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Saccharomyces cerevisiae yeast cells polarize in order to form a single bud in

each cell cycle. Distinct patterns of bud-site selection are observed in haploid

and diploid cells. Genetic approaches have identified the molecular machin-

ery responsible for positioning the bud site: during bud formation, specific

locations are marked with immobile landmark proteins. In the next cell

cycle, landmarks act through the Ras-family GTPase Rsr1 to promote local

activation of the conserved Rho-family GTPase, Cdc42. Additional Cdc42

accumulates by positive feedback, creating a concentrated patch of GTP-

Cdc42, which polarizes the cytoskeleton to promote bud emergence. Using

time-lapse imaging and mathematical modelling, we examined the process

of bud-site establishment. Imaging reveals unexpected effects of the bud-

site-selection system on the dynamics of polarity establishment, raising

new questions about how that system may operate. We found that polarity

factors sometimes accumulate at more than one site among the landmark-

specified locations, and we suggest that competition between clusters of

polarity factors determines the final location of the Cdc42 cluster. Modelling

indicated that temporally constant landmark-localized Rsr1 would weaken

or block competition, yielding more than one polarity site. Instead, we

suggest that polarity factors recruit Rsr1, effectively sequestering it from

other locations and thereby terminating landmark activity.
1. Introduction
A polarized cell has a clear axis, with a single ‘front’. Different cells display a var-

iety of polarized morphologies, but a conserved family of polarity GTPases

(Cdc42 and Rac in animals and fungi, Rop in plants) appear to control polariz-

ation in most eukaryotes [1–3]. The GTPases are anchored to the plasma

membrane (and other membranes) by prenylation. A cell’s ‘front’ can be defined

as the cortical site at which cells accumulate a high concentration of the activated

(GTP-bound) form of the GTPase. The active GTPase then organizes cytoskeletal

elements through a variety of effectors to yield the polarized morphology

appropriate to the cell type.

The direction of polarization can be determined by chemical or physical sig-

nals. However, when spatial cues are absent, many cells polarize in a random

direction by ‘symmetry breaking’. Theoretical analyses dating back to Turing

[4] showed that spontaneous pattern formation from homogeneous starting

conditions could occur if autocatalytic biochemical reactions amplified small

clusters of ‘morphogens’ (in this context, polarity factors) arising from stochas-

tic fluctuations. During symmetry breaking, some mechanism must ensure that

only one among all of the potential sites develops into the cell’s front.

The budding yeast Saccharomyces cerevisiae has served as a tractable model to

investigate polarity establishment since the pioneering genetic screens by Pringle

and co-workers identified the conserved Rho-family GTPase Cdc42 as the master

regulator of polarity [5]. Cdc42 localization and activity are affected by GEF

(GDP/GTP exchange factor), GAP (GTPase-activating protein) and GDI (guanine

nucleotide dissociation inhibitor) regulators. The site of Cdc42 activation is influ-

enced by a ‘bud-site-selection’ system that depends on the Ras-family GTPase
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Figure 1. Symmetry-breaking polarization of GTP-Cdc42 by Bem1 complex.
(a) A random site on the cell membrane exhibits a stochastic increase in GTP-
Cdc42. A Bem1 complex is recruited to this site, which allows the conversion
of nearby GDP-Cdc42 to GTP-Cdc42. The additional GTP-Cdc42 recruits more
Bem1 complexes in a positive feedback loop, leading to the formation of a
polarized cluster of GTP-Cdc42. (b) Stochastic activation of Cdc42 can happen
at more than one cortical site and lead to the formation of multiple polarized
foci. Competition between foci for cytoplasmic Bem1 complexes ensures that
only one focus eventually wins.
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Figure 2. Bud-site selection in yeast. (a) Haploids. (b) Diploids. (c) Additional
landmarks deposited as cells replicate. (d ) Landmarks influence GTP-loading
of Cdc42 via Rsr1 and its regulators.
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Rsr1. Mutants lacking Rsr1 break symmetry and polarize to a

single, apparently random, site [6,7].

