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Contractile Fibers and Catch-Bond Clusters: a Biological Force Sensor?
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ABSTRACT Catch bonds are cellular receptor-ligand pairs whose lifetime, counterintuitively, increases with increasing load.
Although their existence was initially pure theoretical speculation, recent years have seen several experimental demonstrations
of catch-bond behavior in biologically relevant and functional protein-protein bonds. Particularly notable among these estab-
lished catch-bond formers is the integrin a5b1, the primary receptor for fibronectin and, as such, a crucial determinant for the
characteristics of the mechanical coupling between cell and matrix. In this work, we explore the implications of single catch-
bond characteristics for the behavior of a load-sharing cluster of such bonds: These clusters are shown to possess a regime
of strengthening with increasing applied force, similar to the manner in which focal adhesions become selectively reinforced.
Our results may shed new light on the fundamental processes that allow cells to sense and respond to the mechanical properties
of their environment and in particular show how single focal adhesions may act, autonomously, as local rigidity sensors.
INTRODUCTION
Most animal cells spend their days embedded in a support-
ing structure called the extracellular matrix (ECM). This
complex medium is an interconnected, gel-like meshwork
of glycosaminoglycans and fibrous proteins (collagen, fibro-
nectin) that provides structural support and anchorage to the
cells, as well as mechanical integrity and resilience to the
tissue as a whole. More recently, its additional regulatory
function has received considerable attention in the literature.
More than passively anchored to it, cells actively sense (1,2)
and alter (3) the mechanical properties of their surroundings
which, in turn, may affect the fate of the cells embedded in
it: the mechanical properties of the substrate have been
implicated in the determination of the phenotype of other-
wise indistinguishable stem cells (4,5). These findings
have spawned considerable and renewed interest in the
physical concepts and foundations underlying cell mecha-
nosensing (6–8):

How do cells couple to the environment?
What information may they glean from it (mechano-

sensing), how can this information be internalized
(mechanotransmission), and how is it processed
(mechanotransduction)?

In this article, we consider the force-response of a cluster
of catch bonds: integrin-ligand bonds, which display a
regime of increasing bond lifetime with increasing loads
(9). Although the molecular mechanisms responsible for
this behavior remain debated (10), the behavior itself is by
now firmly established and, in fact, has been demonstrated
(11,12) in individual receptor-ligand pairs. We extract
from these experiments operational parameters, and discuss
collective behavior of a macroscopic assembly of catch
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bonds. Our results extend previous simulations in Sun
et al. (13): We supply analytical results, consider the
response to loading by molecular motors, and establish a
direct link between external stiffness and bound integrin
fraction.
SINGLE CATCH-BOND CHARACTERISTICS

The equilibrium binding and unbinding kinetics of unforced
noncovalent molecular bonds is generally summarized in
binding and unbinding rates kb

0 and ku
0. The unbinding

rate ku
0 determines the lifetime of the bond in the absence

of bias. Consider a bond that is closed at time t ¼ 0; the
probability that it is still closed after a time t has passed is
Ps(t) ~ exp(�ku

0t), and the expectation value for its lifetime
is htih t0 ¼ 1/ku

0 (9). If an external force f is applied to the
bond, unbinding is enhanced and Kramer’s rate theory (14)
(alternatively known as Bell kinetics (15)) suggests the
unbinding rate be modified as

kuðf Þ ¼ k0u exp

�þf x

kBT

�
;

with x a microscopic lengthscale characterizing the unbind-
ing transition. Consequently, the bond lifetime is shortened
exponentially as

tðf Þ ¼ t0 exp

��f x

kBT

�
:

Bonds satisfying this relationship are called slip bonds.
Catch bonds, however, behave in a markedly different
manner when forced: Their bond lifetime initially increases
when a force is applied. The single-bond lifetime of a catch
bond is maximal at some finite force, after which it decays
exponentially and recovers slip-type behavior. Although
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initially a purely theoretical speculation (16), catch bonds
are by now a well-established phenomenon. Both the L-
and P-selectins that feature prominently in neutrophil roll-
ing have been shown to exhibit catch-bond behavior. The
macroscopic phenomenon of a shear-threshold for the roll-
ing adhesion of neutrophils is generally ascribed to a collec-
tive manifestation of individual catch-bond connections
(17–19). Recent experiments have also demonstrated
catch-bond behavior in single biological bonds (11,12)—
in this work, we present results obtained by using numerical
values for single bonds directly obtained from these exper-
iments. Interestingly, among the receptor-ligand pairs for
which this behavior was observed is the bond between the
ECM component fibronectin FNIII7–10 and the cellular
integrin a5b1: the primary receptor for fibronectin (20).
Fig. 1 plots the lifetime-force curve for this particular
pair, clearly showing the initial rise in lifetime and the
maximum lifetime at finite force. The solid curve is a fit
to the data for the so-called two-pathway model (21), which
considers unbinding of the receptor-ligand pair via two
alternative routes—one catch path that is opposed by the
applied force, and one slip path that is promoted by it.
The values xc and xs are two distinct length scales for the
two routes, and kc and ks the associated unforced unbinding
rates. The two-pathway model predicts the lifetime of a
catch bond to depend on the pulling as
FIGURE 1 The catch bond between FNIII7–10 and a5b1: (points) exper-

