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Many mathematical models have been proposed for the process of cell polar-

ization. Some of these are ‘functional models’ that capture a class of dynamical

behaviour, whereas others are derived from features of signalling molecules.

Some mechanistic models are detailed, and therefore complex, whereas

others are simplified. Each type contributes to our understanding of cell

polarization. However, the huge variety at different levels of detail makes com-

parisons challenging. Here, we provide examples of both elementary and more

detailed models for polarization. We also display how a recent mathematical

method, local perturbation analysis, can provide an appropriate tool for

such comparisons. This technique simplifies and speeds up the model devel-

opment process by revealing the effect of model extensions, parameter

variations and in silico manipulations such as knock-out or over-expression

of key molecules. Finally, simulations in both one dimension and two dimen-

sions, and particularly in deforming two-dimensional ‘cells’, can highlight

behaviour not captured by traditional simulation methods.
1. Introduction
The topic of eukaryotic cell polarization has attracted the attention of many

modellers, resulting in a large and growing literature. While each group has

its own motivation and paradigms, some questions, on which we focus here,

are of universal relevance. These include:

— How can we hope to understand the complex networks involved in cell

polarization using quantitative (modelling) approaches?

— Can we be confident that the simplified models capture some properties

well?

— What is the relationship between detailed and stripped-down models? Do

we have to use ‘functional’ models to capture the phenomena, or can we

preserve some biological properties?

— What kinds of tools can we use to study and understand models at various

levels of complexity?

— Are there reasonable methods that we can use to compare distinct models at

various levels of detail?

— What can we learn from the much more computationally intensive simu-

lations of two-dimensional deforming cells that may not be evident in

one-dimensional simulations?

All types of models have their uses and their limitations. Ultimately, we

would like to be in a position to faithfully account for all the components in

the complex signalling networks in the cell, and how they work together in

space and time. Practically speaking, this is still a challenge for the future, as

much remains to be determined experimentally before such detailed models

can be constructed.

Models for cell polarity are traditionally sets of reaction–diffusion (RD)

equations. These partial differential equation (PDE) models are very sensitive

to changes in kinetic terms, and no universal method for classifying or categor-

izing their behaviour exists. This means that fully analytic comparison of

distinct models is a difficult process. Simulations provide a simpler (but less
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Figure 1. Schematics for a succession of simple to complex models based on reacting and diffusing components. (a) Wave-pinning (WP) model [2]. (b) The WP model is linked
to F-actin via feedback, based on Holmes et al. [3]. (c) Full model of Cdc42, Rac and Rho from Holmes et al. [4, fig. 1d ] (with permission of PLOS Computational Biology).
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satisfying) option: we can simulate various proposed models

using similar protocols to see how they compare. (An example

of such one-dimensional protocols was given by Jilkine &

Edelstein-Keshet [1].) One issue is that each model has a variety

of possible behaviours in various parameter regimes, and com-

paring across all models and regimes becomes combinatorially

difficult. For such systems, specifically those with slow and

fast diffusing components, a recent tool of local perturbation

analysis (LPA) proves very helpful.

Which models are more useful, those that aim to be all-

encompassing and detailed, or those that are simple and

mathematically tractable? Are both types relevant to biology?

Here, we argue that it is possible to preserve some biological

realism in stripped-down abstract models and still refer to

specific biological components. An example from our work

is the activity cycling of GTPases, reviewed briefly below.

Chronologically, the detailed versions of such models led to

simplifications that could be analysed mathematically. In

turn, the simple models were ideal for understanding the

underlying mechanism at play in the tangle of interactions

of the larger networks. How can we be sure that simple

and detailed versions of the models preserve some common

essence? Aside from simulations, it is desirable to consider

the dynamic regimes that models can display as certain key

parameters are varied. This type of ‘signature’ provides a

summary of model dynamics that no one set of simulations

adequately encompasses. We illustrate a type of bifurcation

analysis that provides such a signature.
2. Models: from detailed to simple
Modelling biological systems requires a balance between

detail (which implies complexity) and mathematical tractabil-

ity (which motivates simplicity). These two extremes are at

opposite poles of our ability to understand the implications

of a model analytically. An eminent applied mathematician,

Lee Segel, taught his students to seek to identify ‘which of

many variables are important, and which can be disregarded

in simplifying the problem’ (in the recent words of his son,

Joel Segel).

