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We propose a simple approach, based on the minimization of the total (entropic

plus unfolding) energy of a two-state system, to describe the unfolding of multi-

domain macromolecules (proteins, silks, polysaccharides, nanopolymers).

The model is fully analytical and enlightens the role of the different energe-

tic components regulating the unfolding evolution. As an explicit example,

we compare the analytical results with a titin atomic force microscopy

stretch-induced unfolding experiment showing the ability of the model to

quantitatively reproduce the experimental behaviour. In the thermodynamic

limit, the sawtooth force–elongation unfolding curve degenerates to a constant

force unfolding plateau.
1. Introduction
The past decade has shown a significant theoretical and experimental effort in

the analysis of the thermomechanical behaviour of macromolecular materials

such as muscle tissues [1], spider silks [2,3], polymers and biopolymers [4],

polysoaps [5,6] and silks in general [7]. A common property of these materials

[2,4,8–10] is that their macroscopic history-dependent, dissipative response is

the result of complex evolutions of ‘semicrystalline’ microstructures. These

are constituted by flexible (polymeric or protein) macromolecules reinforced

by strong and stiff crystals (e.g. in the form of fillers or b-sheets [11,12]), under-

going typical hard–soft transitions owing to the unravelling of hard crystal

domains into soft unfolded entropic domains. The deduction of predictive

models describing the mechanical behaviour of macromolecular materials, con-

necting the macroscale response with the mesoscale behaviour, is crucial not

only for the description of the fundamental polymeric and biopolymeric exist-

ing materials, but also in the perspective of the design of new bioinspired or

reconstructed biological materials. As a consequence, an intense experimental,

numerical and theoretical effort has been recently devoted in this field [11].

From an experimental point of view, a great impulse in the comprehension

of the behaviour of these materials has been induced by new experimental

techniques [13], such as atomic force microscopy (AFM) [14], laser optical twee-

zers [15], magnetic tweezers and single-molecule fluorescence techniques. The

typical experiment is a mechanically induced unfolding of a macromolecule

composed of n unravelling domains, such as a polymeric polypeptide, dextran

[16], silks [7], proteins (see [14] for titin and [17] for fibrinogen), DNA/RNA

strands [18].

From a theoretical point of view, the thermomechanical behaviour of

multi-domain proteins has been investigated following different approaches:

molecular dynamics (MD), off lattice models, all atom Monte Carlo approaches

(see [19]), phenomenological approaches, statistical mechanics energy landscape

analyses, with funnelling [20] and inherent structure models [21]. MD theories

[19] have been restricted by the computational effort required to describe the

unfolding of such large macromolecules at the AFM loading time scale. On the

other hand, the statistical approaches for the discrete chain have been essentially

based on numerical techniques, whereas analytical results have been obtained

only in the thermodynamic limit hypothesis that hides the crucial role of finite

size and discreteness of the unfolding phenomenon.
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Figure 1. Scheme of the energetic decomposition of the external work into
unfolding (dissipated) energy Qi, i ¼ 1,2,3,4 and elastic stored energy Fe

(dashed region) for a typical unfolding force – elongation curve (continuous line)
reproduced from [14]. Dashed lines represent approximating worm-like chain
curves each characterized by a different contour length Lc(i), i ¼ 1, . . . , 4; lc
represents the (fixed) contour length increase at each unfolding event.
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Schematically, we may describe a typical stretch-induced

unfolding (figure 1) of a multi-domain macromolecule as

follows [22]. At small elongations, the stiffness is principally

regulated by the tertiary structure elasticity. Under increasing

stretching, the force–elongation diagram shows periodic dis-

continuities resulting from (first-order) hard–soft transitions

(owing to the secondary structure in the case of proteins

where b-sheet unfolding is observed or to cross-link breakage

in polymeric networks). These transitions have a main role

in the energetics of the chain unfoldings owing to the two fol-

lowing effects: first, there is the enthalpic contribution of the

transition itself (debonding energy), then there is an entropic

contribution associated with the variation of the microstructure,

leading to increased contour lengths of the chains. In the final

stage, leading to the material failure, the behaviour is regulated

by the entropic hardening of the fully unfolded macromolecules

(primary structure).

To fix the ideas, in figure 1, we schematically show a typi-

cal AFM single-molecule stretching experiment reproduced

from [14] on an engineering reconstructed macromolecule.

The sawtooth force–length diagram can be described as a

stick–slip dynamical evolution in a wiggly energy landscape,

characterized by multiple energy wells, each corresponding

to a given microstructure configuration. Thus, for growing

assigned end-to-end length (see [23]), the chain alternates

‘slow’ (intrabasin) steps in energy wells at fixed folded/

unfolded configuration, followed by ‘fast’ (interbasins) tran-

sitions corresponding to the unfolding of (typically single)

crystals. These transitions are signalled by the periodic loca-

lized force drops induced by the entropy jumps owing to

the creation of new free monomers. As a result, we observe

hysteresis cycles (figure 1) with no permanent deformations

resembling the pseudo-elastic hysteresis well known in

metal alloys such as shape memory alloys (see [24]) or in

rubber elasticity, owing to the polymeric network damage,

known as the Mullins effect [25].

The MD approach in [23], based on the inherent structure

formalism, clarifies that the observed unfolding is regulated

by three main time scales: loading time tload, intrabasin

relaxation time tintra and interbasin transition time tinter.

Our theoretical model can be applied to the diffuse case

when the following time-scale separation hypothesis can

be assumed:

tintra � tload � tinter: ð1:1Þ
In this time-scale regime [23], unfolding results as an alter-

nated sequence of purely elastic, intrabasin, stick evolutions

and purely dissipative, interbasin, slip transitions, localized at

fixed unfolding length thresholds.

In the case of AFM-induced unfolding, the non-dissipative
hypothesis of the intrabasin evolution is supported by the

observation [15,26] that during the (slip) evolution at fixed

folded/unfolded configuration, the behaviour is fully revers-

ible, thus indicating that the system relaxes to the local energy

minimum. On the other hand, the fully dissipative hypothesis
of the ‘fast’ (stick) interbasin transitions results from the

observations (figure 1) that at the AFM loading time scale

the b-sheet unfolding events are (mainly) localized at fixed

macromolecule end-to-end lengths.

