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Abstract
Statistical methods such as latent class analysis can estimate the sensitivity and specificity of
diagnostic tests when no perfect reference test exists. Traditional latent class methods assume a
constant disease prevalence in one or more tested populations. When the risk of disease varies in a
known way, these models fail to take advantage of additional information that can be obtained by
measuring risk factors at the level of the individual. We show that by incorporating complex field-
based epidemiologic data, in which the disease prevalence varies as a continuous function of
individual-level covariates, our model produces more accurate sensitivity and specificity estimates
than previous methods. We apply this technique to a simulated population and to actual Chagas
disease test data from a community near Arequipa, Peru. Results from our model estimate that the
first-line enzyme-linked immunosorbent assay has a sensitivity of 78% (95% CI: 62–100%) and a
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specificity of 100% (95% CI: 99–100%). The confirmatory immunofluorescence assay is
estimated to be 73% sensitive (95% CI: 65–81%) and 99% specific (95% CI: 96–100%).
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1 Introduction
Chagas disease is a vector-borne infection caused by the protozoan parasite Trypanosoma
cruzi. In the Americas, Chagas disease is responsible for more morbidity and mortality than
any other parasitic illness (World Health Organization, 2004). Transmission of T. cruzi
typically occurs when contaminated feces of an infected blood-feeding triatomine insect
enter a human host through the insect bite site or mucous membranes (Kirchhoff et al.,
2004). T. cruzi can also be transmitted through blood transfusions (Young et al., 2007),
organ transplants (Kun et al., 2009), consumption of contaminated food (Nóbrega et al.,
2009), and congenitally from mother to child (Bern et al., 2009).

Many people infected with T. cruzi are unaware of their infection (Tarleton et al., 2007). For
this reason, various serologic tests are used to detect infected individuals and protect the
blood supply in Latin America (de Andrade et al., 1996, Blejer et al., 2001, Langhi Jr et al.,
2002, Pirard et al., 2005) and the United States (Centers for Disease Control and Prevention,
2007). Proper interpretation of the results of these diagnostic tests requires knowledge of the
sensitivity and specificity of each assay. Unfortunately there is no “gold standard” reference
test for identifying T. cruzi infection (Tarleton et al., 2007). Parasitologic testing, which
provides a clear definition of infection and is virtually 100% specific, is insensitive (Pirard
et al., 2005). Serologic assays are frequently employed, but these also lack sensitivity due to
their preparation from inappropriate stages of the parasite life-cycle (Tarleton et al., 2007) or
because there is a great and largely unknown variety among T. cruzi strains in different
regions (Verani et al., 2009). Absent a perfect reference test, the performance of Chagas
disease assays can only be estimated by statistical methods that compare results from two or
more imperfect tests.

Latent class analysis (LCA) is a popular approach to estimating performance of diagnostic
tests in the absence of a gold standard. In LCA, a probabilistic model is assumed for the
relationship between the diagnostic test results and the unobserved, or latent, disease status
(Hui and Walter, 1980, Qu et al., 1996, Goetghebeur et al., 2000). In this paper we focus on
LCA estimates in the commonly encountered scenario in which only two conditionally
independent diagnostic tests are used (Hui and Walter, 1980, Joseph et al., 1995, Staquet et
al., 1981, Walter and Irwig, 1988, Basáñez et al., 2004). We also perform a sensitivity
analysis to investigate the effect of conditional dependence on our parameter estimates. An
unbiased estimate for the two-test case is desirable in the context of Chagas disease, where
limited resources restrict the number of tests that can be performed.

If the two tests are applied to a single population, then the model has five unknown
parameters (the disease prevalence, the two sensitivities, and the two specificities) but the
data contain only three degrees of freedom. Because the number of parameters exceeds the
number of degrees of freedom, the model is nonidentifiable and estimates can only be
obtained by introducing constraints (Walter and Irwig, 1988). One constraint technique
consists of a Bayesian approach in which informative prior distributions are placed on at
least two parameters (Joseph et al., 1995, Basáñez et al., 2004). A problem with this
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approach is that in nonidentifiable problems the posterior parameter estimates continue to be
affected by the priors even as the sample size goes to infinity (Dendukuri and Joseph, 2001).