Understanding the regulatory machinery responsible for

cell polarity is a prime example where this approach has
been useful. While this machinery is complex and multifaceted,

in many cases conserved elements and motifs emerge, as

shown by the examples in figure 1. Mathematical modelling

is well suited for identifying these motifs and deciphering

their functions. One example is the central regulatory role of

small GTPases such as Cdc42, Rac and Rho. Subsets of these

regulators are ubiquitously involved in control of actin nuclea-

tion and growth, and myosin contraction in most eukaryotic

cells. While their specific interactions can vary across cell

types, their core function is conserved and central to eukaryotic

cell motility and (in some cases) cell polarization.
(a) Lessons we learned from small GTPase models
Models for networks of small GTPases interacting with one

another and with other components have been described

[5–8]. At present, there is virtually no kinetic or biochemical

detail that allows each binding and regulation step to be

modelled mechanistically. Moreover, attempting to do so

can lead to highly complex models for small parts of the

system, which are not ideal. Most such models are at least

partly phenomenological. We started with the model for

three interacting GTPases, Rac, Cdc42 and Rho, with

mutually inhibitory interactions between the latter two and

input to the central regulator Cdc42 [6, fig. 3c]. The mutual

inhibition resulted in multiple steady states (bistability)

with regions of high Cdc42 (front) and low Cdc42 (rear),

which were at the time associated with reciprocal (low and

high) Rho. However, RD models of these three interacting

proteins result in waves of activity that sweep across and

take over the whole cell, so no polarization can be sustained.

Our first lesson from this disappointment was that not all
reasonable verbal models in fact have the expected behaviour
when implemented in a spatial setting. While the model displays

bistable kinetics in its time-dependent version, it fails to

account for the existence of multiple regions in a single

spatial domain.

A second lesson we learned is that some types of biological
details are important. For example, GTPases have both active

and inactive forms. Transitions between these forms are on

the timescale of seconds, much faster than protein synthesis,

and hence the total amount is roughly constant on the time-

scale of cell polarity. Active GTPases are membrane-bound,
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and so diffuse more slowly than their cytosolic inactive

counterparts. When this biological detail is incorporated [5],

the model becomes a six-variable RD system with three

active and three inactive forms and conservation of each of

the proteins overall. While the inactive form does not partici-

pate in signalling directly, its availability affects activation:

when it is depleted below some level, no further activation

can take place. Incorporation of these conservative (in)acti-

vation kinetics leads to sustained polarization. Bistability

initiates a wave of activity, and depletion of the inactive sub-

strate stops this wave before it traverses the cell. This type of

behaviour has been denoted wave-pinning (WP).

Another lesson gained from experience is that some model-
ling detail is important. For example, for simple exchange

between active and inactive forms of the same protein, the

basic structure of the well-mixed model (ignoring space at

present) must be of the following type:

du
dt
¼ av� bu and

dv
dt
¼ bu� av;

) uþ v ¼ w ¼ constant; ð2:1Þ

where a, b are rates of activation and inactivation that could

depend on u and on other variables. In the specific case of

small GTPases, a ¼ a(u,. . .) is the rate of guanine nucleotide

exchange factor (GEF)-mediated activation and b ¼ b(u,. . .)

is that of GTPase activating protein (GAP)-mediated inacti-

vation. Both might be functions of the level of active

GTPase and/or other active components that are known or

hypothesized to affect (in)activation. (As v is inactive and

does not participate in signalling, neither a nor b should

depend on it.) In general, either a or b must be nonlinear to

account for switch-like cellular responses. Moreover, it is cus-

tomary to assume some saturation in the dependence of these

rates on components that affect them.

One more observation that emerges from our experience

is that some modelling detail is less important at this stage of
exploration. Indeed, it has been shown that from a modelling

perspective, numerous biochemical regulatory circuits (with

positive or negative feedbacks) are functionally the same in

the sense of having similar dynamic behaviour [9]. Until details

about signalling systems are determined experimentally, it is

therefore impossible to distinguish between (say) certain

types of positive feedback to GEFs versus a specific reciprocal

negative feedback to GAPs in small GTPase models. Further-

more, the switch-like response could be due to zero-order

ultrasensitivity or to cooperativity (Hill functions). In future

experiments, it may be possible to test for such details using

knock-out experiments whereby either the GEF or the GAP is

gradually silenced. At present, the choice of where the feedback

acts and how it acts is, to a great extent, arbitrary in the con-

struction of preliminary models, as they can be formally

shown to be dynamically equivalent [9].
(b) Simplifying the small GTPase models
Mathematical analysis of the phenomenon of WP that we