We remark that the time-scale separation (1.1) has been

successfully adopted in other stick–slip evolutions associated

with abrupt microstructure transitions in multi-valley energy

landscapes at ‘low loading rates’ and ‘low temperature

regimes’ such as depinning or nucleation of new defects, dis-

locations and Frank–Read sources in metal plasticity (see

[24]), and Barkhausen jumps in ferromagnetism [27]. It is

important to observe that under different time-scale regimes

(see again [23]), e.g. tinter � tload, the system can show very

different behaviours, with cooperative elastic transitions

and no dissipation as observed in other protein unfolding

experiments [28].

By energy conservation (Gibbs equation), under our

hypothesis (1.1), the external work (see [24] for a theoretical

discussion) can be decomposed as follows. By focusing

again on the AFM experiment in figure 1, suppose that we

begin stretching the macromolecule from its natural state.

The macromolecule follows elastically the first equilibrium

path (O–A in figure 1) with the external work W accumulated

as elastic energy Fe (DW ¼ DFe). At the first b-sheet unfold-

ing (path O–B)—here approximated as instantaneous with

no external work W—there is an internal energy discontinu-

ity [jFj]1 (area O–A–B) that by energy conservation equals

the unfolding energy Q1 of the first hard domain. Similar con-

siderations can be extended to the next elastic and dissipative

steps, so that the total dissipation is Q ¼
P

Qi ¼
P

[jFj]i.

Based on previous considerations and inspired by the

model in [2,29], where the authors describe the hysteresis of

filled polymers and spider silks, here we propose an energetic

approach and describe the unfolding macromolecule as a

two-state material. Similarly, a two-state energetic approach

was proposed in [30] to describe the helix! coil transition

of polypeptide chains regulating the damage of multi-block

copolymers. In this work, we obtained an analytic solution

in the thermodynamic limit of a large number of breakable

links. Recently [31] a statistical mechanics approach for a

discrete two-well finite size chain has been proposed des-

cribing the force–extension diagrams of polymeric chains

under assigned force (soft device) or end-to-end length

(hard device). In particular, numerical results let us describe

the sawtooth behaviour observed in a hard device.

In the field of protein mechanics, on the basis of the approach

proposed in [30], an important step in the comprehension of the

energy competition between the unfolding and entropic energy

terms, has been delivered in [32]. In this paper, the author

models the unfolding of a biomacromolecule as a chain com-

posed of folded and unfolded domains, both elastic with

Gaussian type response, combined with an Ising-type unfold-

ing energy. The resulting MD simulation well describes the
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unfolding effect in a protein macromolecule, whereas analytical

results are obtained only in the thermodynamic limit of many

folded domains [32].

More recently, in [33], a statistical mechanics-based model

for the stretching of titin proteins has been proposed, consider-

ing also the influence of the AFM loading device. A simple

Ising model, neglecting the elasticity of both folded and

unfolded domains in protein macromolecules, was instead

proposed in [34] to describe the statistics of unfolding events.

The described competition between the entropic energy of

the unfolded fraction and the b-sheet unfolding energy has

been analysed in [35,36] via Monte Carlo simulations combin-

ing a worm-like chain (WLC) with a two-state bell-type model

for the unfolding. Finally, we recall the fully phenomenological

continuum approaches recently proposed in [37,38] where the

authors show the possibility of describing the protein unfold-

ing as an energy minimization of a continuum system with a

non-convex internal energy. In particular in [37], based on

the general approach of [24,39] for the description of the mech-

anical behaviour of bistable discrete chains, the authors

obtain an interesting characterization of an optimality con-

dition of the number of b-sheet domains with respect to the

toughness of the macromolecule.

The aim of this work is to obtain a fully analytical model,

resulting from the energetic analysis and time-scale decompo-

sition discussed previously, represented by a two-state lattice,

describing the stretch-induced unfolding of macromolecules

and the corresponding energy decomposition into stored and

‘dissipated’ energy. Interestingly, the analysis of this discrete

bi-stable chain shows the existence of a fundamental, exper-

imentally measurable, non-dimensional parameter j, defined

in (3.8), representing the ratio of the elastic and unfolding

energy of the single folded domains, that regulates the dissipa-

tion and the unfolding thresholds of each folded/unfolded

phase configuration. The model is also extended to describe

the possibility of the existence of a hierarchy of variable unfold-

ing energies of the different folded domains. As we show, the

effective distribution of unfolding energies can be deduced on

the basis of the previously described energetic analysis, using

the experimental force–elongation diagrams. Notably, after

performing such an analysis for different macromolecule

experimental curves, we obtain simple phenomenological

linear dissipation energy distributions. The predictivity of the

proposed model relies on the new theoretical (MD and all

atom simulations) and experimental techniques permitting the

independent evaluation of the main dimensional parameter j

[40–42] and possibly its inhomogeneity and rate-dependent

expression [36].

Aimed at the deduction of a three-dimensional continuum

extension for biological tissues constituted by networks of

modular macromolecules [43], we also deduce the thermodyn-

amic limit of the proposed discrete model. The main advantage

of our theoretical approach is that the behaviour of the single

chain also in the continuum limit is regulated by the exper-

imentally measurable parameter j that fully characterizes the

unfolding behaviour of the macromolecule: unfolding force,

initial unfolding stretch, stretch for unfolding saturation.

Finally, as an explicit example, we focus on the AFM exper-

iments of titin unfolding. It is important to point out that such

experiments often show rate-dependent effects, because at

the AFM loading time scale the b-sheet unfolding transitions

represent out of equilibrium events (e.g. the analysis per-

formed by extending the Kramer reaction theory in [44,45] or
the MD analysis in [23]). Here, aimed again to the deduction

of a fully analytical approach, following [11,23,36,46], we

take care of the described rate dependence by considering

effective, rate-dependent unfolding energies.
2. Energetic assumptions
Because in macromolecules the hard crystal unfolding is typi-

cally an all-or-none transition, as confirmed also from the

size of periodicity of the experimental unfolding lengths [14]

in the case of titin, we model the molecule as a discrete lattice

of n two-state (rigid-folded/entropic-unfolded) links (see the

scheme in figure 1). The folded/unfolded state of the chain is

assigned by a set of internal variables xi, i ¼ 1, . . . , n, such

that xi ¼ 0 (xi ¼ 1) denotes the folded (unfolded) state of the

ith domain. Thus, in particular, nu ¼
Pn

i¼1 xi is the number

of unfolded elements and nf ¼ n 2 nu is the number of

folded elements.

As in the case of freely jointed chain or WLC models [47],

we characterize the behaviour of each unfolded link through

its contour length lc and end-to-end length l, with a free energy

density (energy per unit length) we ¼ we(h), where h:¼ l/lc

represents a strain measure. We assume then the limit

extensibility condition limh! 1we(h) ¼1.