Alternatively, the two tests can be applied to two distinct populations. The model is then
identifiable (provided that the two populations have sufficiently different disease
prevalences) and can be solved by a maximum likelihood procedure (Hui and Walter, 1980).
This approach has been used in the case of two geographically distinct populations with
different prevalences (Hui and Walter, 1980, Johnson et al., 2001).

In this paper we describe a method for modeling the risk of disease as a function of multiple
continuous individual-level covariates. Extended latent class models with covariates have
been described previously (Huang and Bandeen-Roche, 2004, Hadgu and Qu, 1998,
Dendukuri et al., 2009). Temporal covariates have been used, for example, to model test
results as a function of days post infection (Engel et al., 2009) or to allow infection
probability to depend on a covariate such as age (Branscum et al., 2008). We extend these
analyses to consider a specific example of a population in which the probability of Chagas
disease depends on several measurable temporal covariates. Our technique produces more
precise parameter estimates than models that collapse the risk profile into a single binary
covariate.

2 Methods
2.1 Specification of Covariate-Augmented LCA Model

We first review the likelihood computation for a two-test latent class model in which a
single binary covariate separates tested individuals into two groups with different
prevalences. We then show how to generalize this model to the case where the risk of
disease is a continuous function of multiple covariates. Assume that two binary tests yi (i =
1,2) are applied to N individuals. Positive test results are represented by yi = 1 and negative
results by yi = 0. Let Si and Ci be the sensitivity and specificity, respectively, of test yi. Si
and Ci are assumed constant across all individuals. A binary covariate is measured and used
to divide the sample N into two subpopulations of size Ng (where g = 1,2 and N1 +N2 = N)
with distinct prevalences σg.

The likelihood l of the model is

(1)

where Ngjk (j, k = 0,1) is the number of individuals in population g with observed test results
y1 = j and y2 = k. This likelihood is (apart from a constant coefficient) a multinomial
likelihood. The goal of traditional LCA is to find parameters σg, Si, and Ci that maximize l.

We now relax the assumption of a single binary covariate. For individual n (n = 1,…, N) in
the sample, let the probability of disease σn be a function of M measurable covariates:

(2)

where ψm(n) (m = 1,…,M) is the value of the mth covariate in this subject. The covariates
ψm may be continuous (e.g., age) or discrete. Specification of σn also requires a set of U risk
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parameters β = (β1,…, βU) that capture the manner in which the covariates influence the risk
of disease. The functional form of σn is assumed to be known a priori and the model
estimates the values of the risk parameters β. The likelihood L of this variable-risk model is

(3)

where δnjk = 1 if individual n has test results y1 = j and y2 = k, and δnjk = 0 otherwise. It can
be shown that when σn is a binary function of a single covariate, equation (3) reduces to the
two test/two population likelihood function. The advantage of allowing σn to vary across all
individuals is that in some cases the disease process may best be described as a function of
one or more possibly continuous variables.

2.2 Chagas Disease Data and Infection Risk from Arequipa, Peru
The development of our model was motivated by Trypanosoma cruzi diagnostic test data
from La Joya (population 2252), a community in the Peruvian department of Arequipa. In
2008 a cross-sectional serologic and socio-demographic study was conducted in La Joya. A
total of 1333 individuals participated in the survey. Fifteen subjects were excluded from the
following analysis due to missing or indeterminate data, making N = 1318 in the final
sample.

Each individual’s serum was screened for T. cruzi infection with a commercially available
enzyme-linked immunosorbent assay (ELISA) (Chagatek, Laboratorio Lemos SRL, Buenos
Aires). All ELISA-positive sera and a random sample of 20% of ELISA-negative sera were
also tested with an immunofluorescence assay (IFA) used as a confirmatory test (Table 1).
The study protocol was approved by the institutional review boards of the Johns Hopkins
Bloomberg School of Public Health and Universidad Peruana Cayetano Heredia, and
analysis of data was approved by the University of Pennsylvania and Vanderbilt University.