observed in the six-variable PDE model for Cdc42, Rac and

Rho was challenging. In such cases, one is often constrained

to exhaustive simulations (but see appendix in [6]). Conse-

quently, it is hard to fully understand how the system

works, and we were motivated to simplify and abstract this

model. To do so, we formulated a prototype consisting of a

single GTPase in active (u) and inactive (v) forms (resulting
in a two-variable RD system). There, nonlinear positive feed-

back from u to its own activation replaced the previous

double negative feedback. We preserved the details that

had proven to be important: large differences in the rates of

diffusion, constant total amount of the protein and nonlinear

saturating feedback. We found that the resulting simple

single-GTPase system is capable of polarizing via an appar-

ently similar WP behaviour. The stripped-down system was

then sufficiently simple to be analysed mathematically

[2,10]. Interestingly, the same model was also adopted to

describe polarization of PAR proteins in the early embryo of

the nematode Caenorhabditis elegans [11,12]. We refer to this

model henceforth as the WP model.

The significance of the WP model is as follows: first, it is a

simple prototype system to describe robust polarization that

has a threshold behaviour (shown below). Several recent

cell motility simulations such as (e.g. [13,14]) have adopted

this model to enable polarization in prototype motile cells.

By construction, the WP model has aspects that specifically

describe known proteins (GTPases), so it is not simply a

‘functional’ model in the sense of having appropriate

dynamic behaviour. As noted in several works (e.g.

[11,12]), it generalizes to signalling proteins that cycle on

and off the membrane (for example, PAR proteins). Finally,

its simplicity allows for extensive mathematical analysis

[10], generalization to a stochastic version [15] and extension

to include the effect of F-actin [3], described below.
3. Tools for analysis of polarization and other
reaction – diffusion models

The vast majority of cell polarity models are based on sys-

tems of RD equations (but see Houk et al. [16], where

membrane tension plays an important global inhibitory

role). A unifying feature of these models is a dichotomy

between fast and slow diffusing components. A typical

two-variable model can be described in general by the PDEs

@u
@t
¼ Du

@2u
@x2
þ f ðu; vÞ and

@v
@t
¼ Dv

@2v
@x2
þ gðu; vÞ: ð3:1Þ

We will take u to be slow diffusing (Du , Dv) and, wherever rel-

evant, it will represent the active form of a polarity regulator.

Classical analysis of such systems, dating back to Turing [17],

is based on linear stability analysis (LSA) to check for instability

of a homogeneous steady state (HSS) to small amplitude noise.

This reduces the PDE problem (equations (3.1)) to a linear alge-

braic problem of determining whether eigenvalues of the

linearized system can have positive real parts. When this is

the case, the HSS can be destabilized and some type of pattern

(spatially non-uniform solution) may result. LSA gives clues

about pattern initiation and (in some cases) of the types of pat-

tern to expect, but it cannot predict the full evolution of the

system because nonlinear effects generally come into play

once the perturbation grows. While LSA is an important tool

in the applied mathematician toolbox, it has limitations. First,

it can only check for instabilities that are provoked by arbitra-

rily small noise. Second, it does not easily scale up to larger

nonlinear networks, where finding the HSS and eigenvalues

can be extremely challenging.

For this reason, complementary tools have proved useful

in our work on polarization. We review one such method,

LPA, in the next section.
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Figure 2. (a) Bifurcation diagram of the well-mixed WP system (equation (3.2)) with the kinetics (equation (4.1)). The steady-state value of u is plotted with
respect to a basal activation rate, k0. Parameter values n ¼ 2, g ¼ 1, u0 ¼ 1, d ¼ 1 and total average concentration w ¼ 2.2683. (b) LPA diagram of the WP
system (same parameter values). This diagram forms a ‘signature’ for the model. It also provides information about distinct behaviours possible in various parameter
regimes. BP indicates a branch point bifurcation. See text for details.
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(a) Brief survey of local perturbation analysis
The technique described below was invented jointly by AFM

Marée and V. Grieneisen. It was initially described in the appen-

dix of Veronica Grieneisen’s PhD [18], Utrecht University. It was

then used extensively to parametrize models in Marée et al. [5,8]

and more recently in the context of Holmes et al. [3,4]. Informal

justification of this method will be presented here with detailed

mathematical justification pending.