imental results from Kong et al. (12); (solid line) fit to the two-pathway

model from Pereverzev et al. (21), Eq. 2, with parameters fc ¼ 4.02,

fs ¼ 7.78, and f* ¼ 5.38. In physical units, this corresponds to a slip-

path unbinding rate of ks ¼ 4.2 � 10�4 s�1, and a catch-path unbinding

rate of kc ¼ 55 s�1.
tðf Þ ¼
�
kse

f xs
kBT þ kce

� f xc
kBT

��1

: (1)

We are interested in the general behavior of coupled clusters
of catch bonds, and choose to work with a simpler model
that captures their essential behavior: We set the two
unbinding lengths xc and xs equal, denoting the single length
scale simply x. We use this length scale to set a force scale
via kBT h f*x. All forces are nondimensionalized using
this force scale: f h f/f*. Furthermore, Pereverzev et al.
(21) argue that to get proper catch-bond behavior, one needs
kc >> ks; we use this to rewrite kc ¼ k0 exp(fc) and ks ¼ k0
exp(�fs) with fs, fc > 0. Note that this is the regime in
which a lifetime peak is encountered, but that positivity of
fs and fc is not a hard constraint: In fact, the slip bond limit
may be recovered by letting fc / �N. We may set k0 ¼
1 s�1 without loss of generality. With these reductions and
definitions, we shall write the dimensionless force-depen-
dent unbinding rate

kcbu ðfÞhðk0tðfÞÞ�1

of the single catch bond as
kcbu ðfÞ ¼ e�ðf�fcÞ þ eðf�fsÞ: (2)

We have used this expression to fit the data from Kong et al.

(12) for the FNIII7–10-a5b1 bond; the results are plotted in
Fig. 1. For future reference, we note that the maximal life-
time for the single bond is attained at

fmax ¼ 1

2
ðfs þ fcÞ:

We now consider the consequences of this single-bond

behavior for a cluster of catch bonds subjected to a fixed
external force.
CATCH-BOND CLUSTER: FIXED FORCE

Following the approach of Schwarz et al. (22) we consider a
collection of Nt bonds, and let i denote the size of the cluster
at time t, i.e., the instantaneous number of closed bonds. We
may then summarize the evolution of pi, the probability of
having i closed bonds at a given time t, in a one-step master
equation

dpi
dt

¼ riþ1ðFtÞpiþ1 þ gi�1pi�1 � ½riðFtÞ þ gi�pi; (3)

where ri(f) is the (force-dependent) rate at which one bond

unbinds from a cluster of size i, and gi is the rate at which
an additional bond is formed when a cluster of size i is
already present. The rate of rebinding may be assumed to
be independent of the applied force, as the bond must be
unstressed in its unbound state. We assume a simple relation
of the form
Biophysical Journal 105(6) 1336–1345
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gi ¼ k0gðNt � iÞ;

i.e., rebinding proportional to the number of available,
unbound bonds with a uniform dimensionless rebinding
rate g. The unbinding rate is where the catch-bond nature
of the individual bonds is injected into the model. We shall
choose

riðFtÞ ¼ ik0k
cb
u

�
f
�
;

which is proportional to the single-bond unbinding rate pre-

viously discussed, but evaluated at the force that single
bonds actually experience in a cluster. The cluster is loaded
collectively, and depending on the geometry of the cell, the
alignment of the stress fiber attached to the focal adhesion,
and the structure and shape of the substrate individual bonds
in the cluster, may experience very different forces. In what
follows, we will mostly consider only the simplest force dis-
tribution: a uniform distribution of the load across all closed
bonds. The reasons for this choice is twofold:

1. Nonuniform loading requires additional assumptions on
the distribution of forces that in general do not permit
analytical treatment, and add further adjustable parame-
ters to the system—we strive to keep the free parameters
to a minimum.