Analysis of confirmed positive (ELISA+/IFA+) individuals showed that the yearly risk of T.
cruzi infection in La Joya was greater prior to an insecticide spray campaign that occurred in
1995. The yearly infection risk for time lived outside the study community was also
different than the risk during time spent in La Joya. The total probability of infection was
best fit by an expanded catalytic model (Muench, 1959) given by

(4)

where the individual-level covariates are Tpre(n), Tpost(n), and Tout(n) (Delgado et al., 2011).
Tpre represents the number of years lived in the study community prior to 1996 (the first full
calendar year in which vector-borne transmission was interrupted); Tpost is the number of
years lived in La Joya after transmission interruption; and Tout is number of years lived
outside the study community. For each individual, Tpre(n) + Tpost(n) + Tout(n) = age. Figure
(1) shows the distribution of these temporal covariates in the sampled residents of La Joya.
In the definition of σn, the coefficients βpre, βpost, and βout represent the differential risk
factors for exposure to T. cruzi during each residence period. The final model parameter, K,
is related to the probability of time-independent transmission of T. cruzi, including
congenital transmission.
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2.2.1 Verification Bias Correction—Only 20% of ELISA-negative individuals in La
Joya underwent testing with IFA. This type of missing data, in which individuals with
positive outcomes on a screening test are preferentially selected for subsequent confirmatory
testing, is commonly referred to as verification bias (Greenes and Begg, 1985). Verification
bias is problematic in our situation because the likelihood function derived in Section 2.1
includes contributions only from individuals tested with both assays. Thus useful covariate
information from 80% of ELISA-negative individuals will be discarded. Furthermore, an
attempt to apply equation (3) to the subset of individuals who underwent both diagnostic
tests would result in inaccurate estimates of disease prevalence and ELISA sensitivity and
specificity, due to the falsely low number of ELISA-negative individuals in the sample.

Fortunately equation (3) can be modified in a straightforward manner to allow all
individuals, including those who underwent only one diagnostic test, to contribute to the
likelihood function. Let α represent the fraction of individuals with y1 = 0 who were tested
with the confirmatory test (e.g., α = 0.2 in La Joya). There are five possible combinations of
diagnostic test results whose probabilities are given by

(5)

The proper covariate-augmented likelihood function, in the setting of verification bias,
includes contributions from all five probabilities:

(6)

where δn0X = 1 if individual n has y1 = 0 and is not tested with assay y2, and δn0X = 0
otherwise.

2.3 Simulation Methods
To evaluate the accuracy and robustness of our proposed method, we performed four sets of
simulations (hereafter referred to as Simulations A through D). The first three simulations
were based on populations with epidemiologic characteristics similar to those found in our
La Joya Chagas disease survey. In each case we created a set of N = 1318 individuals with
values of Tpre(n), Tpost(n), and Tout(n) identical to those in our La Joya sample (Figure 1).
We then used equation (4) to assign a unique probability of infection, σn, to each individual.
We fixed the population’s risk parameters at βpre = 0.01, βpost= 0.001, βout= 0.0015, and K =
0.005. For biological plausibility, these values were chosen to be similar to risk parameters
estimated previously in La Joya by Delgado et al. (2011). Our choice of risk factors,
combined with the measured temporal covariates, produced an overall disease prevalence of
8.5% in the simulated populations.

We next assigned a sensitivity and specificity to each diagnostic test. To measure the
performance of our model over a range of diagnostic test parameters, we chose nine
different combinations of Si and Ci. Diagnostic test results for each individual were then
assigned probabilistically using a random number generator. Given Si, Ci, and an
individual’s unique value of σn, the probabilities of being assigned each of the five possible
combinations of test results were as given in equation (5). In the simulations with no
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verification bias, there were only four possible combinations of test results. We repeated this
procedure to generate a total of 1000 simulated data sets per sensitivity/specificity
combination.

The purpose of the Simulation A was to compare our method to the two test/two population
LCA model described in Hui and Walter (1980). The simulated diagnostic test results were
created with no verification bias (α = 1). To form two populations we divided the sample
into “young” and “old” groups based on whether the individual was born before or after the
1996 transmission interruption. The two-population model assumed that the prevalences
were distinct in the two groups, and equation (1) was used to define the model likelihood.
We minimized – ln(l) using the nlminb function in R 2.8.1 (R Foundation for Statistical
Computing, www.r-project.org). We also fit each data set with our variable-risk model
described in Section 2.1. This model assumed that the functional form of σn was as given in
equation (4). Equation (3) was used to define the model likelihood, and we used the R
nlminb function to minimize – ln(L). Total computation time for all 9000 replicates of
Simulation A was seven hours on a Linux-based machine with a single 2.0GHz Intel
processor.

