schematic plot of a power spectrum of stochastic fluctuations for
infectives, P( f ). The quantities used in the comparative analysis of different
spectra are the dominant period (the inverse of the main peak’s frequency),
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mathematical techniques used in this study have been devel-

oped for ecological and epidemiological models [37,39,40]

and applied to model temporal patterns of measles and pertus-

sis [38,41,42]. The picture that emerges to explain rubella

dynamics is close to that proposed in reference [10] but goes

beyond it, because our analysis allows us to obtain the

full structure of a spectrum (as opposed to the deterministic

analysis of Bauch & Earn [10] where only frequencies of the spec-

tral peaks could be predicted). By introducing key spectral

statistics (described below), we systematically investigate how

the dominant period, amplitude and coherence of stochastic

fluctuations change across a broad range of epidemiological par-

ameters. We then discuss the implications of our analysis in the

context of changing birth rates and vaccination levels, as well as

their implications for the persistence of measles and rubella.
amplification (total area under the power spectrum curve) and coherence
(ratio of the shaded area to the total area).

ce
10:20130643
2. Methods
2.1. Model
The individual-based stochastic model, we explore in this paper,

follows a standard seasonally forced SIR structure [12,43]. At

any time t, it consists of a discrete population of constant size N
divided into compartments of susceptible, S(t), infected, I(t)
and recovered, R(t), individuals. Susceptible individuals become

infected (and infectious) at a frequency-dependent rate b(t)I(t)/N,

where b(t) is a seasonally varying transmission rate. For childhood

diseases, b(t) captures an increase in the number of contacts

between school children during terms with respect to holidays

[28]. Both term-time and sinusoidal forcing have been used to

model these changes [10,20,32,37,38,44,45]. Previous studies

[10,20] have shown that the type of forcing is not crucial

for the essential dynamic structure (the bifurcation diagram) of

the sinusoidally and term-time forced models if the seasonal

forcing amplitude is adjusted appropriately. Specifically, for

rubella, the same dynamics is obtained if the term-time forcing

amplitude is 2.7 times larger than the sinusoidal forcing ampli-

tude (see §3.2.1). We therefore focus on a sinusoidally forced

b(t) ¼ b0(1 þ e cos 2pt), where b0 is the average transmission

rate and e is the amplitude of seasonal forcing, and confirm later

that the dynamic temporal patterns observed in the simulations

of the term-time forced model are similar. Infected individuals

recover at constant rate n (1/n is the average infectious period).

As is common in the mathematical epidemiology literature

[12,43], we restrict our attention to the case when birth and death

rates m (1/m is the average lifetime) are equal, and thus the total

population size N is constant. This allows us to reduce the

number of independent variables to two and define the state of

the system as s ¼ fS(t), I(t)g. From b0, n and m, we can express

one of the most important epidemiological parameters [12,43],

the basic reproductive ratio R0 ¼ b0/(n þ m). R0 is the average

number of secondary cases caused by one infectious individual

introduced into a fully susceptible population; R0 will be used

throughout the text.

2.2. Theoretical analysis
Two main approaches can be used to investigate the dynamics of

the stochastic model formulated above. An analytical approach

starts from the formulation of the model as a master equation

for the probability of finding the system in state s with S(t) suscep-

tibles and I(t) infectives at time t [46–49]. Much understanding

about the stochastic dynamics relevant for recurrent epidemics

can be gained if this equation is expanded in the powers of

1=
ffiffiffiffi

N
p

[46]. An extensive discussion of this approach has already

been given at length in the literature in the context of epide-

mic models, and we refer the reader to [37,38,50] for formal
details. Here, we describe only the aspects that are important for