2. More importantly, previous numerical work on nonuni-
form loading (13) has clearly delineated how different
loading configurations quantitatively modify the binding,
but mostly the unbinding, of integrin clusters.

We expect that our uniform loading configuration will be
similarly modified in more complicated settings. In Cluster
Lifetimes: Asymmetric Loading, we provide one explicit
and analytical confirmation of this when we present lifetime
results for a cluster that exhibits the typical asymmetric trac-
tion force distribution reported in Plotnikov et al. (23).

Assuming a uniformly distributed load, we shall choose
f ¼ Ft=i. Under these assumptions, we may evaluate the
temporal evolution of the cluster size N ¼ hii:

d

dt
N ¼

XNt

i¼ 1

i

�
dpi
dt

�
¼ �hrii þ hgii: (4)

We now pass to a mean-field picture and ignore fluctuation

effects, writing the averages of the i-dependent functions ri
and gi, respectively, as their values at the average of i:

d

dt
Nz� rhii þ ghii ¼ �N k0 k

cb
u

�
Ft

N

�
þ k0 gðNt � NÞ:

(5)

In the following, we shall take t to denote the dimensionless

time k0t. Defining the total scaled force Fh Ft/f*, we arrive
at the full mean-field ordinary differential equation that gov-
erns the evolution of a catch-bond cluster sharing a force Ft:
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d

dt
N ¼ �N

�
e�ðF=N�fcÞ þ eðF=N�fsÞ�þ gðNt � NÞ: (6)

This equation is to be considered the catch-bond equivalent
of the classical result derived for slip bonds by Bell (15). Its
validity, of course, depends on the relative magnitude of the
contribution of fluctuations. To establish this, we have
checked the ratio between the variance

s2 ¼ �ði� hiiÞ2	
and the observed mean N ¼ hii itself. Interestingly, because
we know the full stochastic structure underlying the mean-

field system, we can also compute the variance from an
ordinary differential equation similar to Eq. 6 (24,25). At
very low forces, and therefore low N (roughly N below 10)
the mean field approximation is seen to suffer from discrete-
ness effects. Likewise, for very high forces, the fluctuations
become larger and in particular lead to finite cluster life-
times, as we shall detail in Cluster Lifetimes: Uniform
Loading. In the slip-bond limit (fc / �N), an analytical
solution may be found for the saddle node bifurcation
(15), which may be computed to occur at a critical force
Fc ¼ Ntplog(g/e). In this case, the implicit equations deter-
mining this critical force�

_N ¼ 0;
d

dN
_N ¼ 0

�

do not permit a closed-form solution. For some key quanti-
ties, however, we do present analytical results also for the

catch-bond system. The equation is a mean-field approxima-
tion to the general, stochastic kinetics encoded by Eq. 3, and
we will first explore the resulting behavior at this mean field
level before presenting stochastic simulations of individual
trajectories.

Equation 6 is appropriate for large systems, i.e., for adhe-
sion clusters where many potential bonds are present. It
allows us to determine the evolution of the number of closed
bonds as a function of time, which of course asymptotes to
the equilibrium number of bound bonds. This equilibrium
cluster size is obtained numerically by solving dN/dt ¼ 0,
and the results are graphed in Fig. 2. This reveals the essen-
tial characteristics of the catch-bond cluster: As we increase
the constant external force F, the number of closed bonds
(normalized in the graph to the total number of bound bonds
to yield the closed fraction) increases as well: The shared
load makes for longer living single bonds. The rebinding
rate remaining constant, the cluster is able to retain its
closed bonds better at higher forces—as long as the average
force per closed bond does not exceed fmax. When it does
exceed this maximal value, the equilibrium number of
closed bonds drops rapidly as the cluster unbinds in
avalanche-like fashion; each single bond unbinding result-
ing in a higher load per bond and hence (as the force per
bond already exceeded fmax), increased unbinding.



FIGURE 2 Equilibrium number of bound bonds in a catch-bond cluster

as a function of the applied external force F. We graph the two solutions

branches of d/dt N ¼ 0, and label the stable (solid) and unstable (dashed)

branches as Ns and Nu, respectively (see text). Different curves correspond

to different values of rebinding rate: (solid curve) g ¼ 0.1; (shaded curve)

g ¼ 1. Points and the error bars (RMSD for each single simulation trajec-

tory) on these graphs correspond to the data obtained from the Gillespie

simulations.
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We may rewrite the right-hand side of Eq. 6 to yield

d

dt
N ¼ �2N cosh

�
F

N
� fmax

�
a�1 þ gðNt � NÞ; (7)

where
a ¼ exp

�
1

2
ðfs � fcÞ

�
:

This produces the following analytical result for the curves

in Fig. 2:

FðNÞ ¼ Nfmax 5N cosh�1

�
agðNt � NÞ

2N

�
: (8)

This equation describes both branches in Fig. 2 resulting

from the saddle-node bifurcation. The upper branch, which
we shall call Ns(F), is defined by the minus sign in Eq. 8 and
is stable: small fluctuations in the number of bound bonds
restore N to its equilibrium value Ns. The lower branch
Nu(F), corresponding to the plus sign, is unstable: a slightly
larger number of bound bonds causes N to shoot up to Ns,
whereas a slightly lower value causes the cluster to unbind
(N / 0). Eq. 8 also yields analytical expressions for the
maximal cluster size Nmax and the force at which it is
attained, Fmax:

Nmax ¼ Nt

�
ag

agþ2

�
;

Fmax ¼ Ntfmax

�
ag

agþ2

�
:

(9)

Two points are worth noting here:

1. The force at which the maximal cluster size is attained is
not simply the product of the total number of bonds Nt

and the single-bond critical force fmax; although this
force is an upper limit, there is a prefactor that depends
on the binding and rebinding rates, and varies con-
tinuously between 0 and 1. This factor is, in fact, the
maximal probability that a single bond is bound.

2. While Fmax is a lower bound on the force Fcrit at which
the cluster collectively unbinds, we have only found an
implicit equation to define Fcrit, given by

d

dN
F






Fcrit

¼ 0:

Solving this equation shows that, depending on the value of
g, Fmax is either a good or a poor estimate for Fcrit—in the
regime 0< g< 2 the error is no larger than 9%. We do note,
however, that Fcrit is a biologically significant quantity. For
instance, in rolling neutrophils, the catch bonds forged by L-,
and to a lesser extent, P-selectins, collectively unbind at a
critical shear stress (17–19) closely related to the critical
cluster unbinding force. A final point of potential biological
significance concerns the extent of the cluster reinforce-
ment. By setting F(N) ¼ 0, we can determine N0, the equi-
librium cluster size at zero force. Simple substitution yields

N0 ¼ ðagNtÞðagþ 2 coshfmaxÞ�1
:

With this unforced occupation, we compute the ratio
between the zero-force and the maximum cluster size:

Nmax

N0

¼ agþ 2 coshfmax

agþ 2
¼ 1þ ge

1
2 ðfs�fcÞ þ efcþfs

gefs þ 2e
1
2 ðfcþfsÞ

: (10)

This ratio is independent of the number of available bonds.
Its behavior as a function of fc and fc is telling: while it
plateaus for increasing fs, it may become arbitrarily big
as fc is increased. Recalling the definition of fc, we see
that biophysically, this limit corresponds to a high value
for kc and in particular, to the limit kc >> ks: an optimal
regime for catch-bond functionality. Note, too, that we
have not assumed in our catch-bond model that kc >> ks;
we simply observe that, only in this regime, the single-
bond lifetime curve displays a maximum at finite force.
Biophysical Journal 105(6) 1336–1345
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This analysis demonstrates that to ensure optimal collective
functioning, individual bonds should show this behavior.
And indeed, values reported for kc obtained from fits of Per-
everzev et al. (21) to single molecule experiments show that
they are consistently higher than ks, with the ratio kc/ks
ranging from 5 to 480. Interestingly, our fit of the two-state
model to the observed lifetime of the FNIII7�10-a5b1 bond
produces an even higher kc/ks ratio of 1.3 � 105 (see
Fig. 1). We interpret this as evidence that biophysical
catch-bond links are designed such that when operating in
concert, they provide maximal collective reinforcement.

So far, we have considered the mean-field, equilibrium
properties of a cluster of catch bonds. We have shown that
the equilibrium number of closed bonds rises with rising
force, up to a point, and that aspects of this process may
be understood analytically. In what follows, we analyze
dynamical aspects of such clusters and will, in particular,
address the lifetime: through a combination of factors,
catch-bond clusters may become extremely long-lived.
0 5 10 15 20 25
0

50 u

t(s)

FIGURE 3 Stochastic trajectories for Nt ¼ 1024, g ¼ 0.1 and two

different values of the applied force F ¼ 450 and F ¼ 1450 (very close

to Fcrit), with Ni ¼ 60 and 350, respectively. (Solid lines) The number of

closed bonds either increases or decreases to reach its stable equilibrium

value. (Dashed lines) Unstable solutions of Eq. 6. Two out of the three

trajectories for the larger value of F correspond to cascade unbinding of

a cluster. By compiling statistics on these unbinding events, we obtain

the cluster lifetime from these simulations.
STOCHASTIC SIMULATIONS

We now turn to simulations of the time-dependent behavior
of a cluster of catch bonds under a constant load. We start
our runs with a cluster with some initial number of closed
bonds Ni, apply a constant total force to this cluster, and
observe how the fraction of closed bonds evolves in time.
The one-step master equation lends itself well to simulations
using the Gillespie algorithm (26), which simulates events
in stochastically distributed time intervals.