We performed a second set of simulations (Simulation B) to determine the effects of
verification bias on our results. For this test we set α = 0.2 when creating the simulated
diagnostic test data. Thus 80% of individuals with y1 = 0 were not assigned a result on test
y2. Equation (6) was used to determine the likelihood of our proposed model, and we again
used the R nlminb function to minimize – ln(L).

Two additional simulations were designed to evaluate our model’s robustness with respect
to misspecification of the functional form of σn. In our third simulation (Simulation C) we
generated diagnostic test results as above using the complex functional form of σn given in
equation (4). We then conducted our latent class analysis under the erroneous assumption of
the following simpler prevalence function in which the probability of infection depends only
on age: σn(An) = 1– exp(–βage An), where An is the age of the nth individual and βage is a
constant age-based risk parameter.

In our final simulation (Simulation D) we created a population of 1000 individuals with a
flat age distribution uniform(0, 80 years). The disease prevalence as a function of age was

quadratic:  The value of the age coefficient was chosen such that σn
= 0 in newborns and rises to σn = 19.2% in individuals with the maximum age of 80 years.
Once again we chose nine different combinations of Si and Ci and stochastically assigned
diagnostic test results to each individual. We performed our parameter estimation using a
misspecified LCA model that assumed a disease prevalence σn = βageAn that varied linearly,
rather than quadratically, with age.

2.4 Analysis of Peruvian T. cruzi Test Data
We analyzed the actual La Joya residence time data and Trypanosoma cruzi test results
(Figure 1 and Table 1) with our variable-risk LCA technique. Equation (4) was used to
specify the functional form of σn. Given this expression for σn, we constructed the model
likelihood via equation (6). The nlminb function in R 2.8.1 was used to minimize –ln(L). In
addition to computing the maximum-likelihood parameters, we employed a percentile
bootstrap (1000 iterations) to compute 95% prediction intervals for each parameter (Efron
and Tibshirani, 1993).

2.4.1 Relaxation of Conditional Independence Assumption—We extended our
model to explore the possibility of covariance between the ELISA and IFA test results in La
Joya. We specified the conditional dependence between the tests given a subject’s true
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infection status via two extra parameters, covs12 and covc12, that represent the covariance
between the tests in infected and uninfected individuals, respectively (Dendukuri and
Joseph, 2001). The effect of the covariance parameters is to increase the probability of
identical test results (i.e., y1 = y2) by an amount covs12 (in infected subjects) or covc12 (in
uninfected subjects) compared with the conditionally independent case. We restricted our
analysis to the scenario in which the two diagnostic tests are positively correlated.

We modified equation (6), using the methods of Dendukuri and Joseph (2001), to compute
the model likelihood in the conditionally dependent case. It has been shown that two-test
latent class models that allow for unknown conditional dependence are nonidentifiable even
when the two diagnostic tests are applied to a large number of distinct populations (Johnson
and Hanson, 2005). Because the full model is nonidentifiable, we did not attempt to
maximize the likelihood function to solve for all parameters simultaneously. Instead, we
performed a sensitivity analysis to determine the effect of different covariance parameters
on our La Joya parameter estimates.

For any given Si and Ci, the covariance parameters must satisfy the relations covs12 ≤
min(S1,S2) – S1S2 and covc12 ≤ min(C1,C2) –C1C2 (Dendukuri and Joseph, 2001). If we
assume the Chagas disease diagnostic tests used in La Joya have greater than 50%
sensitivity and specificity, then covs12 < 0.25 and covc12 < 0.25. Thus for our sensitivity
analysis we chose eleven different fixed combinations of covs12 and covc12 between 0 and
0.2. For each case we obtained maximum-likelihood estimates of diagnostic test sensitivity
and specificity. We also computed 95% prediction intervals for each parameter using a
percentile bootstrap with 1000 iterations.