Symmetry breaking in yeast does not require polymerized

actin or tubulin, but (at least in rsr1 cells) it does require the

polarity scaffold protein Bem1 [8]. Bem1 acts by forming a

complex that links a Cdc42 effector (PAK, p21-activated

kinase) to the only Cdc42 GEF, Cdc24 [9–12]. When GTP-

Cdc42 binds to a PAK associated with Bem1 and GEF in a

complex, the GEF loads GTP on neighbouring Cdc42

(figure 1a). This creates a positive feedback loop that pro-

motes growth of a cortical cluster of GTP-Cdc42. The Bem1

complex diffuses rapidly in the cytoplasm, allowing the com-

plexes to be rapidly recruited to a growing GTP-Cdc42

cluster. By contrast, GTP-Cdc42 diffuses slowly at the mem-

brane, so the cluster does not dissipate too rapidly (see

review by Johnson et al. [12]).

Imaging of polarity establishment in rsr1D cells revealed that

cells frequently ‘grow’ more than one cluster of Cdc42, but that

the clusters then compete with each other and a single winner

emerges [13] (figure 1b). Computational simulations of the

Cdc42/Bem1 system indicated that nascent polarity clusters

would compete with each other for cytoplasmic Bem1 com-

plexes and that the largest cluster would eventually win [10].

Competition may be accelerated by the presence of negative

feedback in the polarity pathway [13]. Rapid competition

could explain why cells only make one bud, and some exper-

imental manipulations intended to slow competition resulted

in the simultaneous formation of two buds [11,13].

In wild-type yeast cells, polarization and bud emergence

occur at sites influenced by positional markers or ‘landmarks’:

transmembrane proteins deposited at specific places during
bud formation, anchored to the rigid cell wall, and then inher-

ited by daughter cells [3,14,15]. During cytokinesis, the

landmark protein Axl2 is deposited in a ring on either side of

the cleavage furrow [16] (figure 2a). The distal (previously

the bud tip) and proximal (previously the neck) poles of new-

born cells are marked by the landmark proteins Bud8 and

Bud9, respectively [15] (figure 2b). Haploid cells use Axl2 to

select ‘axial’ sites, in which the new ‘front’ is established adja-

cent to the immediately preceding cytokinesis site, so that

sequential buds emerge next to each other in a chain [17].

Diploid cells use Bud8 and Bud9 to select new sites in a ‘bipo-

lar’ pattern, in which the new ‘front’ is established at one of the

two cell poles, and sequential buds may emerge at opposite

ends [17]. Additional landmark proteins, Rax1 and Rax2, are

deposited in a ring marking each previous bud site, and also

contribute to bud-site selection in diploids [18–20].

Although haploids and diploids prefer to use different land-

mark proteins, all landmarks are deposited in both haploid

and diploid cells. Moreover, genetic findings indicate that all

landmarks are potentially active: if the preferred landmark-

encoding gene is deleted, the other landmarks are used instead.

Thus, a first-generation daughter cell is born with three land-

marks, and mother cells acquire more marked sites as they

age (figure 2c).

The landmark proteins interact with Bud5, a GEF that

promotes localized activation of Rsr1 [21–26] (figure 2d ).



Table 1. Yeast strains.

strain relevant genotype source

DLY9069 a BEM1-GFP:LEU2

DLY9200 a/a BEM1-GFP:LEU2/BEM1-GFP:LEU2 rsr1::TRP1/rsr1::TRP1 [11]

DLY9201 a/a BEM1-GFP:LEU2/BEM1-GFP:LEU2 this report

DLY11780 a/a BEM1-GFP:LEU2/BEM1-GFP:LEU2 rsr1::TRP1/rsr1::TRP1 SPC42-mCherry::kanR/SPC42 this report

DLY15125 a/a BEM1-GFP:LEU2/BEM1-GFP:LEU2 rga1::HIS3/rga1::HIS3 this report
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The GAP, Bud2, promotes GTP hydrolysis by Rsr1, thereby

restricting Rsr1-GTP accumulation to the vicinity of the land-

marks [21,22,27]. Rsr1-GTP binds to the Cdc42-directed GEF,

Cdc24, promoting localized GTP-loading of Cdc42 [28,29]

(figure 2d ). In this way, the pre-localized landmarks influence

where Cdc42 GTP-loading takes place, and hence where a

new front will form.