The initial value Ni is significant for the typical evolution
of the simulation. Consider Fig. 2, which shows the stable
and unstable branches of the cluster size. For a fixed force
F, there are two equilibrium cluster sizes; the unstable
branch Nu and the stable branch Ns above it. For Ni, there
are consequently three distinct possibilities:

1. Ni> Ns. Simulations starting here are expected to display
a decrease in N up until the point where N attains its sta-
ble equilibrium value Ns.

2. Nu < Ni < Ns. Simulations starting in this regime will
tend to show an increase in N until the stable value of
Ns is attained.

3. Ni > Nu. Because the flow is away from the unstable
branch, simulations starting in this regime will show
complete detachment of the cluster until N ¼ 0.

The first and second cases are indeed apparent—typical tra-
jectories in this regime are plotted in Fig. 3, where we start
simulations from above and below Ns. Fig. 3 also shows two
typical unbinding events: when the fluctuating number of
bound bonds stochastically drops below Nu, the entire clus-
ter unbinds in cascade-like fashion. Note that even in the un-
bound state there is a finite number of bound bonds due to
the random rebinding modeled by g. Stochastic simulations,
in principle, also offer direct access to the growth kinetics of
Biophysical Journal 105(6) 1336–1345
a catch-bond cluster. This is a topic of great relevance, but
to meaningfully address it, it must be considered jointly
with the buildup of the traction force over time and, by
extension, the evolution of the associated stress fiber. We
choose here to consider the fixed force equilibria and life-
times, and will not address the complex issue of cluster
growth and maturation.
CLUSTER LIFETIMES: UNIFORM LOADING

How long will a cluster stay bound? We have been calling it
stable, but at best it is metastable, because sooner or later, a
fluctuation will come along that is sufficiently large to drive
N below Nu and cause the entire cluster to unbind. There are
several ways to compute or determine the lifetime t. It is,
however, difficult to obtain directly from simulations: As
we will show, the lifetime becomes prohibitively large for
realistic parameters and in simulational practice, the cluster
never unbinds. One instructive way to view the lifetime is to
construct the effective potential barrier that the cluster must
cross to reach the unstable branch, starting from the stable
region. To this end, we interpret the mean field evolution
equation (Eq. 6) as a gradient flow of the form
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dN

dt
¼ �dUðNÞ

dN
;

which defines the effective potential U(N). Fig. 4 graphs the
shape of this potential for various forces, and provides an
intuitive interpretation for the unbinding transition: from
the local minimum Umin ¼ U(Ns) the cluster passes to the
left over a barrier whose height we shall indicate with
U(Nu) ¼ Umin þ DU. Fig. 4 b graphs this potential barrier
as a function of the applied force, demonstrating a generic
maximum at finite force.

The height of the barrier will determine the lifetime of the
cluster according to an Arrhenius law (24),

t ¼ t0e
DU=U+

; (11)

with t0 a reverse of the attempt frequency and U* some
reference effective potential (note that U is dimension-
less—the time derivative in the gradient flow equation is
taken with respect to a nondimensionalized time). We may
estimate U* as the effective potential lost per unbinding
bond at zero force, i.e.,

U+ ¼ DUðF ¼ 0Þ
N0 ¼ 1

2
gNt

:

The value t0 is a timescale on the order of the single-bond
lifetime, i.e., seconds. Combined, this yields enormous life-
times, and unbinding of the cluster is generally not expected
to occur unless forces very close toFcrit are applied (see also
Fig. 3).
dN/dt=U'(N)
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FIGURE 4 (a) The effective potential U(N) for F¼ 10, 50, 80, 130, 180,