3 Results
3.1 Simulation Results

Results of Simulation A are shown in Table 2. Our model produces more accurate sensitivity
and specificity estimates than the two test/two population model, with a bigger gain in
accuracy for sensitivity. For all settings considered and for both sensitivity and specificity,
the mean square error (bias2 + variance) of our model’s estimator is at least as small as that
of the two test/two population model. Our model’s sensitivity estimate is considerably less
biased than that of the two test/two population model when the true sensitivity is 95%. For
other settings, both models estimate sensitivity with low bias. The standard deviation of our
model’s estimate of sensitivity is more than 25% smaller than that of the two test/two
population model in 8 of 9 settings for both S1 and S2. With respect to specificity, the bias of
our model’s estimates and those of the two test/two population model are similar and small
in all settings. The standard deviation of our model’s specificity estimate is always smaller
than that of the two test/two population model.

Table 3 shows results from Simulation B. Compared to “Model1” from Simulation A (Table
2), in which there is no verification bias, the sensitivity estimates from Simulation B have
similar bias when the true sensitivity is 70%. Sensitivity estimates from Simulation B are
slightly more biased when the true sensitivity is at least 85%. Standard deviations of the
sensitivity estimates from Simulation B are 28–83% higher than those of Simulation B. The
biases and standard deviations of the specificity estimates from Simulation B are similar to
those of Simulation A across all values of true specificity.

Results of Simulations C and D (Tables 4 and 5) demonstrate that when the LCA model’s
assumed prevalence function differs from truth, the bias and the variance of the estimated
diagnostic test parameters increase. However, the true values of Si and Ci are still contained
within the model’s 95% confidence intervals for all combinations of sensitivity and
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specificity considered. Furthermore, in these populations with low disease prevalence, even
the misspecified models estimate Ci with small bias. In Table 5 we also present the mean
value of – ln(L) for each simulation. In 8 of 9 simulations the properly specified quadratic
model has a larger likelihood.

3.2 Results of Analysis of La Joya T. cruzi Data
Parameter estimates from our covariate-augmented LCA model applied to actual Chagas
disease diagnostic test data from La Joya, Peru, are shown in Table 6. All estimates were
calculated using the likelihood function with verification bias correction described in
Section 2.2.1. The estimated specificities of ELISA and IFA in La Joya are nearly 100%. In
contrast, the point estimates of the sensitivities of both tests are less than 80%. In the case of
ELISA, however, the uncertainty is large enough that a sensitivity as high as 100% cannot
be ruled out.

The model’s estimates of the risk parameters βpre, βpost, βout, and K confirm that the yearly
risk of T. cruzi infection prior to the insecticide spray campaign (βpre) was much greater than
the post-spray risk, which was indistinguishable from zero. The estimated infection
prevalence in the population (found by averaging σn across all subjects) is 13.4%.

The estimated positive predictive values of ELISA and IFA in patients who tested positive
on those assays are high (Figures 2A and 2B). Because of the tests’ high specificities in this
population, most positive results represent true infections. Furthermore, using IFA to
confirm positive ELISA results does not often significantly change the posterior probability
of infection (Figures 2C and 2D).

The estimated sensitivity and specificity of ELISA and IFA in La Joya are reduced when the
diagnostic tests are assumed to be conditionally dependent (Table 7). The sensitivities of
ELISA and IFA are as low as 67% and 58%, respectively, when covs12 and covc12 are at
most 0.05. Larger covariances of up to 0.1 produce estimates of ELISA sensitivity as low as
47% and IFA sensitivity as low as 38%. With regards to specificity, the model predicts that
ELISA and IFA are at least 88% specific even if the covariance between the tests is as high
as 0.1. Covariances larger than 0.1 produce even smaller sensitivity and specificity
estimates.

4 Discussion
When estimating the sensitivity and specificity of diagnostic tests, the analyzed test results
are often stripped of epidemiologic context. By treating all identical patterns of results as
equivalent, algorithms such as latent class analysis may ignore vital information about
differences between tested individuals. Many previous attempts to incorporate
epidemiologic information into LCA have utilized two-tiered risk stratifications based on
geographic location (Branscum et al., 2005, Hui and Walter, 1980, Johnson et al., 2001). If
the probability of disease varies in a more complex manner, we show that careful
measurement of individual-level risk allows LCA to estimate diagnostic test parameters
more accurately.