As has long been recognized [17], the landmarks define

many possible polarization sites: there is an entire ring of

potential sites marked by Axl2, and both poles are marked

by Bud8 and Bud9. How, then, do cells select a single

polarity ‘front’ from these many potential sites?
2. Material and methods
(a) Yeast strains
All yeast strains (listed in table 1) are in the YEF473 background

(his3-D200 leu2-D1 lys2-801 trp1-D63 ura3-52). We used strains

with the polarity marker Bem1-GFP replacing endogenous

Bem1, because previous work indicated that Bem1-GFP is func-

tional, whereas GFP-Cdc42 is only partially functional and can

have mildly toxic effects [13].
(b) Live cell microscopy
Cells were grown in synthetic medium (MP Biomedicals) with

dextrose. Prior to imaging, cells were arrested with 200 mM

hydroxyurea (Sigma) at 308C for 3 h, washed, released into fresh

synthetic medium for 1 h, harvested and mounted on a slab com-

posed of medium solidified with 2% agarose (Denville Scientific

Inc.). The slab was put in a temperature-control chamber set to

308C. In this study, we imaged cells using a spinning disc confocal

microscope as detailed below. Comparison of polarization kinetics

suggested that imaging in this system was not significantly more

phototoxic than with the wide-field system used previously (see

electronic supplementary material, figure S1).

Images were acquired with an Andor XD revolution spinning

disc confocal microscope (Olympus) with a Yokogawa CSU-X1

5000 r.p.m. disc unit, and a 100�/1.4 UPlanSApo oil-immersion

objective controlled by METAMORPH software (Universal Imaging;

http:://microscopy.duke.edu). Images (stacks of 30 images taken

at 0.24 mm z-steps) were captured by an iXon3 897 EMCCD

camera with 1.2� auxiliary magnification (Andor Technology).

The fluorescence light source was used at 10% maximal output.

An EM-Gain setting of 150 was used for the EMCCD camera.

Exposure to the 488 nm diode laser was 150 ms.

For latrunculin treatment, asynchronous log phase cells

were harvested, resuspended in synthetic medium contain-

ing 200 mM latrunculin A, and mounted on a 2% agarose slab

with 200 mM latrunculin A. The cells were on the slab for at

least 15 min prior to imaging.
(c) Deconvolution and image analysis
Images were deconvolved using HUYGENS ESSENTIAL software

(Scientific Volume Imaging). The classic maximum-likelihood

estimation and predicted point spread function method with

signal-to-noise ratio 3 was used with a constant background

across all images from the same day. The output format was

16-bit, unscaled images to enable comparison of pixel values.

Comparison of raw and deconvolved images suggested that

deconvolution improved signal-to-noise ratio without introdu-

cing artefacts (electronic supplementary material, figure S2).

To detect polarity foci in different focal planes, maximum

intensity projections were constructed and scored visually for

the presence of more than one focus. The coexistence time is

the interval between the first frame in which more than one

spot was detected and the frame when only one spot was

detected. Bem1-GFP intensities were quantified using VOLOCITY

(Improvision). A threshold was set that would only select the

polarized signal, and the summed, polarized intensity was

recorded. Changes in intensity are reported as percent of maxi-

mum for that cell. To quantify the percentage of Bem1-GFP in

the polarized focus at peak frame, two thresholds were set to

separately select the entire cell and the polarized signal. The per-

centage was determined by these two summed intensities with

background fluorescence subtracted. Images were processed for

presentation using METAMORPH and PHOTOSHOP (Adobe).

(d) Modelling
To ask how the presence landmark-localized Rsr1–GEF com-

plexes would impact the dynamics of polarization, we turned

to computational modelling. To provide context for the model,

we provide a brief historical synopsis below.

(i) Background on model development
The model used here evolved from one first formulated by

Goryachev & Pokhilko [10]. That model used mass action

kinetics to describe the known biochemical interactions and

activities of three molecular species: Cdc42, a GDI and a

Bem1–GEF complex. There was also an implicit GAP activity.

The model contained positive feedback but no negative feedback.

Some model parameters (representing Bem1–GEF and

implicit GAP activities, as well as interaction rate constants) were

subsequently adjusted using in vitro biochemical data as a guide

[11]. For example, the total GEF activity measured in yeast lysates

was used to constrain product of two model parameters: GEF

abundance and GEF specific activity. Thus, the model is based

on documented biochemistry, but several individual parameters

(as opposed to their product) remain poorly constrained.

That model was then elaborated to include negative feedback

by Howell et al. [13], based on the observed oscillatory dynamics

of polarization. The mechanism of negative feedback remains to

be established. Two hypothetical mechanisms (acting by positive

regulation of a GAP or by negative regulation of the Bem1–GEF

complex) were considered in that study and yielded qualitatively

http:://microscopy.duke.edu
http:://microscopy.duke.edu
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similar behaviour. Here, we chose to use the simpler of the

models, involving Bem1–GEF regulation. We note that because

the mechanism remains speculative, the negative feedback

parameters are also speculative and not constrained by data.