this paper. In essence, the method involves the substitutions

SðtÞ ¼ NsðtÞ þ
ffiffiffiffi

N
p

xSðtÞ and IðtÞ ¼ NiðtÞ þ
ffiffiffiffi

N
p

xIðtÞ in the master

equation that can then be expanded to obtain two systems of

equations [46]. At the leading order, the expansion gives rise to

a set of ordinary differential equations for the mean variables,

i.e. the fractions (densities) of susceptible and infected individuals,

sðtÞ and iðtÞ. These equations are the same as the standard deter-

ministic SIR model with sinusoidal forcing [26]. At next-to-leading

order, it gives rise to a set of stochastic differential equations for

fluctuations of susceptible, xS(t), and infected, xI(t), individuals

about the mean behaviour given by the deterministic model

[46]. From these equations, we are able to analytically calculate

power spectra of fluctuations for susceptibles, PS( f ), and infec-

tives, PI( f ), as functions of frequency f. We are interested in the

endemic behaviour of the model, so the spectra correspond to

the fluctuations about stable attractors of the deterministic model

which for e ¼ 0 and e . 0 are the endemic fixed point [50] and

stable limit cycles with a period that is an integer multiple of a

year [37,38], respectively. Further technical details relating to

analytical calculations are given in the electronic supplementary

material. Throughout the text, we will use the words theoretical
and analytical interchangeably to refer to spectra computed as

explained in this section.

In our analysis, we will focus on a spectrum PI( f ), which, for

the sake of simplicity, will be denoted as P( f ), and its three charac-

teristics, namely dominant period, amplification and coherence [50,51]

(figure 2). We define the dominant period of stochastic fluctuations

as the inverse frequency of the maximum of the highest stochastic

peak. We also compute the total spectral power that equals the area

under a power spectrum curve. This quantity defines the ability of

the system to sustain oscillations of all frequencies and shall be

referred to as the amplification of stochastic fluctuations. Finally,

the coherence is defined as the ratio of spectral power lying

within 10% from the dominant period and the total spectral

power. It serves to measure how well-structured oscillations

about the dominant period are.

As a rule, a theoretical spectrum of unforced epidemic

models (e ¼ 0) has one peak [41,50], whereas it can have several

peaks of different amplitudes for e . 0 [37,38]. Away from bifur-

cation points of the deterministic model, one of them is usually

much higher than the others. We are not aware of any work

assessing the relevance of secondary peaks to recurrent epidemic

behaviour seen in the real data. The highest peak, however, has

been shown to be important in understanding the interepidemic

periods observed in time series of pertussis and measles

[38,41,42], and is therefore used in the definition of a spectrum’s

characteristics in this paper.
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2.3. Simulations
We simulate the model using an extension of Gillespie’s

algorithm [35,36] which produces stochastic trajectories for

fS(t), I(t)g in continuous time. These are processed further to

compute numerical spectra and test them against the theoretical

prediction for P( f ). The simulation length is 500 years, and the

first 50 years are discarded. In numerical work, a time series

for fluctuations xI(t) is obtained as xIðtÞ ¼ [IðtÞ �NiðtÞ]=
ffiffiffiffi

N
p

;

where iðtÞ is the fraction of infectives averaged over many realiz-

ations of the model. From xI(t), we compute a spectrum P( f )

using the discrete Fourier transform. For e . 0, we also present

a spectrum of the entire ‘signal’ (scaled by population size N ),

I(t), which will be referred to as a full spectrum. By definition,

P( f ) includes only stochastic peaks, whereas the full spectrum

includes both deterministic peaks corresponding to a limit

cycle and stochastic peaks corresponding to fluctuations about

it. For either of these spectra, we will use the words simulated
and numerical interchangeably to emphasize that they were com-

puted using the method described in this section. For each set of

parameters, 250 simulations are recorded, and all final spectra are

averaged over those where no extinctions occurred during 500

years. The initial conditions for susceptibles and infectives are

chosen from S(0) ¼ round(scN ) þ U(0,30) and I(0) ¼ round(ic-

N ) þ U(0,30), where round(.) is rounding to the nearest integer,

U is the uniform distribution and sc and ic is the fixed point (for

e ¼ 0) or a random point on the limit cycle (for e . 0). The

random number generators used in the Gillespie algorithm are

initialized with unrepeated seeds which guarantees that the simu-

lated stochastic trajectories are all different. We have also checked

that with this choice of initial conditions all simulations converge

to a stationary state within 50 years (transient period) or die out

and so are not taken into consideration.