Consider first the entropic energy of the unfolded frac-

tion. By neglecting non-local interactions (weak interaction

hypothesis), it is possible to show that the total elastic

energy Fe ¼
Pn

i¼1 xil
c
i weðli=lci Þ can be simply expressed as

Fe ¼ LcweðhÞ: ð2:1Þ

Here,

h ¼ hðL; nuÞ ¼
L

LcðnuÞ

is the strain in the unfolded domain,

L ¼
X

i

xili

is (by neglecting the extension of the folded domains) the

total end-to-end length, and

Lc ¼ LcðnuÞ ¼ L0 þ nulc ð2:2Þ

is the total contour length of the chain. In (2.2), L0 denotes the

‘initial’ (virgin) contour length of the unfolded domain.

Indeed, at equilibrium, by neglecting the elastic energy of

the (rigid) folded domains, the total elastic energy is given by

Fe ¼
Pn

i¼1 xil
i
cweðli/licÞ, where lic and li are the (possibly vari-

able) contour length and end-to-end length of the ith link

in the unfolded state (xi ¼ 1). Under an equilibrium hypo-

thesis, we have a constant force F for all unfolded links,

i.e. licdweðli=licÞ/dli ¼ F. Thus, for a convex energy density

(monotonic derivative dwe/dl), such as WLC or FLC, the

strain is homogeneous in all unfolded elements,

i.e. hi ¼ li/lic ¼ h ¼ L/Lc, for all i ¼ 1, . . . , n with xi ¼ 1.

Thus, we have Fe ¼
P

licw
eðhÞ ¼ Lcw

eðL/LcÞ.
Consider now the configurational energy associated with

the different folded/unfolded states. Following [30,32], here

we consider an Ising-type transition energy

Ftr ¼ �
Xn

i¼1

ðQ� JÞð1� xiÞ � J
Xn�1

i¼1

ð1� xiÞð1� xiþ1Þ

¼ �Qðn� nuÞ þ Jnbf
;
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depending on the internal variables xi and the number nbf
of

contiguous folded blocks in the folded/unfolded configur-

ation. Here, Q is the unfolding energy for a single domain

and J is a penalizing ‘interfacial’ energy term (measuring

the loss of internal energy owing to the unbind terminal

hydrogen bonds of each contiguous folded domain [30]).

To get the total energy Ftot ¼ �kBT ln½ pðL; nu; nbf
Þ� (where

T is the temperature and kB is the Boltzmann constant), we

have to know the probability pðL; nu;nbf
Þ of a given configur-

ation of the chain with a microstructure corresponding to

nu and nbf
and end-to-end length L. In particular, we have

pðL;nu;nbf
Þ ¼ Vðnu;nbf

ÞpeðL;nuÞptrðnu;nbf
Þ, where Vðnu;nbf

Þ
represents the number of sequences with assigned nu and

nbf
, pe(L,nu) � exp(2Fe(L,nu)/kBT ) represents the probability

of attaining a length L at given nu and ptrðnu;nbf
Þ �

expð�ðFtrðnuÞ/kBTÞÞ is the probability of a state with assigned

nu. So, we obtain Ftot ¼ FeðL;nuÞ þFtrðnuÞ � TSðnu;nbf
Þ;

where Sðnu; nbf
Þ ¼ kB lnVðnu; nbf

Þ represents a mixing

entropy component.

Observe that the coupling energy term J penalizes the multi-

plicity of folded blocks, whereas the mixing entropy term

induces multi-domain configurations. In the following, we

assume, as in [30], that the penalizing term J dominates this

effect, so that we always consider single folded domain configur-

ations (thus we assume nbf
¼ 1: di-block approximation). This

hypothesis is supported by the MD simulations [22] showing

an unfolding strategy with always one single connected internal

unfolded domain inside two boundary-folded domains.

Under these hypotheses, we obtain the simple expression

of the total energy

Ftot ¼ FeðL;nuÞ þ nuQþ const: ð2:3Þ

We remark that to avoid the introduced di-block approxi-

mation, not always experimentally verified, one needs to

evaluate the partition function [32,33] and only numerical

results in the discrete model can be obtained. Moreover,

stochastic processes considering fluctuations in both the

unfolding forces [48] and the unfolding lengths are possible

extensions of the proposed model. In addition, these extensions

require the applications of numerical approaches.
3. Energy minimization
Consider the WLC force–length relation proposed in [49]

F
kBT
¼ 1

4Lp

2h� h2

ð1� hÞ2
þ h

 !
ð3:1Þ

corresponding to an energy density

weðhÞ ¼
kBT
4Lp

h2

1� h
þ 2h2

� �
: ð3:2Þ

Thus, using (2.1), the adimensionalized total entropic energy

of the unfolded fraction can be written as

�Fe :¼ Fe

kBT
¼ 1

4Lp

h2

1� h
þ 2h2

� �
LcðnuÞ: ð3:3Þ

In order to obtain analytical solutions, we consider the

following simplified expression of the WLC energy density:

weðhÞ ¼
kBT
4Lp

h2

1� h

� �
: ð3:4Þ
Observe that this approximation keeps the same asympto-

tic behaviour as l! lc of the WLC model in (3.3). Figure 2

shows (in a log scale, stressing the differences at low values

of the force) that, while for low forces (F , 1021 pN) the

introduced approximation is significant (when compared

with the approximation in [49]), for larger forces the approxi-

mation is of the same order (actually approximating better

than [49] the WLC expression) as the one proposed by [49].

Because in the low force regime the elasticity is mainly regu-

lated by the PEVK and tertiary structure elasticity (see [50,22]

for details), this approximation appears inessential in both

the qualitative and the quantitative analysis of the behaviour

during the large-force unfolding regime of interest in this

paper. Moreover, we remark that the approximation (3.1)

has been shown to be inefficient in the low force regime in

[51], where the authors introduce a Mooney–Rivlin-type

correction to the WLC constitutive law.

Thus, using (2.1) and (2.2), the total elastic energy is

Feðh;nuÞ ¼
kBT
4Lp

h2

1� h
LcðnuÞ;

and, correspondingly, the total force–deformation relation is

Fðh;nuÞ ¼
kBT
4Lp

2h� h2

ð1� hÞ2
: ð3:5Þ

Finally, according to (2.3), the total energy is

Ftot ¼
kBT
4Lp

h2

1� h
LcðnuÞ þQnu: ð3:6Þ

We follow a Griffith-like approach [52], minimizing

the total unfolding (fracture) energy plus elastic (entropic)

energy, and based on (1.1) we assume that the observed

solutions are the global minima of Ftot in (3.6).