Before describing LPA, we note for future reference the

typical form of kinetic equations describing the well-mixed

(spatially uniform) system:

du
dt
¼ f ðu; vÞ and

dv
dt
¼ gðu; vÞ: ð3:2Þ

We will refer to this well-mixed system and to the full RD

system (equations (3.1)).

The basic idea of the LPA is to take advantage of the dif-

fusion discrepancy and consider the limit Du! 0, Dv!1 in

the RD system (equations (3.1)). We probe stability of the HSS

with respect to a ‘local’ perturbation in the form of a narrow

peak of u at some location in the domain. (The magnitude of

the peak need not be small, but its ‘total mass’ should be neg-

ligible.) In this limit, the localized peak of u (denoted uL) does

not influence the surrounding background levels of u
(denoted uG). As v diffuses ‘infinitely fast’, it is uniform in

space and can be described by a single global variable (vG).

Further, since the mass of the perturbation is negligible, uL

does not influence the evolution of vG. So, uG and vG interact

according to the well-mixed chemical reaction kinetics and

the growth or decay of uL is influenced by vG.

The dynamics of this peak and the global variables

describing the broader domain can then be described by

a collection of evolution ordinary differential equations

(ODEs) for uL, uG and vG.

duL

dt
¼ f ðuL; vGÞ;

duG

dt
¼ f ðuG; vGÞ and

dvG

dt
¼ gðuG; vGÞ: ð3:3Þ

This system of ODEs describes the growth or decay of

the stimulus peak, providing stability information for the

underlying spatial system.

We now apply this method to the polarization models

described above. A common feature of polarization models
is interconversion between two forms with the total average

concentration w conserved. We show two such examples

below. In this case, g(u,v) ¼ 2f (u,v). We use conservation,

uG þ vG � w ¼ constant;

to eliminate one variable (vG in this case), leaving the reduced

LPA system

duL

dt
¼ f ðuL;w� uGÞ and

duG

dt
¼ f ðuG;w� uGÞ: ð3:4Þ

The original problem consisting of PDEs has been reduced to

a set of ODEs describing the growth of a narrow pulse.

Dynamics of these ODEs under a wide range of parameter

variation can be explored readily using bifurcation software.

Figure 2 depicts the results of such an analysis. For the

given parameter set, the well-mixed WP model has a

unique stable steady-state value of u for all values of the

parameter k0, as shown in figure 2a. As k0 increases, the

steady-state level of the active form u increases monotoni-

cally. We refer to this curve as the ‘global branch’ in what

follows. As shown in figure 2b, the LPA diagram includes

both the global branch and an additional (grey) curve here-

after denoted the ‘local branch’. The interpretation of this

LPA diagram will be explained in the next section, where a

comparison with a second model is made.

LPA has several benefits. It is fairly easy to formulate the

LPA ODEs by identifying the slow and fast variables. It is

then easy to explore the parameter regimes of growth/

decay and/or threshold behaviour of the perturbation using

bifurcation software. Below, we further illustrate several

advantages of LPA. (i) It provides a standardized tool for

comparison of distinct RD models for polarization. (Models

with similar mechanisms have a similar LPA ‘signature’.

Models that look superficially similar but have distinct mech-

anisms have different LPA signatures.) (ii) LPA helps to point

to what changes when a model is extended or modified in

some way. For example, if new feedback in introduced or

another component is added to a model, then LPA can

show how the behaviour changes over a whole range of par-

ameter variation. (iii) LPA is relatively easy to scale up to

larger systems of interacting components. This makes LPA

much more ‘user-friendly’ than LSA.
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Figure 3. A comparison of LPA diagrams for (a) Otsuji [19] and (b) WP [2] models, showing uL with the total average concentration and w as the bifurcation
parameter. (a) Otsuji kinetics (equation (4.2)) with a1 ¼ 25, a2 ¼ 0.7. There is a single bifurcation at w ¼ 1.429. (b) WP kinetics (equation (4.1)) with k0 ¼