Both the theoretical analysis (described in §2.2) and the

numerical analysis based on simulations (described in §2.3)

are suitable for the investigation of temporal patterns in large

populations, such as those corresponding to the time series in

figure 1, and both have advantages and limitations. The simu-

lations can be quite easily implemented but progressively

become computationally intensive as the population size, N,

increases. In the type of systematic study performed here, the

numerical analysis would become very time-consuming for popu-

lations larger than one million individuals. However, it is exactly

for such large populations that the approximate analytical spec-

trum, computed from the expansion in the inverse population

size, is expected to predict the dynamics very well [38]. In the

case when the seasonality is absent, the analytical spectrum is

given by a simple formula (see the electronic supplementary

material) which can be readily used to compute spectral character-

istics. For the seasonally forced model, the spectrum can be

written as an analytical formula too [37,38]; however, the calcu-

lation is more evolved and has to be done numerically, because

no closed-form expression for a limit cycle can be found. The

theoretical analysis also helps to understand the mechanisms

behind the dynamics such as the change in temporal patterns

when approaching bifurcation points of the deterministic model,

that are not always clear from the spectral analysis of simulated

time series. The limitations of the theory are that (i) it does not

allow us to compute the spectrum of fluctuations when the deter-

ministic model has several stable coexisting limit cycles for a given

set of parameters, and (ii) in the vicinity of bifurcations the perfect

agreement with simulations is achieved for populations larger

than one million. Both cases will be discussed in detail in the

next section.

The time-series data presented in figure 1 correspond to large

populations (Hidalgo’s population size was about 2.1 million [7],

and the other time series are likely to correspond to even larger

populations). In the Results section, we perform the systematic

comparison of recurrent patterns for a large range of realistic
values of the infectious period and the basic reproductive

ratios. For the sake of computational speed, we focus on the

population of one million of individuals and we demonstrate

how the spectral analysis can be used to predict the dynamics

in even larger populations.
3. Results
We compare the numerical and theoretical predictions for

different spectra, and the three measures we have conven-

tionally chosen to characterize them. In the beginning, we

explore a large region of parameter space and later discuss

the main findings for rubella and measles.
3.1. No seasonal forcing: e ¼ 0
3.1.1. Theoretical and simulation results
We first restrict our attention to the case when there is no sea-

sonality, for which an explicit expression for the analytical

spectrum can be found (see the electronic supplementary

material). The deterministic SIR model has only one endemic

fixed point provided R0 . 1 [12,43]. Figure 3 shows analytical

and numerical results for the dominant period of stochas-

tic fluctuations about it as well as their amplification and

coherence for a range of basic reproductive ratios, R0, and

infectious periods, 1/n. Analytical spectra can be obtained

for any R0 . 1. In practice, long numerical simulations

may not be feasible for all parameter combinations where

R0 . 1, because the system experiences frequent extinctions

when the infectious period is short. The results are presented

in figure 3, and the domain where this happens is shown in

grey. In what follows, the line separating the grey region

from the rest of the parameter space will be called the extinc-

tion boundary. We would like to stress that this concept is

used for our convenience and is different from the concept

of the CCS. In particular, its location depends on the popu-

lation size, the length of time series and the number of runs

used in simulations. For populations smaller/larger than

one million individuals and simulation length larger/smaller

than 500 years, the grey region would be extended/abridged,

and the extinction boundary would be shifted. In the region

of parameter space amenable to the exploration of the long-

term dynamics of the model, we observe that the structure

of the spectra uncovered by the theory is clearly visible in

the simulations too. Small systematic deviations between

the two predictions are expected and occur close to the extinc-

tion boundary. These are due to the non-Gaussian character

of the fluctuations which cannot be explained within the

theory used in this study (see the electronic supplementary

material). To achieve the perfect agreement with the simu-

lations within this region, the theoretical analysis would

require considering the next order corrections of the order
ffiffiffiffi

N
p

to the macroscopic equations. The deviations are

mainly reflected in the broadening of a spectrum and appear-

ance of secondary peaks. As a consequence, amplification

(figure 3e) is slightly increased (coherence, figure 3f, is corres-

pondingly decreased) in the simulations in the area adjacent

to the grey region. In addition to these changes, an increase of

the dominant period of stochastic fluctuations in the simu-

lated spectra may be observed [37,51]. This effect will be

discussed in more detail in the next section where seasonality
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is included as, without seasonality, it is only barely apparent

(compare figure 3a and d ).
3.1.2. Implications for rubella and measles dynamics
The structure discovered in figure 3 allows us to derive an

initial picture of the dynamics of rubella relative to measles.