The first important step is to justify the experimental obser-

vation that the hard crystals unfold one at a time, resulting in a

constant increase of the contour length (see [14]). To obtain this

result, we begin by evaluating the solution of the equations

Ftot(L, nu þ m) 2 Ftot(L, nu) ¼ 0 and get the intersection

lengths L ¼ L̂ðnu,mÞ (figure 3). The searched result follows by



5Q

4Q

3Q

2Q

Q

nu=1 nu=2 nu=3 nu=4
F

to
t

L

Lu (1)

L
Ÿ

(1,1)

L
Ÿ

(1,2) L
Ÿ

(2,1)

L
Ÿ

(2,2) L
Ÿ

(3,1)
L
Ÿ

(1,3)

L
Ÿ

(1,4) L
Ÿ

(2,3) L
Ÿ

(3,2)
L
Ÿ

(4,1)

Lu (2) Lu (3) Lu (4)

Figure 3. Scheme of the energy minimization: with bold line we represent
stable (global energy minimum) solutions.

c fd
O

b

FEDCB

A

G

a
e

300

200

100

0 100 150 20050
L (nm)

F
(p

N
)

0 1 2 3 4 5 6

Figure 4. Unfolding behaviour for a system of n ¼ 6 initial folded domains.
Here, we considered the parameters: lo ¼ 58 nm, lc ¼ 28.43 nm, lp ¼

0.36 nm, Q ¼ 770kBT, DQ ¼ 420kBT. Each equilibrium path is labelled by
the number nu of unfolded domains.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130651

5

the observation that ð@L̂ðnu;mÞ/@mÞ . 0 so that if �nu is

the branch corresponding to the global minimum at assigned

end-to-end length L, by increasing L it loses its global stabi-

lity at the intersection with the equilibrium branch �nu þ 1

(figure 3). Thus, the chain unfolds with a sequence of

single hard domain transitions at the threshold assigned by

Feðh; nuÞ �Feðh; nu þ 1Þ ¼ Q; nu ¼ 0; . . . ; n� 1:

LuðnuÞ ¼ L̂ðnu; 1Þ ¼
2Lc þ lc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LcðLc þ lcÞ/jþ l2c

p
ð2� 1/jÞ ð3:7Þ

(in this formula and in the following, we omit the nu

dependence of Lc).

In (3.7), we introduced the main non-dimensional

parameter of the model

j ¼
8Lp

kBT
Q
lc
; ð3:8Þ

representing a measure of the ratio between the elastic and

fracture energy of the single b-sheet. Indeed, we observe

that according to (3.2) we have that the term kBTlc/8Lp¼

we(1/2)lc, so that it measures the elastic energy of a single

domain when the deformation is a half of the maximum

elongation (contour length).

It is easy to verify that Lu[(0, Lc) and that dLu/dnu. 0.

As a result, the nu branch corresponds to the global energy

minimum for

L [ ðLuðnu � 1Þ;LuðnuÞÞ; nu [ ð1; n� 1Þ;

representing the existence domain of the nu branch under our

energy minimization hypothesis. In the special cases of the

virgin curve, with nu ¼ 0, we have L[(0, Lu(0)), whereas in

the case of the fully unfolded chain, with nu ¼ n, we have

L[(Lu(n21), Lr), where Lr is the fracture threshold of the

fully unfolded chain (figure 6).

Using (3.5), we get the unfolding force Fu ¼ F(Lu/Lc, nu)

Fu ¼
kBT
4Lp

2ðj� 1ÞLc

lc jþ 2Lc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlc jþ 2LcÞ2 þ 4ðj� 1ÞL2

c

q
0
B@

1
CA

2

�1

0
B@

1
CA:
ð3:9Þ

Observe that using (3.7) and (3.9), it is also possible to

obtain an explicit relation between the unfolding forces and
the unfolding end-to-end lengths

FuðLuÞ ¼
kBT
Lp

LuðLu þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8L2

u/jþ l2c
p

� lcÞ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8L2

u=jþ l2c
p

� lcÞ2
: ð3:10Þ

The stretch-induced unfolding of the system is shown

with bold line in figure 4. The system reproduces the typical

experimental behaviour of unravelling macromolecules with

a regularly spaced sequence of unfolding events of the hard

domains. Thus, if we start loading from the virgin configur-

ation (nu ¼ 0, point O in figure 4), the system follows

elastically the equilibrium curve nu ¼ 0 until the unfolding

energy Q equals the jump of the entropic energy owing to

the transition from the branch nu ¼ 0 to the branch nu ¼ 1

(path A–a in figure 4). By increasing further the assigned

length, the system follows the new branch until another

sudden transition to the branch nu ¼ 2 is observed when it

becomes energetically favourable (path B–b). Similar tran-

sitions with single domain unfoldings are then observed,

until all the crystals unfold and the system shows a harden-

ing behaviour owing to the entropic elasticity of the fully

unfolded chain (curve f–G in figure 4).

Regarding the behaviour of the system under unloading,

because typically at the AFM loading rate no refolding is

observed [53], we assume irreversible (hard–soft) transitions.

As a result if the system is unloaded at a given equilibrium

branch nu ¼ �nu, the system follows this branch until both

stretch and force go to zero. Under reloading the system

instead changes again configuration with another hard–soft

transition at the same value of primary loading Luð�nuÞ. The

memory of the system is then restricted to the only maximum

value attained in the past by the end-to-end length L.

Finally, we observe that the theoretical model shows a soften-

ing behaviour during the unfolding regime, in the sense that the

unfolding force decreases with the number nu of unfolded

domains. This can be analytically proved by observing that in

view of (3.10) we have @F(Lu(nu))/@nu , 0. Nevertheless, the

experimental behaviour of stretch-induced unfolding of macro-

molecules shows a variable behaviour, with typically nearly

constant unfolding forces [54], but with possibly increasing,

decreasing or non-monotonic transition thresholds (see [14] for

titin macromolecule and [55] for artificial elastomeric protein).

In the following section, we discuss this issue and propose

an extension of our model able to reproduce the hardening

effect observed, e.g. in titin macromolecule unfolding.
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4. Unfolding energy hierarchy
The described variable observations on subsequent transition

forces (force plateaux, hardening, softening) have been given

different physical interpretations. A hierarchy of unfolding

energies of the unfolding crystals may be simply due to

inhomogeneity effects of the crystal domains [14,35,56],

showing variable bond-breaking barriers [33] possibly

owing to interfacial energy effects [57]. Another important

effect is anisotropicity of the crystals with respect to the

force direction—different paths in the wiggly energy land-

scape lead to different unfolding energy barriers [58]—so

that different unfolding forces can be induced by variable

crystal orientations in the macromolecule. Another known

effect, that can induce hardening, is the so-called n-effect
(see [58]) that, based on statistical considerations, leading to

an unfolding force growth owing to a progressively reduced

number of folded crystals available for unfolding in the

macromolecule for growing elongations.