0.067, g ¼ 1, u0 ¼ 1, d ¼ 1, n ¼ 2. Bifurcations are at branch points (transcritical): w ¼ 2.3, 2.6; limit points ( fold): w ¼ 1.91, 3.55. The behaviour of the
model can be classified into regimes (separated by thin vertical lines): Region I: 0 , w , 1.91, II: 1.91 , w , 2.3, III: 2.3 , w , 2.6, IIb: 2.6 , w , 3.55
and IV: 3.55 , w. BP indicates a branch point bifurcation. (c,d ) A series of spatial profiles at increasing times T of the full RD PDEs for (c) the Otsuji kinetics
(equation (4.2)) with w ¼ 2 in the Turing regime ( patterning initiated by numerical noise) and (d ) the WP kinetics (equation (4.1)) with w ¼ 2.2 demonstrating
wave-pinning behaviour (a pulse at t ¼ 20 initiates patterning).
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4. Model comparisons
As previously mentioned, the literature on models for cell

polarization is large, with a variety of models of many

types [19–21]. How should we compare such models and

their functionality? In principle, we can do so by simulating

the response of models to similar protocols [1], but this can

at best probe a limited set of parameters in each case. Here,

we show that LPA can help to inform such comparisons.
(a) Example 1: comparison of wave-pinning and
Otsuji models

Here, we use LPA to compare the polarization model of

Otsuji et al. [19] (abbreviated OT) to the WP model of Mori

et al. [2]. Both OT and WP share the form of equations (3.1)

with g(u,v) ¼ 2f (u,v), implying conservation of the total

amount of protein. In both models, u and v represent active

and inactive forms of GTPases, respectively. The kinetics for

these models are given by, for the WP model [2]

f ðu; vÞ ¼ k0 þ g
un

un
0 þ un

� �
v� du; ð4:1Þ

and for the OT model [19]

f ðu; vÞ ¼ a1 v� ðuþ vÞ
ða2ðuþ vÞ þ 1Þ2

 !
: ð4:2Þ
In the kinetics of equation (4.1), there is a rate of activation of

u from v (basal value k0) and an inactivation rate d. (This follows

the form of equations (2.1).) A Hill function depicts positive

feedback from u to its own activation. The total average concen-

tration, w, is determined by initial conditions, not by other

parameters. While OT kinetics (equation (4.2)) can be rewritten

similarly in the form of equations (2.1), both activation and inac-

tivation rates depend explicitly on the total average amount of

protein w.

Figure 3 compares the LPA ‘signatures’ of WP and OT. Here,

the steady-state value of uL is plotted against the bifurcation

parameter w. In each case, there is a monotonically increasing

‘global branch’ (thick dark curve), together with an additional

‘local branch’ that stems from spatial features captured by the

LPA equations (thinner grey curve). The OT model in figure

3a has a strictly decreasing local branch. For small values of

w, only the global branch is stable. The intersection point is a

transcritical (branch point) bifurcation at which the two

branches exchange stability. Thereafter, for larger w values,

we have a Turing regime, whereby a perturbation of arbitrarily

small size can lead to patterning. To the left of that bifurcation,

LPA suggests that only perturbations of sufficiently large

amplitude might lead to destabilization. (In practice, because

LPA is an asymptotic approximation, and as the local branch

climbs very steeply upwards towards the left, it is hard to

cause patterning in that regime.)

Figure 3b for the WP model is significantly different. First,

we see four rather than two major regions (I–IV, left to right,
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see legend of figure 3). In Regions I and IV, a stable HSS can

never be perturbed. In Region II, the HSS is stable (solid

curve) but can be destabilized by a sufficiently large local

perturbation (past the threshold of the local branch, dot–

dashed). For values of w between the two intersections (trans-

critical bifurcations), the HSS is unstable to any perturbation

(Turing regime, Region III). Between the rightmost intersec-

tion and the ‘knee’ to its right, the system can only be

prodded away from its elevated HSS by a pulse that locally

lowers the value of u by a sufficient amount (Region IIb). It

turns out that both Regions II and IIb correspond to wave-

pinning behaviour, a fact that can only be determined by

full-scale simulations. Examples of full PDE simulations in

one spatial dimension are shown in figure 3c for OT and

figure 3d for WP. In general, OT tends to form steep peaks,

whereas WP has plateaus with broad shoulders.

In short, WP has distinct regimes of (i) complete stability,

(ii) Turing instability and (iii) two distinct regimes of

threshold response. OT shares the Turing regime, and a

threshold response that in practice proves hard to trigger.

Overall, aside from providing insight into parameter regimes

for a given model, LPA produces a graphical summary of the

range of distinct dynamic properties, providing a ‘signature’

that can be compared across RD polarization models.

(b) Example 2: the effect of model extension and
additional feedback

The WP model has been studied earlier in Mori et al. [2,10]

and by LPA and related methods in Walther et al. [15].