Based on the estimates of parameters typical of these diseases

for the pre-vaccination era [7,10,12,18,26,32], we superimpose

their approximate locations in all the panels of figure 3. The

rubella estimates are for Mexico and Canada, and the measles

estimates are for England and Wales. For rubella, the infec-

tious period, 1/n, is about 18 days and R0 ranges from

3.4 to 9.5 in Mexico (figure 1a) [7]. R0 in the Canadian pro-

vince Ontario ranges from 4.6 to 6.5 where the lower bound

is the estimate for the years shown in figure 1c [10]. For

measles, we have taken the most frequently used values

for large cities (e.g. London) in England and Wales before

vaccination, 1/n about 2 weeks and R0 around 18.

The results so far ignore the seasonality of transmission

rate and so are insufficient to explain the patterns of measles

in which it plays a pivotal role [18,26,52]. However, they have

important implications for understanding the dynamics of

rubella. As we shall confirm shortly, for e . 0, the spectrum

of stochastic fluctuations for this disease is close in form to

that obtained for the unforced model that correctly predicts

a dominant period associated with the stochastic peak of

about 5–6 years (figure 3a,d ) as seen from the comparison

with the left peaks in the data spectra (figure 1). This

period is similar to the natural period of small amplitude per-

turbations from the endemic fixed point recovered in the

purely deterministic setting [32].

Our analysis of the stochastic model allows us to quantify

other features of fluctuations using amplification and coher-

ence (figure 3b,c,e,f ). For rubella, the amplification is large

indicating that the epidemic patterns of the unforced model
represent high amplitude oscillations. High coherence

suggests that only a few of the frequencies involved in the sto-

chastic fluctuations account for most of the variance of time

series. This peculiar type of dynamics sets rubella close to

the extinction boundary. Large coherent multi-annual epi-

demics with troughs deeper than in the region with higher

R0 cause regular extinctions. In §3.2, we discuss how these

descriptions of the stochastic dynamics of rubella are chan-

ged in the presence of seasonality and compare it with the

dynamics of measles.
3.2. Seasonal forcing: e . 0
3.2.1. Theoretical and simulation results
For e . 0, the spectra are associated with stochastic fluctu-

ations about stable attractors of the deterministic model, i.e.

stable limit cycles of a period in multiples of a year [37,38].

The seasonally forced deterministic SIR model has a complex

bifurcation diagram with regimes where multiple limit cycles

may coexist [44,45]. For high birth rates and high seasonality,

regions corresponding to chaotic dynamics are found [21].

Across most of the range of parameter space we explore

here, either annual or biennial limit cycles are present. We

performed the theoretical analysis for these attractors for

different parameters and found that the agreement between

the theory and simulations is, in general, excellent. Neverthe-

less, small discrepancies are again expected if a limit cycle is

not sufficiently stable and/or a population is small. In par-

ticular, this happens near the extinction boundary, and is

therefore relevant for rubella.

For parameters reflecting rubella, an annual limit cycle is

found in the deterministic model. To illustrate the effects of

population size on simulated spectra, we show in figure 4

an analytical spectrum about this attractor (dashed red line)

and full numerical spectra for N ¼ 107 (solid green line)

and N ¼ 106 (solid black line). For the larger population
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size (figure 4a), the simulated spectrum exhibits two types of

peaks (solid green line). There is a dominant annual peak

(corresponding to the deterministic annual cycle) and a sub-

dominant broad multi-annual peak (corresponding to

stochastic fluctuations about it). The latter is indistinguish-

able from the theoretical spectrum (dashed red and solid

green lines coincide, deviating only for values correspond-

ing to frequencies of around 1 year). The derivation of

an approximate theoretical spectrum (dashed red curve)

from the expansion in powers of 1=
ffiffiffiffi

N
p

suggests that the

stochastic fluctuations, xI(t), are Gaussian (kxIðtÞl ¼ 0), see

the electronic supplementary material. This allows us to rep-

resent the full spectrum of IðtÞ ¼ NiðtÞ þ
ffiffiffiffi

N
p

xIðtÞ as the sum

of two parts: a deterministic part that scales as N2 and a sto-

chastic part that scales as ð
ffiffiffiffi

N
p
Þ2. The full spectra in our

analysis are normalized (divided) by N as we mention in

§2.3. Therefore, for large populations where there is a perfect

agreement between the analytical and simulated spectra as in

figure 4a, the amplitude of the deterministic peak is pro-

portional to N, and the amplitude of the stochastic peak is

independent of N.