210, and g ¼ 0.1. (b) The barrier height DU for g ¼ 0.1.
A more direct, but perhaps less intuitive way to obtain the
cluster lifetime is by explicitly constructing the lifetime by
summing over all possible dissociation paths, weighed with
their collective rates (27):

t ¼
XNs

i¼ 1

"
1

rðiÞ þ
XNt

j¼ iþ1

1

rðjÞ
Yj�1

k¼ i

gðkÞ
rðkÞ

#
: (12)

Fig. 5 compares directly the results from a small stochastic
simulation to both the explicit summation method, and a
best fit to the potential method, demonstrating that either
works well. As expected, this small cluster displays a
maximum in its lifetime at a finite force. What these consid-
erations demonstrate is that not only do catch-bond clusters
grow with increasing force, they also become longer-lived at
higher forces. This enhancement of the lifetime is very pro-
nounced: increasing the number of available receptors to
1024 (a number we have been using throughout this article
in simulations) shows why we never see clusters unbind in
previous simulations—the average lifetime at parameter
values form single-bond experiments may become as long
as 1020 s (see also Fig. 6).
Slip-bond clusters, likewise, may be extremely long-lived

(13,22,28). The principal cause for this is that, provided suf-
ficiently many bonds are in principle available, the rupture
of a single closed bond in the slip-bond cluster raises the
force per bond on the remaining closed bonds, and therefore
makes them more likely to unbind. However, this effect is
offset almost completely for large clusters by the increased
rebinding when more unbound bonds are available to do so.
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FIGURE 5 Lifetime of a catch-bond cluster with Nt ¼ 128, g ¼ 0.1

(dashed line: Arrhenius law; solid line: pathway model; points: Gillespie

simulations) as a function of force. Parameters in Arrhenius law were

t0 ¼ 3.2 and U* ¼ 9.2.
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FIGURE 6 Lifetime of a catch-bond cluster with Nt ¼ 1024, g ¼ 0.1

(dashed line: Arrhenius law; solid line: pathway model) as a function of

force. Parameters in Arrhenius law were t0 ¼ 1.4 and U* ¼ 59.4.

FIGURE 7 Lifetime of a catch-bond cluster with Nt¼ 1024, g¼ 0.1 with

total force distributed nonuniformly across four zones (line with points,

0.05F, 0.18F, 0.31F, and 0.45F; line with squares, 0.12F, 0.21F,

0.29F, and 0.38F; line with diamonds, 0.20F, 0.23F, 0.27F, and 0.30F;

line with triangles, 0.25F per zone) as a function of force. Cluster lifetime

shortens considerably with increasing asymmetry, and the unpeeling force

diminishes.
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The catch-bond cluster, however, is even longer-lived
because, in the stable regime, unbinding of a single bond
also causes a higher force per remaining bond; but for catch
bonds this may actually render them even longer-lived.
CLUSTER LIFETIMES: ASYMMETRIC LOADING

In this section we consider one specific case of nonuniform
loading, corresponding to the concentration of forces along
the edges of a focal adhesion (FA) as reported in Plotnikov
et al. (23).We divide the FA into distinct zones, and distribute
the total force linearly across them. Unpeeling of the FA is
implemented by fully detaching a zone once, for this zone,
the average lifetime is exceeded. The detached zone is then
prohibited from rebinding, which accounts for the spatial
separation in the unpeeling region that renders rebinding
highly unlikely. Once a zone is detached, the force that it
was supporting is assigned, again in graded fashion, to the
remaining bound zones. As in Sun et al. (13), these zones
are nowmore likely to also unbind, causing a complete unpe-
eling of the structure. The total lifetime of the edge-loaded
cluster is now equal to the lifetime of the rearmost zone.
We collect our results in Fig. 7. The most striking finding
is that for the same value of Nt, the cluster is much shorter-
lived in edge-loading than in uniform loading. This is due
to our choice of excluding unpeeled bonds from rebinding,
and as we have seen in the preceding section, this rebinding
is a strongly stabilizing process in the uniformly loaded clus-
ter. We speculate that cells may actually use this force-distri-
bution dependence to ensure that (for instance) filopodia-like
processes provide quick and tentative probes of the external
Biophysical Journal 105(6) 1336–1345
elasticity, but do not remain bound excessively long. The
results we present in Fig. 7 are obtained by direct computa-
tion of lifetimes according to Eq. 12. For more elaborate or
dynamic loading conditions one must turn to numerical
simulation. Because our findings for nonuniform loading
agree with those reported in Sun et al. (13), we expect qual-
itatively similarmodifications of the adherent behavior under
the additional loading protocols reported there.
LOADING BY MOTORS PULLING ON ACTIN
STRESS FIBERS