To check the possibility of variable unfolding energies,

following the energetic decomposition schematized in

figure 1, based on the experimental force–displacement

unfolding diagrams we may estimate the fracture energy of

each unfolding event using the relation

Q ¼ �QðnuÞ ¼ Feðhu; nuÞ �Feðhu;nu þ 1Þ; ð4:1Þ

where �QðnuÞ represents the variable fracture energy of the

nu-th folded domain and hu ¼ Lu(nu)/Lc(nu) is the corre-

sponding unfolding strain. Based on this relation, we

analysed the experimental length–force diagrams for differ-

ent unfolding macromolecules: titin in [14,48,59], TNfnAll

protein from [60] and tenascin-C from [54]. The results are

summarized in figure 5 and interestingly all show a linear

phenomenological growing law for the dissipation energy

of successive unfolding domains

�QðnuÞ ¼ Qþ ðnu � 1ÞDQ; ð4:2Þ

where Q ¼ �Qð1Þ represents the fracture energy of the

weakest folded domain, which has the important role of

regulating the stability of the initial unfolded configuration

and the initial unfolding length Lu(1), whereas DQ is a

fixed energy increment for successive unfolding events

(figure 5).

It is important to remark that in the case of increasing

unfolding energies, the di-block approximation can fail, with

the order of unfolding that is regulated by the competition

of mixing energy, interfacial energy effects and variability of

the unfolding energy. This competition regulates in the

quasi-static regime the order of transition and the hardening,

softening or non-monotonic law of the successive unfolding

force. Aimed again at a fully analytical result, we here suppose

that both the mixing entropy contribution and the interfacial

energy term are negligible when compared with the unfolding

energy increment DQ so that the unfolding evolution strategy

is regulated by the unfolding energy hierarchy and we may

again describe the stretching behaviour of the macromolecule

by minimizing an energy as in (3.6), but with variable unfold-

ing energy increments. Indeed, (3.6) is obtained by simply

considering DQ ¼ Q in (4.2).

Under the considered assumption, we may first extend

the considerations described in figure 3 to obtain that the

domains unfold one at a time in the order of their unfold-

ing energies. Then, we may again explicitly evaluate the
unfolding lengths (3.7) and forces (3.9) by simply using

(3.7) with a variable parameter

j ¼�jðnuÞ ¼
8Lp

kBTlc
�QðnuÞ; ð4:3Þ

measuring the variable ratio of dissipated and elastic energy

of the folded domains.
5. An explicit example: titin unfolding
To show the feasibility of the proposed model in quantitatively

predicting the experimental behaviour of macromolecule

unfolding, in this section, we analyse the diffusely studied

AFM stretching experiments of titin, the protein responsible

of the passive strength of muscles. These proteins are very

long macromolecules with contour length larger than 1 mm

[1], whose secondary structure is characterized by the presence

of immunoglobulin (Ig) and fibronectin-type III (FNIII)

domains, folded in forms of b-sheets, connected to the PEVK

domain (rich in proline, glutamate, valine and lysine) [61].

At low forces, the elasticity is regulated by the tertiary structure

and the (random coil) domain orientation, combined with

the elasticity of PEVK domains [22,57,61]. At higher forces,

the macromolecule response is dominated by an energetic

competition of the entropic elasticity of the unfolded fraction

of (Ig) and (FNIII) domains and by the enthalpic contribution

of the folded! unfolded transition of the b-sheets.

One important effect in the case of titin is the rate-depen-

dent behaviour of the unfolding events [14] whose detailed

description has been addressed through MD approaches

[23] and reaction theory approaches [44]. Here, as anticipated

above, following [11,23,36,46], we take care of the observed

rate dependence (i.e. rate-dependent unfolding energy bar-

riers and dissipation) by considering effective rate-dependent

dissipation energies Qi.

In figure 6, we show the ability of the model in describing

quantitatively the behaviour of titin unfolding experiments

reported in [14] based on the obtained analytical relations

(3.5), (3.7) and (4.3) with an energy hierarchy as in (4.2) deduced

based on the experiments in [14] as reported in figure 5a.
6. Continuum limit
Here, aimed to a deduction of a continuum model for macro-

molecular materials [2], we analyse the continuum limit of
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the proposed model, obtained as a limit when n!1. To get

this limit, we fix the total unfolded length that using (2.2) is

given by

�Lc ¼ L0 þ nlc; ð6:1Þ

and consider the limit when both lc! 0 and n!1.

Introduce then the new continuum variable

nu :¼ nu

n
;

representing the unfolded fraction. In the language of

continuum mechanics nu represents a damage (internal) vari-

able, with nu[(0, 1) and nu ¼ 0 in the virgin state and nu ¼ 1

in the fully unfolded state [62,63]. The total contour length is

then using (2.2) given by

Lc ¼ LcðnuÞ ¼ L0 þ nuð�Lc � L0Þ: ð6:2Þ

Thus, the damage variable nu measures the change of contour

length with in particular Lc ¼ L0 in the virgin configuration

(nu ¼ 0) and Lc ¼ �Lc, as in (6.1), in the damage saturation

configuration of the fully unfolded state (nu ¼ 1).

The total energy, using (3.6), can be rephrased as

Ftot ¼F̂totðnuÞ ¼
kBT
4Lp

h2

1�h LcðnuÞ þ �Qnu; ð6:3Þ

where we introduced the rescaled unfolding energy

�Q :¼ nQ

ensuring that �Q decreases proportionally to the length lc of

the unfolded single elements. Here, in view of (6.2), the defor-

mation variable depends on the continuum damage variable

nu according to the following relation:

h ¼ hðL; nuÞ ¼
L

LcðnuÞ
: ð6:4Þ

The obtained framework can be inscribed in the classical

variational approach for damage known as pseudo-elasticity

[64], requiring the minimization of the damage-dependent

energy (6.3) under the constraint of irreversibility of unfold-

ing. We refer the reader to [29] for the technical details

of the variational approach, whereas we here resume the

loading–unloading behaviour of the deduced continuum

damage model. Based on our irreversibility assumption (no

refolding), we may observe that also in the continuum

damage model the memory of the loading history depends
on the only value Lmax of the maximum end-to-end length

attained in the past that assigns nu. Indeed (see again [29]

for technical details), during loading (L ¼ Lmax) to determine

the global minimum of the energy (6.3), we minimize both

with respect to L and nu. Minimization with respect to L
(i.e. ð@F̂totðL; nuÞ/@LÞ ¼ 0) delivers the equilibrium force as

in (3.5) with the deformation variable defined in (6.4).