With respect to Chagas disease in La Joya, Arequipa, Peru, our model estimates the
specificity of the commercial Chagatek ELISA to be 100% (95% CI: 99–100%). Published
Chagatek specificities from other sources range from 87.31– 100% (Blejer et al., 2001,
Caballero et al., 2007). Our estimate is at the high end of this range. We estimate the
specificity of IFA to be 99% (95% CI: 96–100%). The specificity of T. cruzi serum tests can
be lowered by cross-reactivity with Leishmania spp. or Trypanosoma rangeli (Caballero et
al., 2007, Malchiodi et al., 1994). Thus the near-perfect specificity that we observe in La
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Joya may reflect the fact that neither T. rangeli nor Leishmania spp. is endemic to the area
(Levy et al., 2009, Lucas et al., 1998).

Our estimate of ELISA sensitivity is 78% (95% CI: 62–100%), much lower than other
published estimates which range from 99.67–100% (Blejer et al., 2001, Caballero et al.,
2007), although the upper end of our confidence interval includes these values. We also find
a low sensitivity of 73% (95% CI: 65–81%) in the confirmatory IFA test. Our low
sensitivity estimates corroborate a recent report that recombinant antigen-based rapid tests
for Chagas disease exhibit much lower sensitivity in Arequipa than in Bolivia (Verani et al.,
2009). The decreased sensitivities observed in Arequipa may be due to parasite
heterogeneity, as the species T. cruzi is known to include various strains whose different
antigenic properties may cause geographic variations in the performance of antigen-based
diagnostic tests (Verani et al., 2009, Campbell et al., 2004).

Our simulations, as well as our analysis of actual Chagas disease test results, produce
sensitivity estimates whose confidence intervals are much wider than those of the specificity
estimates. Although verification bias has been shown to increase the variability of parameter
estimates, our Simulation A (Table 2), in which all individuals underwent both diagnostic
tests, demonstrates that the uncertainty in our sensitivity estimates is not entirely due to
verification bias. Rather, our sensitivity estimates are uncertain because of the low disease
prevalence in our samples. When prevalence is low, there are few subjects with positive test
results, and thus it is difficult to estimate the rate of true positives (i.e., sensitivity) (Joseph
et al., 1995).

Use of our technique requires a mathematical description of risk variability. In our study
population, we chose a biologically plausible risk model that fits the observed test results
better than several other candidate functions (Delgado et al., 2011). However, the true risk
function is always unknowable, and even the best-fit model may not perfectly represent
reality. Thus when applying our method to other disease states, care should be taken to
verify the suitability of the proposed risk model. One way to do so is to create various risk
functions and choose the one that maximizes a model selection criterion such as the Akaike
Information Criterion (Akaike, 1974). Our simulations of misspecified models (Tables 4 and
5) show that in cases where the true risk function is unknown, a selection criterion based on
the LCA likelihood could be used to choose between candidate prevalence functions.

Our primary results assume conditional independence between ELISA and IFA, but we have
also explored the sensitivity of our estimates to this assumption. Addition of conditional
dependence to the model reduces the estimated diagnostic test sensitivity and specificity.
The sensitivity estimates are affected more than the specificity estimates. Although we
cannot rule out the possibility of conditional dependence between ELISA and IFA, there is
reason to believe that any covariance is likely to be small. A previous latent class analysis of
Chagas disease diagnostic tests (including ELISA and IFA) found that a conditional
independence model fit best (Pirard et al., 2005). And the choice of a conditional
independence model is further justified by the observation, mentioned above, that Arequipa
lacks cross-reacting organisms that could cause correlated false-positive results on multiple
assays.

Similarly, throughout this paper we have assumed that diagnostic test sensitivity and
specificity are constant across all subpopulations. Although beyond the scope of our current
analysis, this assumption could in principle be relaxed. The model presented here could
easily be expanded to include covariate effects on sensitivity and specificity, in addition to
disease prevalence.
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The observed lack of sensitivity of T. cruzi diagnostic tests in Arequipa is clinically
problematic. Current protocols, which require two consecutive positive test results on
different assays before treatment is initiated, exclude many infected individuals from
consideration for pharmacological therapy. The magnitude of the undercount can be
estimated by noting that our model predicts a T. cruzi infection prevalence of 13.4% in La
Joya. In contrast, a much lower prevalence estimate of 101/1318 = 7.7% is produced when
only ELISA+/IFA+ individuals are considered to be infected. This latter case definition was
used in a previous analysis of T. cruzi transmission in La Joya, which explains why the
predominant risk parameters measured in that study were roughly half as large as our
estimates (Delgado et al., 2011).