Here, we show that LPA can be used to understand the

effects of model extension or modification. In Holmes et al.
[3], we considered an extension of the WP model that

included interaction with F-actin (see figure 1b). This was

motivated by the following observations: (i) waves of F-

actin and nucleation promoting factor activity have been

observed in cells [22–24] and (ii) waves of small GTPases

and edge protrusion (presumably powered by actin polymer-

ization) have also been observed [25]. Accordingly, a

modified WP model was linked to nucleation of F-actin.

Feedback from F-actin was assumed to accelerate inactivation

of the small GTPase (figure 1b), that is, to act as negative feed-

back channelled through GAPs. The resulting WP-F model is
among the simplest descriptions of F-actin waves driven by

nucleation promoting factors.

To account for the additional influence of F-actin (F ) on

the system, the following minimal extension of the WP

model is used

@A
@t
¼ f ðA; I;FÞ þDA

@2A
@x2

;

@I
@t
¼ �f ðA; I;FÞ þDI

@2I
@x2

and
@F
@t
¼ 1ðknA� ksFÞ;

9>>>>>>>=
>>>>>>>;

ð4:3Þ

where the GTPase kinetics includes an F-actin-dependent

inactivation term

f ðA; I; FÞ ¼ k0 þ g
A3

A3
0 þ A3

� �
I � s1 þ s2

F
1þ F

� �
A: ð4:4Þ

The model was explored by simulations guided by LPA

analysis [3]. Figure 4 compares the bifurcation diagrams

for the WP model alone (where F is treated as a constant par-

ameter, i.e. e ¼ 0) and the fully dynamic A, I, F model. We see

the appearance of several new Hopf bifurcations that were

absent in WP, arising as a result of the dynamic feedback

from F-actin. These regimes lead to a variety of wave-like

behaviours [3], including static polarization, oscillatory

polarization, travelling wave trains, reflecting waves and

other exotic patterns as shown in figure 5. Note that such

wave-like patterns are absent in the WP model alone.
5. Comparing simple and detailed models for
polarization

Ultimately, we are interested in learning about real signalling

networks and their dynamic behaviours. To do so, we must

return to the more complex biological scenarios, where

GTPases interact with each other and with other signalling

modules. A benefit of this approach is that the model com-

ponents are linked to known molecules which could, in

principle, be manipulated in experimental tests.

Examples of this type of modelling include Dawes &

Edelstein-Keshet [7], Marée et al. [8], Kholodenko [9] and
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Marée et al. [26]. In Kholodenko [9] and Marée et al. [26], models

for active and inactive Cdc42, Rac and Rho were simulated

spatially in one dimension and two dimensions, in both static

and deforming ‘cells’. In Dawes & Edelstein-Keshet [7], Marée

et al. [8], GTPases were linked to phosphoinositides PIP, PIP2

and PIP3 via positive feedback to/from Rac and Cdc42. (The

role of PIPs has been controversial in the biological literature,

and we sought to explore how they affect the small GTPase

layer.) These models were based on mutual inhibition between

Cdc42 and Rho supplemented by positive feedback from Cdc42

to Rac and from Rac to Rho.

In recent experimental work described by Lin et al. [27], HeLa

cells cultured in microfluidic chambers were highly constrained

to polarize along the direction of narrow channels. Biochemical

constructs in these cells were engineered to convert a controlled

external gradient of a small molecule (rapamycin) into a robust

internal gradient of Rac, bypassing all the innate receptor-

based signalling systems. Cells in several states were tested for

polarization responses, and results were quantified and com-

pared to a sequence of models for internal signalling. We

noted immediately that the model based on mutual antagonism

between Cdc42 and Rho could not account for the Rac-mediated

polarization response: in fact, that model polarizes in a direction

opposite to the gradient of Rac activation. Rather than simply

add supplemental interactions to an existing set of proposed

interactions, we instead sought the simplest connectivity

between these GTPases capable of recapitulating this data.

Figure 1c shows the schematic diagram of this ‘minimal circuit’.

See Holmes et al. [4] for details of the models and analysis.

The level of complexity of the detailed network in figure 1c
is significantly greater than that of the WP model in figure 1a:
the model consists of nine PDEs (for C, R, r active/inactive

forms, and P1, P2, P3 representing the three forms of PIP

lipids.) However, carrying out LPA analysis is relatively

straightforward, because the resulting 15 LPA-ODEs (PIP1,2,3

are considered slow variables) are simpler to analyse with

bifurcation software than most systems of even two to three

nonlinear PDEs.