Minimization with respect to nu (i.e. ð@F̂totðL; nuÞ/@nuÞ ¼ 0)

delivers the damage as a function of the assigned length

nu ¼ �nuðLmaxÞ ¼
ð1þ

ffiffiffiffiffiffiffiffi
2/j
p

ÞLmax � L0

�LcðLmaxÞ � L0
: ð6:5Þ

Interestingly, using (3.10), in this limit we obtain a constant

unfolding force plateau

Fu ¼
kBT
Lp

j

8
þ

ffiffiffi
j

8

r !
;

that by (6.5) begins (nu ¼ 0) at

L ¼ Ls
u ¼

ffiffiffi
j
p

L0

ð
ffiffiffi
j
p
þ

ffiffiffi
2
p
Þ

and ends at

L ¼ Le
u ¼

ffiffiffi
j
p

�Lc

ð
ffiffiffi
j
p
þ

ffiffiffi
2
p
Þ
;

where the fully unfolded state (nu ¼ 1) is attained. The

obtained unfolding behaviour is shown in figure 7 (path

OABC). During unloading (L , Lmax), because we neglect

refolding, the behaviour is again given by (3.5) with fixed

damage that by (6.5) is given by nu ¼ �nuðLmaxÞ: Different

unloading paths are shown in figure 7 (e.g. path DO is

attained for an unloading at nu ¼ 0.25).
7. Conclusion
In this paper, we propose, based on the time-scale separation

(1.1), an energetic model for the description of the important

phenomenon of stretch-induced unfolding of macromol-

ecules. By considering a di-block approximation and by

neglecting rate-dependent effects (possibly considering rate-

dependent effective unfolding energies), we deduced a fully

analytical model delivering the unfolding forces and lengths

for the different equilibrium branches, all depending on a
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deduced main dimensional parameter j. Despite the impor-

tant simplifications underlying the proposed model, the

availability of a fully analytical model (available only in the

thermodynamic limit for previously proposed models) let

us clarify the main ingredients regulating the energetics

underlying stretch-induced unfolding in multi-domain

macromolecules. The analytical results for the (finite) discrete

lattice have been also extended to the case of inhomogeneous

unfolding energies based on the empirical law (4.2) that we

deduced by analysing typical macromolecule unfolding

experiments. The deduced analytical model shows a good

qualitative (stick–slip unfolding evolution with regular spa-

cing of the localized unfolding events) and quantitative

agreement (figure 6) with the experimental behaviour and

elucidates the experimentally determinable variables �jðnuÞ
in (4.3) regulating the mechanical behaviour of the chains.
Finally, we deduced a continuum limit one-dimensional

system available for three-dimensional extension to study

the mechanical behaviour of biological and polymeric tissues

and networks of modular macromolecules [43] that will be

the subject of our future studies and that appears particularly

valuable also in the perspective of analytical criteria in the

new important technological field of the design of new

bioinspired materials.
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22. Hsin J, Strümpfer J, Lee EH, Schulten K. 2011
Molecular origin of the hierarchical elasticity of titin:
simulation, experiment, and theory. Annu. Rev.
Biophys. 40, 187 – 203. (doi:10.1146/annurev-
biophys-072110-125325)

23. Lacks DJ. 2005 Energy landscape distortions and the
mechanical unfolding of proteins. Biophys. J. 88,
3494 – 3501. (doi:10.1529/biophysj.104.051953)

24. Puglisi G, Truskinovsky L. 2005 Thermodynamics of
rate-independent plasticity. J. Mech. Phys. Solids 53,
655 – 679. (doi:10.1016/j.jmps.2004.08.004)

25. De Tommasi D, Puglisi G, Saccomandi G. 2006 A
micromechanics-based model for the Mullins effect.
J. Rheol. 50, 495 – 512. (doi:10.1122/1.2206706)

26. Duff N, Duong NH, Lacks DJ. 2006 Stretching the
immunoglobulin 27 domain of the titin protein:
the dynamic energy landscape. Biophys. J. 91,
3446 – 3455. (doi:10.1529/biophysj.105.074278)

27. Bertotti G. 1998 Hysteresis in magnetism.
Boston, MA: Academic Press.

28. Schwaiger I, Sattler C, Hostetter DR, Rief M. 2002 The
myosin coiled-coil is a truly elastic protein structure.
Nat. Mater. 1, 232 – 235. (doi:10.1038/nmat776)

29. De Tommasi D, Puglisi G, Saccomandi G. 2008
Localized versus diffuse damage in amorphous
materials. Phys. Rev. Lett. 100, 085502. (doi:10.
1103/PhysRevLett.100.085502)

30. Buhot A, Halperin A. 2000 Extension of rod-coil
multiblock copolymers and the effect of the helix-
coil transition. Phys. Rev. Lett. 84, 2160 – 2163.
(doi:10.1103/PhysRevLett.84.2160)

31. Manca F, Giordano S, Palla PL, Cleri F, Colombo L.
2013 Two-state theory of single-molecule stretching
experiments. Phys. Rev. E 87, 032705. (doi:10.1103/
PhysRevE.87.032705)