This scaling is captured even for smaller populations

where the fluctuations become non-Gaussian. For N ¼ 106,

the peak at 1 year becomes subdominant (see the solid

black line in figure 4b). This indicates that the contribution

of an annual component in the time series decreases with

decreasing N. As for fluctuations beyond the annual com-

ponent, at least two stochastic peaks at 5.8 and 2.9 years

can be clearly seen (solid black line). Although the theory

does not capture them in full, the agreement is still good

and, more importantly, the systematic qualitative changes

can be predicted. For small populations, the dominant

period of fluctuations in simulations is slightly increased

and their variance is distributed over a larger range of

frequencies with respect to theoretical predictions [37]. This

is compatible with a general observation of the increased sto-

chasticity and therefore much more irregular dynamics

in small populations [24,53]. We would like to point out that

the discussed discrepancies are not attributed to sample size

effects (the number of runs used to compute the spectrum).

The latter may lead to discrepancies only for parameters

at the very border with the black line (see figure S1 in the

electronic supplementary material). The example, we pre-

sented here, was for R0 ¼ 4, which is two points away from
the extinction boundary. Simulations for larger R0 show smal-

ler deviations from analytical calculations even for populations

as small as N ¼ 106 (see figure S2 in the electronic supple-

mentary material). As mentioned before, we expect these

results to be robust to the form of seasonal forcing. This is

confirmed in figure S3 of the electronic supplementary mate-

rial which shows that the simulated spectra from figure 4 are

reproduced by the term-time forced model at a 2.7 larger

forcing amplitude.

Another situation which the analytical theory cannot fully

account for is stochastic switching between different attrac-

tors of the deterministic model [20,32]. The computation of

an analytical spectrum about a limit cycle requires the knowl-

edge of its geometric orbit (see electronic supplementary

material). In the sinusoidally forced SIR model, several

stable attractors coexist in the regions of small R0 and 1/n

[44], and spectra of stochastic fluctuations about each

of them can be obtained separately [37]. The theoretical

analysis, however, does not allow us to predict which of

the attractors will be observed in simulations and what

their relative contribution to the total stochastic dynamics

is. Previous analysis of the stochastic dynamics of measles

and pertussis showed that the only attractors seen in simu-

lations of the seasonally forced SIR model (and other

related models of infectious diseases) are annual and biennial

cycles [37,38,41]. The stochastic switching was observed

to happen exclusively between these attractors and only

for measles. This result is, however, of limited value to us

because it is restricted to particular parameter choices, and

so we cannot assume that the switching does not happen in

the broader span of the parameter space.

Spectra from simulations contain complete information

about the frequency distribution of oscillations and are thus

helpful to identify switching between attractors through the

presence of unexpected peaks. Figure 5 shows simulation

results for the dominant period of stochastic fluctuations,

amplification and coherence for two values of seasonality e

and N ¼ 106. In addition to these quantities, we compute

the dominant period in the full spectrum that includes both

stochastic and deterministic peaks.

To examine the effect of seasonality on stochastic

fluctuations, figure 5a–f can be directly compared with

figure 3a– f for the unforced model. As e increases, the

(grey) domain with frequent extinctions is extended and
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approaches the measles parameters. For most values of R0

and 1/n, we have explored (the coloured region) the

dynamics of the stochastic model are associated with fluctu-

ations about only few attractors. First, the biennial cycle is

found inside the region of increased coherence and amplifica-

tion in figure 5b,c,e,f which includes measles and is absent in

figure 3b,c,e,f. The dominant period in the full spectrum of

time series demonstrating such a behaviour is at 2 years

(figure 5h). Second, stochastic switching between annual

and triennial cycles is detected in a small region relevant

for measles with low values of R0, see an unexpected increase

of amplification in figure 5e around R0 ¼ 10. The spectra here

have a dominant annual peak (figure 5h) and a subdominant

triennial peak (figure 5d ). The amplification of oscillations

associated with the latter is, however, much higher than

what we would expect to see for fluctuations around an

annual cycle (figure 5b). In figure 6, we show the full spec-

trum and a typical time series corresponding to the

switching between the annual and triennial cycles. Third, in

the rest of the (coloured) region that includes rubella,

the spectra are similar to those of the unforced model. The

dynamics of the stochastic model here corresponds to

fluctuations about an annual cycle and we discuss it first.
3.2.2. Implications for rubella and measles dynamics
From figure 5a,d, we see that for relatively small basic repro-