Because the specificity of ELISA is very high in Arequipa, using IFA (or another test) to
confirm positive ELISA results does little more than increase the rate of false negative.
ELISA-positive individuals almost certainly represent true cases (Figure 2). The probability
of infection remains high even if the subsequent IFA is negative. These findings are
consistent with a recent report that ELISA+/IFA- individuals in Arequipa are geographically
clustered around confirmed (ELISA+/IFA+) cases, making it likely that individuals with
discordant results are in fact infected with T. cruzi (Levy et al., 2009). We suggest that
clinical resources could be saved by reconsidering the need for confirmatory tests in ELISA-
positive patients in settings with a reasonably high probability of infection. By analyzing
diagnostic tests in context it may be possible to reduce expenses, which is particularly
important when diagnosing neglected tropical diseases.
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Figure 1.
Residence time history data for individuals tested for T. cruzi infection in La Joya,
Arequipa, Peru. The 1318 subjects are ordered by increasing age on the x-axis. Transmission
interruption due to insecticide spraying is presumed to have occurred twelve years prior to
data collection, and thus Tpost ≤ 12 for all subjects.
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Figure 2.
Covariate-augmented latent class estimates of positive predictive values of ELISA and IFA
in La Joya, Arequipa, Peru. (A) and (B) Positive predictive value of each diagnostic test
when used alone. (C) and (D) Positive predictive value of both possible outcomes when IFA
was used as a confirmatory test in ELISA-positive individuals.
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Table 1

Frequency of observed Trypanosoma cruzi diagnostic test results in La Joya, Peru.

IFA+ IFA− IFA not
performed

Total

ELISA+ 101 39 0 140

ELISA− 8 226 944 1178

Total 109 265 944 1318
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Table 6

Parameter estimates and bootstrap confidence intervals from our latent class model with continuous
covariates, applied to T. cruzi test data from La Joya, Peru.

Parameter Model estimate (95% CI)

ELISA sensitivity (S1) 78% (62–100%)

ELISA specificity (C1) 100% (99–100%)

IFA sensitivity (S2) 73% (65–81%)

IFA specificity (C2) 99% (96–100%)

Pre-spray risk parameter (βpre) 0.019 (0.013–0.026)

Post-spray risk parameter (βpost) 0 (0–0.0005)

Parameter for risk outside La Joya (βout) 0.0031 (0.0016–0.0050)

Congenital transmission parameter (K) 0.0047 (0–0.014)
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Table 7

Analysis of the effect of conditional dependence on estimates of diagnostic test performance in La Joya. We
maximized the likelihood of the model for nine different sets of covariances (column 1). Columns 2–5 give the
maximum-likelihood estimates and bootstrap 95% confidence intervals of the diagnostic test sensitivities and
specificities (expressed as percents) when these covariances are assumed.

S1 C1 S2 C2

(covs12,covc12) (95% CI) (95% CI) (95% CI) (95% CI)

(0, 0) 78 (62,100) 100 (99,100) 73 (65,81) 99 (96,100)

(0, 0.05) 74 (56,100) 94 (94,95) 65 (55,81) 93 (91,95)

(0, 0.1) 55 (44,100) 89 (88,89) 54 (42,79) 89 (85,89)

(0.05, 0) 71 (55,93) 100 (99,100) 66 (58,75) 99 (96,100)

(0.05, 0.05) 67 (48,93) 94 (94,95) 58 (49,75) 93 (91,95)

(0.05, 0.1) 49 (36,91) 88 (88,89) 46 (35,76) 88 (85,89)

(0.1, 0) 63 (46,86) 100 (99,100) 57 (48,71) 99 (95,100)

(0.1, 0.05) 60 (43,84) 94 (94,95) 50 (41,70) 93 (90,95)

(0.1, 0.1) 47 (36,83) 88 (87,89) 38 (29,68) 88 (85,89)

(0.15, 0.15) 79 (33,80) 79 (78,82) 72 (29,79) 79 (78,82)

(0.2, 0.2) 31 (30,32) 54 (51,72) 29 (28,30) 44 (42,72)
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