32. Makarov DE. 2009 A theoretical model for the
mechanical unfolding of repeat proteins.
Biophys. J. 96, 2160 – 2167. (doi:10.1016/j.bpj.2008.
12.3899)

http://dx.doi.org/10.1016/0065-227X(96)81668-6
http://dx.doi.org/10.1016/0065-227X(96)81668-6
http://dx.doi.org/10.1016/j.bpj.2010.01.021
http://dx.doi.org/10.1016/j.bpj.2010.01.021
http://dx.doi.org/10.1073/pnas.082526499
http://dx.doi.org/10.1073/pnas.082526499
http://dx.doi.org/10.1098/rsif.2012.0310
http://dx.doi.org/10.1209/epl/i1996-00511-0
http://dx.doi.org/10.1209/epl/i1996-00511-0
http://dx.doi.org/10.1002/masy.19971130104
http://dx.doi.org/10.1002/masy.19971130104
http://dx.doi.org/10.1016/j.polymer.2006.06.002
http://dx.doi.org/10.1016/j.proeng.2011.04.432
http://dx.doi.org/10.1016/j.proeng.2011.04.432
http://dx.doi.org/10.1038/nmat2547
http://dx.doi.org/10.1021/ma00103a018
http://dx.doi.org/10.1021/ma00103a018
http://dx.doi.org/10.1038/nmat2387
http://dx.doi.org/10.1103/PhysRevE.82.061906
http://dx.doi.org/10.1103/PhysRevE.82.061906
http://dx.doi.org/10.1088/0953-8984/18/32/R01
http://dx.doi.org/10.1088/0953-8984/18/32/R01
http://dx.doi.org/10.1126/science.276.5315.1109
http://dx.doi.org/10.1126/science.276.5315.1109
http://dx.doi.org/10.1126/science.276.5315.1112
http://dx.doi.org/10.1126/science.276.5315.1112
http://dx.doi.org/10.1126/science.275.5304.1295
http://dx.doi.org/10.1126/science.275.5304.1295
http://dx.doi.org/10.1529/biophysj.106.101261
http://dx.doi.org/10.1126/science.271.5250.795
http://dx.doi.org/10.1146/annurev.biophys.30.1.361
http://dx.doi.org/10.1146/annurev.biophys.30.1.361
http://dx.doi.org/10.1073/pnas.0600102103
http://dx.doi.org/10.1146/annurev-biophys-072110-125325
http://dx.doi.org/10.1146/annurev-biophys-072110-125325
http://dx.doi.org/10.1529/biophysj.104.051953
http://dx.doi.org/10.1016/j.jmps.2004.08.004
http://dx.doi.org/10.1122/1.2206706
http://dx.doi.org/10.1529/biophysj.105.074278
http://dx.doi.org/10.1038/nmat776
http://dx.doi.org/10.1103/PhysRevLett.100.085502
http://dx.doi.org/10.1103/PhysRevLett.100.085502
http://dx.doi.org/10.1103/PhysRevLett.84.2160
http://dx.doi.org/10.1103/PhysRevE.87.032705
http://dx.doi.org/10.1103/PhysRevE.87.032705
http://dx.doi.org/10.1016/j.bpj.2008.12.3899
http://dx.doi.org/10.1016/j.bpj.2008.12.3899


rsif.royalsocietypublishing.org
JR

SocInterface
10:20130651

9
33. Staple DB, Payne SH, Reddin ALC, Kreuzer HJ. 2008
Model for stretching and unfolding the giant
multidomain muscle protein using single-molecule
force spectroscopy. Phys. Rev. Lett. 101, 248301.
(doi:10.1103/PhysRevLett.101.248301)

34. Kajander T, Cortajarena AL, Main ERG, Mochrie SGJ,
Regan L. 2005 A new folding paradigm for repeat
proteins. J. Am. Chem. Soc. 127, 10 188 – 10 190.
(doi:10.1021/ja0524494)

35. Rief M, Fernandez JM, Gaub HE. 1998 Elastically
coupled two-level systems as a model for
biopolymer extensibility. Phys. Rev. Lett. 81,
4764 – 4767. (doi:10.1103/PhysRevLett.81.4764)

36. Ritort F, Bustamante C, Tinoco I. 2002 A two-state
kinetic model for the unfolding of single molecules
by mechanical force. Proc. Natl Acad. Sci. USA 99,
13 544 – 13 548. (doi:10.1073/pnas.172525099)

37. Benichou I, Givli S. 2011 The hidden ingenuity in
titin structure. Appl. Phys. Lett. 98, 091904. (doi:10.
1063/1.3558901)

38. Raj R, Purohit PK. 2011 Phase boundaries as agents
of structural change in macromolecules. J. Mech.
Phys. Solids 59, 2044 – 2069. (doi:10.1016/j.jmps.
2011.07.003)

39. Puglisi G, Truskinovsky L. 2002 A mechanism of
transformational plasticity. Cont. Mech. Therm. 14,
437 – 457. (doi:10.1007/s001610200083)

40. Best RB, Fowler SB, Toca Herrera JL, Steward A, Paci E,
Clarke J. 2003 Mechanical unfolding of a titin Ig domain:
structure of transition state revealed by combining
atomic force microscopy, protein engineering and
molecular dynamics simulations. J. Mol. Biol. 330,
867 – 877. (doi:10.1016/S0022-2836(03)00618-1)

41. Fersht AR, Daggett V. 2002 Protein folding and
unfolding at atomic resolution. Cell 108, 573 – 582.
(doi:10.1016/S0092-8674(02)00620-7)

42. Vendruscolo M, Paci E. 2003 Protein folding:
bringing theory and experiment closer together.
Curr. Opin. Struct. Biol. 13, 82 – 87. (doi:10.1016/
S0959-440X(03)00007-1)

43. Qi HJ, Ortiz C, Boyce MC. 2006 Mechanics of
biomacromolecular networks containing folded
domains. Trans. ASME J. Eng. Mater. Technol. 128,
509 – 518. (doi:10.1115/1.2345442)
44. Evans E, Ritchie K. 1997 Dynamic strength of
molecular adhesion bonds. Biophys. J. 72,
1541 – 1555. (doi:10.1016/S0006-3495(97)78802-7)

45. Evans E, Ritchie K. 1999 Strength of a weak bond
connecting flexible polymer chains. Biophys. J. 76,
2439 – 2447. (doi:10.1016/S0006-3495(99)77399-6)

46. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG.
2004 Funnels, pathways, and the energy landscape
of protein folding: a synthesis. Proteins Struct. Funct.
Bioinform. 21, 167 – 195. (doi:10.1002/prot.
340210302)

47. Buhot A, Halperin A. 2002 Extension behavior of
helicogenic polypeptides. Macromolecules 35,
3238 – 3252. (doi:10.1021/ma011631w)

48. Carrion-Vazquez M, Oberhauser AF, Fowler SB,
Marszalek PE, Broedel SE, Clarke J, Fernandez JM.
1999 Mechanical and chemical unfolding of a single
protein: a comparison. Proc. Natl Acad. Sci. USA 96,
3694 – 3699. (doi:10.1073/pnas.96.7.3694)

49. Marko JF, Siggia ED. 1995 Stretching DNA.
Macromolecules 28, 8759 – 8770. (doi:10.1021/
ma00130a008)

50. Zhang B, Evans JS. 2001 Modeling AFM-induced
PEVK extension and the reversible unfolding of Ig/
FNIII domains in single and multiple titin
molecules. Biophys. J. 80, 597 – 605. (doi:10.1016/
S0006-3495(01)76040-7)