ductive ratios, typical of rubella, the seasonality does not

affect the dominant period of stochastic fluctuations which

continues to be centred at about 5–6 years. The amplification

(coherence) is only slightly increased (decreased) as e

increases (figure 5b,c,e,f ). The full spectra of rubella resemble

that of figure 3 with a sharp peak at 1 year and a broad

multi-annual peak.

For future discussion of the implications of vaccination

and decline or increase in birth rates, it is useful to investigate

how the spectra of rubella change with R0. Keeping the

amplitude of seasonal forcing and infectious period of rubella

fixed and increasing R0, we expect the period of stochastic

fluctuations as well as their amplification to decrease. This

is seen from figure 5 and also illustrated in figure 7a where

the full spectra for parameters close to rubella estimates are

shown. The relative contribution of multi-annual and

annual frequency components in model time series can be

read from the same figure. For small R0, the fluctuations

are large, and the multi-annual peak is dominant but for

larger R0, it becomes subdominant, and the annual peak is

enhanced. The increase of e (as well as the increase of
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population size as discussed before in the text accompanying

figure 4) results in the enhancement of the deterministic

peak too (compare figure 5g and h), but does not change

the dominant period of fluctuations significantly.

For measles, there are major changes in the behaviour

as both coherence and amplification increase drastically for

e . 0, see the newly appeared oval-shaped regions near

measles parameters in figure 5b,c,e,f. To demonstrate that

this phenomenon indicates the appearance of a biennial

cycle in simulations we show in figure 7b the full spectra

for fixed infectious period, 1/n ¼ 16 days, and a range of

R0 [ [22,29]. These values of 1/n and R0 are slightly higher

than the commonly used estimates for measles in England

and Wales, for example, 1/n ¼ 13 days and R0 ¼ 18 for

London before vaccination. The same qualitative dynamics

is observed for lower values if the simulation length is shorter

than 500 years (results not shown). For R0 ¼ 22, the spectra

are typical of fluctuations about an annual limit cycle with

a deterministic peak at 1 year and a broad stochastic peak

near 2 years. If R0 is increased further, then the fluctuations

around an annual cycle become macroscopic (the stochastic

peak at 2 years becomes much higher) smoothly turning into

a biennial limit cycle. This transition corresponds to a period

doubling bifurcation in the deterministic model. A strong bien-

nial behaviour with a dominant peak at 2 years and a

secondary harmonic at 1 year is observed for example, for

R0¼ 26. Finally, for even larger R0, we see a transition from
biennial to an annual cycle again. The set of transitions seen

in figure 7b is typical of measles and have been observed in

related models of infections dynamics via analytical and

numerical studies in other research [20,37,38,45,54,55].

The seasonality would act to change the picture in

figure 7b in the following way. From the comparison of

figure 5g,h, the region of parameter space where such a be-

haviour is seen is expected to get larger with increasing e;

in particular, for e . 0.1, the period doubling transition is

induced for values of R0 much smaller than in figure 7b.

Previous analysis of measles data from England and

Wales and the USA has shown that transitions in the

dynamics due to an increase or decline of birth rates as

well as the introduction of vaccination are associated with

transition between annual and biennial limit cycles [20].

Using a simple mapping from changes in vaccination and

birth rates to effective changes in R0 introduced in reference

[20], our results are consistent with this view. For large

communities with very high birth rates (high R0) such as

Liverpool before vaccination, US cities in the period after

the Great Depression or cities in developing countries, we

would expect to be in the regime with an annual cycle

[19,20,23,56]. Other large cities with smaller birth rates such

as London are in the regime with a biennial cycle [26]. The

corresponding spectrum with narrow and sharp peaks at 2

and 1 years has been the main reason of more regular and

thus more predictable patterns of measles epidemics in
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large cities. The vaccination introduced in UK in 1968 low-

ered R0 and induced a transition from the biennial to the

annual cycle with large stochastic fluctuations. Our analysis

thus offers an insight into the factors responsible for the

shift from regular epidemics of measles before vaccination

to less irregular in the vaccine era [16].