In this final section, we consider what happens to a catch-
bond cluster when the force is not applied externally, but
provided by motors actively pulling from the inside.
Although motors are not the only source of force in cellular
adhesions—polymerization forces, for instance, may
contribute too—we choose to consider only active, motor-
generated forces. For the catch bonds we consider here,
Schiller et al. (29) report a strict dependence of FA forma-
tion and stability on myosin II-mediated forces for several
catch bonds including a5b1. Thus, we consider focal adhe-
sions connecting the passive ECM to actively contractile
actin stress fibers inside the cell. Inspired by Schwarz
et al. (22) and Erdmann and Schwarz (28), we represent
the elastic media inside and outside the cell as elements
connected in series (Fig. 8). In this simplified system, the
mechanosensory question we address is the following: how
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FIGURE 8 The spring-fiber system where the passive ECMwith a spring

constant of KECM is connected by a force bearing FA to the active contrac-

tile fiber with a spring constant KCSK. Rather than have an external force

effect a displacement on one of the springs, this displacement dX is now

due to an active contraction of the stress fiber. We model the evolution of

this displacement with the force-velocity relation Eq. 13.

0.8

N/Nt
Wmax=13fJ

Wmax=7fJ

Catch-Bond Clusters 1343
can the number of closed bonds in the adhesion cluster—an
internal measure—report on the extracellular stiffness, an
external property. The effective spring constant of the
outside-inside system is given by 1/Keff ¼ 1/KECM þ
1/KCSK, and we consider the force of the myosin motors
pulling on the adhesion as given by a simple force-velocity
relation that reflects the basic tendency to slow down upon
increased counterloading. Letting X(t) represent the strain
as a function of time—which equals the displacement
against a fixed reference point of the contractile stress
fiber—we express the evolution of the strain with time as

dXðtÞ
dt

¼ v0

�
1� FðtÞ

Fs

�
; (13)

where v0 is the bare, unloaded velocity of the contractile
fiber and F is its stall force: The force at which the fiber
0.01 50 100

0.1

0.4
Wmax=1fJ

EECM(kPa)

FIGURE 9 The fraction of closed bonds as a function of the ECM stiff-

ness EECM. We consider here 120 parallel filaments, each of which is tensed

by 4� 105 motors. Each of these motors possesses an effective stall force of

10 pN (34). The constant workWmax varies between the curves (dotted line

depicts Wmax ¼ 13 fJ; dashed line, 7 fJ; solid line, 1 fJ), corresponding to

between 0.6 and 8 kBT per motor. If the external rigidity is too high, a

catch-bond cluster is unable to hold on and detaches.
s

can no longer move. The choice for a linear force-velocity
relation (identical to the one in Schwarz et al. (22)) deserves
some motivation: Although it is well established that collec-
tive force-velocity relations may display complicated, con-
centration-dependent and nonlinear characteristics, we feel
that, for our purposes and for the sake of transparency, our
simplified approach is justified. For instance, in Erdmann
and Schwarz (30) it is shown that small ensembles of
myosin II motors display collective force-velocity relations
that start at a finite unloaded velocity and monotonously
(though not exactly linearly) decrease until a collective stall
force is reached. In replacing this with a linearly decreasing
force-velocity relation, we have sought to strike a balance
between retaining the essential characteristics of collective
behavior, while introducing a minimum of additional
parameters.
In the two-spring system, the force F(t) itself is a simple
function of X(t) through the elastic relation

FðtÞ ¼ KeffXðtÞ ¼ �
K�1

ECM þ K�1
CSK

��1
XðtÞ: (14)

Substituting Eq. 14 into Eq. 13, we solve for the evolution of
the motor-supplied force with time, which expressed in the
same dimensionless units as before yields a simple exponen-
tial approach to a plateau force,

FðtÞ ¼ Fs

�
1� e�t=tK

�
; (15)

where tK ¼ Fs/v0K is the relaxation time. Note that the stiff-
nesses KECM and KCSK we define here have units of spring
constants—force per length—rather than the force per
area (Pascals) appropriate for 3D moduli. To translate our
results to experimental stiffnesses, we must factor in the
basic lengthscale over which these forces are applied.
Although there is significant variation in the size and areas
of FAs, most studies report typical dimensions of mm (see,
e.g., Han et al. (31)). We therefore choose to convert our
spring constants to effective moduli with this typical length,
which is how the stiffness axis of Fig. 9 was obtained. To
mark the distinction, we label this axis EECM to indicate
moduli. This timescale is slow compared to the rapid
exchange timescales of the catch-bond cluster, and we
consider the situation where N(t), the instantaneous number
of closed catch bonds, followsF(t) adiabatically. At present,
regardless of the elasticity of ECM or CSK, F(t) will
Biophysical Journal 105(6) 1336–1345
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approach the stall force for long times. As such, this force
evolution cannot help discern the extracellular stiffness.
The cell as a whole, however, will invest a certain amount
of energy into the contractile fibers. We hypothesize that
this is equally distributed across each of its stress fibers
(each receiving the average), in which case the system is
operating under one further constraint: a set total energy
expenditure. Similarly motivated hypotheses of constant
work were put forward in Schwarz et al. (22) and Bischofs
and Schwarz (8). The assumption of a fixed contractile
energy investment is further supported by recent experi-
mental determination of precisely this quantity: Schiller
et al. (29) measure it to be ~400 fJ for an entire cell which,
assuming between 50 and 100 FAs per cell, comes to a few
to tens of fJ per focal adhesion. We express the elastic work
invested in a single focal adhesion, after a time t, as