51. Dobrynin AV, Carrillo JY. 2011 Universality in
nonlinear elasticity of biological and polymeric
networks and gels. Macromolecules 44, 140 – 146.
(doi:10.1021/ma102154u)

52. Griffith AA. 1921 The phenomena of rupture and
flow in solids. Phil. Trans. R. Soc. Lond. A 221,
163 – 198. (doi:10.1098/rsta.1921.0006)

53. Rief M, Grubmüller H. 2002 Force spectroscopy of
single biomolecules. ChemPhysChem 3, 255 – 261.
(doi:10.1002/1439-7641)

54. Fisher TE, Oberhauser AF, Carrion-Vazquez M,
Marszalek PE, Fernandez JM. 1999 The study of
protein mechanics with the atomic force
microscope. Trends Biochem. Sci. 24, 379 – 384.
(doi:10.1016/S0968-0004(99)01453-X)

55. Lv S, Dudek DM, Cao Y, Balamurali MM, Gosline J,
Li H. 2010 Designed biomaterials to mimic the
mechanical properties of muscles. Nature 465,
69 – 73. (doi:10.1038/nature09024)

56. Brockwell DJ, Paci E, Zinober RC, Beddard GS,
Olmsted PD, Smith DA, Perham RN, Radford SE.
1997 Pulling geometry defines the mechanical
resistance of a beta-sheet protein. Nat. Struct. Biol.
10, 731 – 737. (doi:10.1038/nsb968)

57. Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M,
Kerkvliet JG, Lu H, Marszalek PE, Fernandez JM.
2002 Reverse engineering of the giant muscle
protein titin. Nature 418, 998 – 1002. (doi:10.1038/
nature00938)

58. Dietz H, Berkemeier F, Bertz M, Rief M. 2006
Anisotropic deformation response of single
protein molecules. Proc. Natl Acad. Sci. USA 103,
12 724 – 12 728. (doi:10.1073/pnas.0602995103)

59. Linkea WA, Kulkea M, Lib H, Fujita-Beckerc S,
Neagoea C, Mansteinc DJ, Gauteld M, Fernandez JM.
2002 PEVK domain of titin: an entropic spring
with actin-binding properties. J. Struct. Biol. 137,
194 – 205. (doi:10.1006/jsbi.2002.4468)

60. Oberhauser AF, Marszalek PR, Erickson HP,
Fernandez JM. 1998 The molecular elasticity of the
extracellular matrix protein tenascin. Nature 393,
181 – 185. (doi:10.1038/30270)

61. Lee EH, Hsin J, Mayans O, Shulten K. 2007
Secondary and tertiary structure elasticity of
titin z1z2 and a titin chain model. Biophys. J. 93,
1719 – 1735. (doi:10.1529/biophysj.107.105528)

62. D’ambrosio D, De Tommasi D, Ferri D, Puglisi G.
2008 A phenomenological model for healing
and hysteresis in rubber-like materials.
Int. J. Eng. Sci. 46, 293 – 305. (doi:10.1016/
j.ijengsci.2007.12.002)

63. DeSimone A, Marigo JJ, Teresi L. 2001 A damage
mechanics approach to stress softening and
its application to rubber. Eur. J. Mech. A
Solids 20, 873 – 892. (doi:10.1016/S0997-7538
(01)01171-8)

64. Dorfmann A, Ogden RW. 2003 A pseudo-elastic
model for loading, partial unloading and reloading
of particle-reinforced rubber. Int. J. Solids Struct.
40, 2699 – 2714. (doi:10.1016/S0020-7683(03)
00089-1)

http://dx.doi.org/10.1103/PhysRevLett.101.248301
http://dx.doi.org/10.1021/ja0524494
http://dx.doi.org/10.1103/PhysRevLett.81.4764
http://dx.doi.org/10.1073/pnas.172525099
http://dx.doi.org/10.1063/1.3558901
http://dx.doi.org/10.1063/1.3558901
http://dx.doi.org/10.1016/j.jmps.2011.07.003
http://dx.doi.org/10.1016/j.jmps.2011.07.003
http://dx.doi.org/10.1007/s001610200083
http://dx.doi.org/10.1016/S0022-2836(03)00618-1
http://dx.doi.org/10.1016/S0092-8674(02)00620-7
http://dx.doi.org/10.1016/S0959-440X(03)00007-1
http://dx.doi.org/10.1016/S0959-440X(03)00007-1
http://dx.doi.org/10.1115/1.2345442
http://dx.doi.org/10.1016/S0006-3495(97)78802-7
http://dx.doi.org/10.1016/S0006-3495(99)77399-6
http://dx.doi.org/10.1002/prot.340210302
http://dx.doi.org/10.1002/prot.340210302
http://dx.doi.org/10.1021/ma011631w
http://dx.doi.org/10.1073/pnas.96.7.3694
http://dx.doi.org/10.1021/ma00130a008
http://dx.doi.org/10.1021/ma00130a008
http://dx.doi.org/10.1016/S0006-3495(01)76040-7
http://dx.doi.org/10.1016/S0006-3495(01)76040-7
http://dx.doi.org/10.1021/ma102154u
http://dx.doi.org/10.1098/rsta.1921.0006
http://dx.doi.org/10.1002/1439-7641
http://dx.doi.org/10.1016/S0968-0004(99)01453-X
http://dx.doi.org/10.1038/nature09024
http://dx.doi.org/10.1038/nsb968
http://dx.doi.org/10.1038/nature00938
http://dx.doi.org/10.1038/nature00938
http://dx.doi.org/10.1073/pnas.0602995103
http://dx.doi.org/10.1006/jsbi.2002.4468
http://dx.doi.org/10.1038/30270
http://dx.doi.org/10.1529/biophysj.107.105528
http://dx.doi.org/10.1016/j.ijengsci.2007.12.002
http://dx.doi.org/10.1016/j.ijengsci.2007.12.002
http://dx.doi.org/10.1016/S0997-7538(01)01171-8
http://dx.doi.org/10.1016/S0997-7538(01)01171-8
http://dx.doi.org/10.1016/S0020-7683(03)00089-1
http://dx.doi.org/10.1016/S0020-7683(03)00089-1

	An energetic model for macromolecules unfolding in stretching experiments
	Introduction
	Energetic assumptions
	Energy minimization
	Unfolding energy hierarchy
	An explicit example: titin unfolding
	Continuum limit
	Conclusion
	Acknowledgements
	Funding statement
	References