The last finding deserving a further comment concerns

the switching between an annual and triennial cycles found

for moderate values of R0 (figures 5e and 6). This behaviour

may be responsible for the triennial cycles observed in Balti-

more and other US cities during the Great Depression [29]

but more thorough analysis is required to confirm this.
4. Discussion
In this paper, we have investigated the behaviour of the sto-

chastic seasonally forced SIR model based on the spectra of

long time series for a large range of basic reproductive

ratios and infectious periods. For relatively low values of R0

relevant for rubella, the model predicts spectra with a

stochastic multi-annual peak at about 5–6 years and a deter-

ministic annual peak. Both peaks are observed in the spectra

of rubella data (figure 1). The multi-annual peak stays largely

unchanged under the introduction of seasonality (figures 3

and 5a,d ) or population size (figure 4) which explains its

presence in time series from different locations.

Using the complementary measures, coherence and

amplification, we further studied how the structure of

stochastic fluctuations in the model changes with R0. By defi-

nition of these measures (§2), it is not possible to estimate

them from a single (data) time series such as shown in

figure 1. We therefore cannot compare our model’s predic-

tions for these measures to the data directly. However, it is

still possible to match the data and model’s full spectra (i.e.

not only the positions of the stochastic and deterministic

peaks but also their heights) given the information about

the rate of reporting and the population size. We did this

for the Mexico time series (see figure S4 in the electronic sup-

plementary material) and obtained a very good agreement

between the model and the data. For the Canada and Japan

time series we lack the aforementioned information, so

these analyses yield the full spectra with correct positions

of the peaks (as discussed and shown in §3.2.2) but their
heights can vary depending on the reporting rate and

population size used in the model.

A visual inspection of simulated time series demonstrates

intriguing behaviour emerging from the interaction between

stochasticity and a deterministic annual cycle. Figure 8

shows typical time series for the unforced (red dashed line)

and seasonally forced (blue solid line) cases. If e ¼ 0, then

the epidemic patterns represent multi-annual coherent oscil-

lations. As e is increased, we find qualitatively different

dynamics all of which correspond to spectra with a multi-

annual and an annual peak. Figure 8a shows an example of

annual epidemics of alternating amplitudes modulated by

an oscillation of a long period corresponding to the period

of stochastic multi-annual fluctuations. This dynamics is

qualitatively similar to the multi-annual regularity observed,

for example, for rubella in Japan (figure 1). We also find

very large outbreaks followed by outbreaks of much lower

amplitude as in figure 8b. Such a behaviour may be respon-

sible for the spiky dynamics observed in, for example,

Canada (figure 1). Note that the spikes in the data could

also arise from spatial effects such as local extinction of

the disease followed by reintroduction from another region.

However, as we do not possess more resolved data, it

is impossible to reach a final conclusion with regards to

this issue.

The patterns of rubella incidence in large populations are

in contrast with those of measles. For the latter, the spectra

are characterized by sharp and narrow peaks at 1 and 2

years (as opposed to the broad multi-annual peak and a

narrow peak at 1 year observed for rubella) and thus corre-

spond to much more regular dynamics. The transitions in

measles behaviour owing to vaccination or change in birth

rates are associated with transitions between the annual

and biennial limit cycles of the deterministic model. In

future work, it would be interesting to study stochastic

measles dynamics for higher levels of seasonal forcing that

correspond to chaos in the deterministic model [21].