A typical LPA bifurcation plot with respect to the basal

activation rate for Rac (Ir) leads to the diagram shown in

figure 6a. A direct comparison can be made with figure 2b
which provides the LPA diagram for WP with respect to a

similar basal activation rate parameter k0. We observe a

number of similarities: both models share a monotonically

increasing global HSS branch (dark curves). Both share simi-

lar regimes: a wave-pinning polarization regime where the

HSS is sensitive to a sufficiently large stimulus peak (II), a

Turing noise-sensitive regime (III) and a regime where no

perturbation induces patterning and only the HSS is stable

(IV). It is interesting to note that, even though the models

are significantly different, they share certain key features.

(This suggests that lurking behind a facade of details is the

core mechanism that was identified in the far simpler WP

model.) Furthermore, these similarities are easily detected

using the LPA.

A second feature of figure 6 illustrates the usefulness of the

LPA diagram in understanding the effect of specific exper-

imental manipulation. Figure 6b shows the effect of PI3K

knock-out, which reduces the feedback between PIP3 and Rac

(marked with f1 in figure 1c). The series of increasingly thick

curves represent increasing levels of feedback (from none at

f1 ¼ 0 to essential at f1 ¼ 1). As feedback increases, the grey
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loop (‘local branch’) shifts to the left. This means that at a given

value of the activation rate k0, the cell is more sensitive to stimu-

lation: a pulse of smaller amplitude is able to breach the

threshold and lead to polarization. In this sense, LPA also illus-

trates how feedbacks of various sorts affect cell behaviour, with

minimal computational effort.
 ypublishing.org
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6. Cell shape and model comparisons
The ultimate test of polarization models is how they perform

in a deforming cell, and how they are linked to cell motility.

In real cells, assembly of the cytoskeletal polymer actin prods

the cell membrane forward at the leading edge, while con-

traction of the cytoskeleton by myosin molecular motors

pulls up the rear. Anchorage by adhesion molecules provides

requisite traction. Cell polarity is an additional layer of

chemistry that keeps cell migration oriented.

The simplest possible model for a deforming cell requires

only a recipe that couples intracellular chemistry to mem-

brane velocity. To focus on the interaction between cell

shape and cell polarity, it makes sense to bypass a detailed

description of molecular force generation by coupling the

chemical kinetics of cell polarity directly to membrane displa-

cement. This phenomenological approach allows for a direct

comparison of different polarity mechanisms, without

additional complicating factors.

(a) Level set methods
Investigating the influence of cell geometry on cell polarity

requires a scheme for describing arbitrary cell shapes. One

possibility would be a Lagrangian description of points

along a parametrized cell boundary. Level set methods

provide an Eulerian alternative. As a simple example, in

two dimensions, consider a circular cell that grows bigger,

without changing shape. Level set methods describe this

scenario in terms of a cone that points downwards as it des-

cends along a vertical axis. Intersection of this moving cone

with a fixed horizontal plane then represents the edge of

the growing cell. At any point in the plane, the corresponding

cone elevation c gives the shortest distance to the cell bound-

ary, with negative elevations inside. This defines a ‘distance

map’ for which the zero level set (c ¼ 0) provides an implicit

description of the cell boundary. In general, once intracellular

physics sets the velocity V for membrane displacement,

advection of c then moves the boundary appropriately

(@c/@t ¼ 2 V .rc), using standard (though non-trivial)

numerical methods [28,29]. Level set methods make it easy

to compute the outward normal n̂ and curvature k of a cell

boundary (n̂ ¼ rc=jrcj and k ¼ r � n̂).

(b) The moving boundary node method
Given a level set description for the edge of a cell, it remains to

describe cell polarity within the contained region. The moving

boundary node method [30] provides a means of solving

the requisite differential equations. In a level set representa-

tion, the cell boundary usually falls between the nodes of a

computational grid, with the boundary location determined by

interpolation. However, nodes near the boundary can be

moved onto the boundary without difficulty; taken together, c

and n̂ give exactly the required displacements. This yields

dynamic, boundary-fitted coordinates and a set of distorted
volume elements that exactly fit the shape of a cell. Computatio-

nal nodes retain simple Cartesian connectivity, which makes it

easy to compute fluxes between adjacent volume elements.

This leads to a finite-volume discretization of reaction–

advection–diffusion equations inside moving, deforming cells.