WðtÞ ¼
Z
path

FðtÞdXðtÞ ¼ 1

2

F2
s

Keff

�
1� e�t=tK

�2
: (16)

Setting a limit on W(t) ¼ Wmax thus effectively terminates
this process at a stop time t+, defined implicitly by
W(t+) ¼ Wmax. The force at this time, F(t+), may be
computed to be

F
�
t+
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WmaxKeff

p
: (17)

To complete the force sensor, we note that this force, which
depends on the effective and therefore the external stiffness
KECM, in turn defines a fraction of closed bonds
N(F(KECM)): The asymptotic fraction of bound bonds—
which is an internally observable quantity—directly reports
on the external stiffness. Such mechanosensory relevance of
catch bonds, and specifically a5b1, has been suggested
before in Friedland et al. (10), but our direct correlation
between an intracellular observable and the extracellular
stiffness represents a very specific proposal for how this
mechanosensory pathway is organized at the molecular
level. As such, the catch-bond cluster provides the function-
ality of a mechanosensor. Our findings support the conclu-
sions of Plotnikov et al. (23), the authors of which argue
that each focal adhesion, individually and autonomously,
acts as a local rigidity sensor and that the presence of forces
is essential for focal adhesion formation and stabilization—
as it is in our clusters. These findings are summarized in
Fig. 9, which computes numerically the N(EECM) character-
istics for realistic biophysical parameters, and different
values of the work Wmax. Note that for realistic energies
per FA, the rigidity sensor itself functions (i.e., does not un-
bind) within a stiffness range of roughly 1–50 kPa. Most
physiological environments for which this type of rigidity
sensing could be relevant are well within this regime.

Recent experiments have also suggested an important role
for fluctuating (23) or cyclically applied (32) forces in
Biophysical Journal 105(6) 1336–1345
dynamical processes such as persistent motility, durotaxis,
and cytoskeletal remodeling. We do not consider varying
forces in the simulations presented here, but note that the
relaxational timescales in our model (visible, for instance,
in Fig. 3 as the cluster approaches equilibrium from Ni)
do allow our results to be applied to relatively slowly vary-
ing load scenarios, where the cluster composition may adia-
batically follow the load.

Our model predicts a very specific force-dependence of
the diffusion of catch-bond integrins in focal adhesions.
Bound bonds, anchored to the ECM, will exhibit lower
diffusivity at larger applied forces, i.e., for higher external
matrix stiffnesses, and more of them will be bound. This
will result in a lower mobility, both collective and individ-
ual, as the force is raised—until the critical force at which
very abruptly the catch bonds collectively detach and
become mobile again. These effects should be measurable
either by fluorescence recovery after photobleaching, but
better still in experiments based on single molecule tracking
or superresolution imaging such as those reported in Rossier
et al. (33). Precise comparison between such experiments in
systems such as Truong and Danen (20) requires further
modeling of the spatial distribution of catch bonds, particu-
larly in combination with pure slip bonds. As of this writing,
we are in the process of simulating the mixed/diffusive sys-
tem numerically, to determine the correlation between in-
tegrin mobility and FA traction force.
CONCLUSIONS

The fraction of bound integrin catch bonds, connecting a
focal adhesion site to the ECM, shows a regime of increase
with increasing force. As such, these clusters provide a
stronger adhesive connection to the environment when the
focal adhesion is under tension. In addition to becoming
more tightly connected, the catch-bond cluster is also
considerably longer-lived at higher forces—absent other
cues to cause unbinding it may become, effectively, indefi-
nitely adherent. In situations where the stress is actively
generated by molecular motors pulling on an actin stress
fiber, the fraction of bound bonds is a one-to-one reporter
for the external ECM stiffness. This bound fraction, if prop-
erly coupled to further downstream intracellular sensory
processes, may serve as a primary sensory link in a mecha-
nosensing pathway.
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