Both measles and rubella are found to be close to the

extinction boundary, and increasing the amplitude of seaso-

nal forcing only extends the region of parameter space with

frequent extinctions. Figure 9 illustrates typical stochastic

trajectories from simulation in the susceptible–infected plane

from which the spectra were computed. Interestingly, these

patterns suggest that the mechanism accounting for high

extinction probability is different for rubella and measles. For



(a) (b)5000

4000

3000

2000

1000

0
4 5 6 7

S(t) (×105) S(t) (×104)

I(
t)

1.6 1.8 2.0 2.2 2.4

Figure 9. Typical stochastic trajectories from simulation (blue solid lines) shown in the susceptible – infected plane. The red line is the deterministic annual cycle in
(a) and the biennial cycle in (b). For the parameters used in this figure, many simulations go extinct quite fast, for illustration purposes we have chosen the ones
which lasted for 500 years. Parameters: N ¼ 106, e ¼ 0.05, m ¼ 0.02 1 y21, (a) R0 ¼ 5, 1/n ¼ 18 days (close to rubella estimates), (b) R0 ¼ 19, 1/n ¼ 12
days (close to measles estimates).

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130643

10
rubella, extinction occurs as a consequence of large stochastic

fluctuations about a small (and globally less stable) annual

limit cycle (figure 9a). For measles, extinctions are mainly

due to the shape of a large (and globally more stable) biennial

limit cycle, from which the system can be driven to extinction

by even relatively small fluctuations (figure 9b).

We can use the framework developed to predict the effect

on persistence of an effective reduction in R0 by vaccination

or declining birth rates for rubella and measles. For measles

in the biennial regime, either an increase or a decrease of R0

can lead to fluctuations around an annual cycle (rather than

around a biennial cycle) that could result in lower extinction

rates and thus higher persistence. For rubella, a reduction in

R0 will lead to larger and more coherent oscillations that

would unambiguously result in higher extinction probabil-

ities, and thus lower persistence. Both these outcomes merit

serious consideration in a public health context: vaccination

against measles can make local elimination less likely [21],

whereas vaccination against rubella is likely to increase

local extinction, allowing the build-up of susceptible individ-

uals in later age classes [5,7], potentially leading to an

increase in the burden of CRS.

These conclusions point to a need for theoretical develop-

ments towards uncovering the mechanisms of stochastic

extinctions in small populations based on the analysis of epi-

demic models (a thorough overview of studies in this area

with the aim of understanding the persistence of measles is

given in the recent work by Conlan et al. [57]). In the mathemati-

cal framework, we adopted in this paper, the approach to

computation of the distribution of extinction times in an

unforced stochastic epidemic model was proposed some time

ago [58,59]. The disease persistence in stochastic epidemic

models can also be studied using the so-called Wentzel–

Kramers–Brillouin (WKB) approximation, but the method is

only applicable to low-dimensional and unforced models

[60,61]. Nevertheless, no analytical progress can be made

along the same lines for the seasonally forced model we use

here. We are aware of only one study [62] that addressed extinc-

tion probabilities in the periodic context using theoretical

methods, but the method of Bacar & Ait Dads [62] has a limit-

ation because it applies to the large population limit only. The

development of the approaches to compute the time to
extinction in seasonally forced models will be therefore a sub-

ject of further research.

Our focus has been on measles and rubella; however, the

broad span of parameter space explored means that our

results may shed light on the dynamics of other diseases

whose dynamics can be described by a simple SIR forma-

lism with seasonal forcing, for example, pertussis [31,41].

Although infection with pertussis does not confer permanent

immunity, the SIR model has been shown to capture the

qualitative patterns to some extent [41]. Taking the pertussis

parameters before vaccination that are well established

in independent data sources ([10,12]; 1/n ¼ 22 days and

R0 ¼ 17 for London and Ontario, Canada) from figure 5,

we see that for pertussis the dominant period of stochastic

fluctuations is 2–3 years. These periods are in agreement

with the documented interepidemic periods [10,41]. We

also find that the coherence of fluctuations is very low,

which is compatible with the famously irregular dynamics

of pertussis. The decrease of R0 due to vaccination would

act to increase the dominant period and coherence which

also agrees with the observation of the shift to more regular

dynamics in the vaccine era [16].

To conclude, in this paper, we used a stochastic framework

to explain the recurrent dynamics of rubella, particularly in

comparison with measles. Our analysis revealed that while

both rubella and measles are relatively close to their extinc-

tion boundary, the reasons for this are very different. Finally,

our analysis showed that, for rubella, reducing R0 by vacci-

nating or a declining birth rate unambiguously result in

higher extinction probabilities, whereas, for measles, outcomes

can be more complicated; and both these facts have public

health implications.
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