The method is accurate to second order and conserves mass.
(c) Comparison of wave-pinning and Otsuji polarity
For both the Turing regime of OT (figure 3a) and region II of

WP (figure 3b), perturbation of an unstable, spatially homo-

geneous steady state triggers polarization of a static circular

cell. Disrupting the homogeneity of active protein u with a

10% spatial gradient across the cell provides sufficient stimu-

lus. Compared with WP (figure 7a), polarization for OT

(figure 7f ) is more localized and has a peak of greater magni-

tude. These polarized states, for static cells, provide initial

conditions for cells with moving boundaries.

Perhaps the simplest possible assumption is a linear

relationship between the concentration of active protein, u,

and velocity, v, along outward normal, n̂, at each point on

the perimeter of a cell

v ¼ V0
u� u�

maxðuSSÞ �minðuSSÞ

� �
n̂; ð6:1Þ

where V0 ¼ 0.5 mm s21 sets a realistic velocity for typical crawl-

ing cells, while uSS is the steady-state concentration for a

polarized, static, circular cell, and u* is an outward growth

threshold, chosen here as the value of uSS at which jruSSj
attains a maximum. Points on the cell boundary where

u 2 u* is positive move outward, along n̂, whereas the cell

contracts at points where u 2 u* is negative. For the same par-

ameter values considered in one dimension (figure 3), WP

yields convex, translating cells (figure 7b–d), whereas OT

yields constricting, concave cells (figure 7g– i).
Constriction of cells under OT can be understood as

dominance of reactions over diffusion. This can be expressed

as a ratio of timescales

tD

tR
¼ R2=Du

1=a1
; ð6:2Þ

where tR is the characteristic time for OT reactions while

R ¼ 5 mm is the chosen cell radius, so tD is the characteristic

time for intracellular diffusion. Recall that a1 is the reaction

rate for OT (equation (4.2)), whereas k0, d and g are WP reac-

tion rates (equation (4.1)). Substituting the maximum of k0, d

or g for a1 in tR gives the characteristic time for WP reactions

instead. For either OT (figure 7g– i) or WP (figure 8d,e), a ratio

of tD/tR ¼ 2500 yields constriction. In this case, relatively fast

reactions cause localized depletion of u that diffusion fails to

replenish so u drops below u* to give inward velocity at the

point of concavity. By contrast, a ratio tD/tR ¼ 250 yields

convex translating cells for both WP (figure 7a–d ) and OT

(figure 8d,e).

Notably, constriction under WP (figure 8d,e) highlights

some limitations of working in one dimension. In two dimen-

sions, the cell develops a narrow bottleneck (figure 8e, inset)

between two compartments. The width of the bottleneck and

the average radius of each compartment give a constricted

cell three inherent length scales, compared to the single

length scale for polarity simulations in one dimension

(figure 3). This is significant because the trade-off between

reaction and diffusion timescales (equation (6.2)) depends
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on the characteristic length of the region in question.

These geometrical effects somehow combine to manifest as

emergence of two separate regions in which u is elevated

(figure 8e), starting from just one region (figure 7a). Over

time, the concentration profile for constriction under WP

develops a local maximum, towards the rear of the cell

(figure 8c, grey curves). This does not happen in one

dimension (figure 3d ), for a comparable initial condition.
7. Discussion
In this paper, the main emphasis has been on GTPase-based

models for polarity initiation in motile eukaryotic cells.

The models surveyed here consist of sets of RD equations.
We have shown several methods for comparing across dis-

tinct models (from simple abstract ones to more detailed

and complex ones). One method that is of particular utility

is the LPA, a useful tool for systems with slow and fast

rates of diffusion. We have shown that seemingly related

models for polarization in fact have very different LPA ‘sig-

natures’ (as shown in figure 3 for two types of small

GTPase models), whereas models at different levels of

detail can be related by a common or similar LPA signature

(e.g. figures 2b and 6a.)

LPA can complement other methods of analysis but is not

a replacement for full-scale simulations, such as those of

figures 3c,d and 5. Those are still needed to explore the pat-

terns that form after the short-time initiation phase. A first

step is to determine the behaviour of such models in
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one-dimensional spatial domains where we can ask whether

robust polarization results from various stimuli.

However, as shown in §6, even full-scale one-dimensional

simulations are not always predictive of the evolution of

polarization in a deforming two-dimensional ‘model cell’.

While the latter defines a challenging moving boundary pro-

blem, such simulations are an ultimate test of models for

polarization and cell motility.
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