Two other features of the 2012 model are noteworthy. First, the

action of the GDI in the model was simplified. The 2008 model

included a GDI able to bind GDP-Cdc42 and extract it reversibly

from the membrane to the cytoplasm. In the 2012 model, there is

an implicit GDI represented by allowing GDP-Cdc42 to spon-

taneously exchange between membrane and cytoplasm. Second,

the model added a Gaussian noise term to the Bem1–GEF species.

Both the implicit GDI and the Bem1–GEF noise were retained in

our model.

A subsequent study obtained a better-constrained value for

the abundance of Cdc42 (1 mM) [30], which we have adopted

in the current model. In addition, we manually tuned some of

the other parameters so that the model would reproduce three

features extracted from imaging data: (i) the measured shape of

the Cdc42 peak (peak width at half height, 1.9 mm [31]);

(ii) Cdc42 dynamics in the peak (FRAP recovery half-time, 3.5 s

[32]) and our estimate of the amount of Cdc42 in the peak (pro-

portion of the total Cdc42, 4.6%). All parameter values are listed

in the electronic supplementary material, table S2.

In our model, we also made the GAP explicit, rather than

implicit. The parameter-adjusted model was used to represent

rsr1 mutant cells, in which landmark proteins do not affect

Cdc42 behaviour. Unique to this study is the addition of the

Rsr1–GEF and the Rga1–GAP.

Previous work indicated that the Cdc42-directed GEF, Cdc24,

was present in both cytoplasmic and local cortical pools that

exchanged rapidly [33]. The cytoplasmic pool was in significant

excess compared with the localized pool, which presumably rep-

resents the sum of Bem1-bound and Rsr1-bound GEF. Because

the GEF is in excess, we assume here that Rsr1- and Bem1-bound

pools of GEF are not in competition with each other. This allowed

us to simplify the model, using only two GEF species (Rsr1–GEF

and Bem1–GEF) and ignoring the excess cytoplasmic GEF.

Bem1–GEF behaves as in the previous models. The new Rsr1–

GEF is represented as an immobile GEF located at the sites demar-

cated by landmarks (a ring in haploids and two circular patches at

the cell poles in diploids).

The localization of Rga1 at a circular patch at the cytokinesis

site was determined experimentally [34]. Thus, we modelled

Rga1–GAP as an immobile GAP located at that site. The Rsr1–

GEF and Rga1–GAP activities were set as described below: there

are no available data to constrain these values, except that the

Rga1–GAP must be strong enough to exclude polarization

within the previous division site [34].

The full model is described in the electronic supplementary

material.
3. Results
Imaging of rsr1D/rsr1D cells breaking symmetry revealed key

features of polarity establishment [13]; here, we report similar

studies with wild-type (RSR1/RSR1) yeast cells with intact

bud-site selection. One could imagine that the symmetry-

breaking process is a backup pathway that is only used when

the normal cues are absent. In this view, an intact bud-

site-selection system actually chooses the future polarity site

prior to activating Cdc42. If that is correct, then unlike in

rsr1D/rsr1D cells, all RSR1/RSR1cells would form only one

polarity cluster. Alternatively, the bud-site-selection system

may simply activate a little Cdc42 at several landmark-

designated ‘permitted’ sites for polarity. In that scenario,

we might see more than one initial polarity cluster in
RSR1/RSR1 cells, with the final polarity site determined by

competition between clusters as seen in rsr1D/rsr1D cells.
(a) Imaging Bem1-GFP in RSR1 cells
We imaged polarity establishment using the functional polarity

marker Bem1-GFP [11]. To enrich the imaged population for

cells about to polarize, we used hydroxyurea arrest-release

synchronization as previously described [13]. This has the

added benefit of reducing phototoxicity, allowing higher

temporal resolution. In both haploid (RSR1) and diploid

(RSR1/RSR1) cells, polarity sites were established in the

expected locations (adjacent to the division site in haploids,

at one or the other pole in diploids). Many cells (40 of 65 diploids

imaged) initially developed more than one polarity cluster, and

the multi-cluster intermediates resolved to a single site in a

manner suggestive of competition (figure 3a,b). This observation

suggests that polarity establishment in RSR1 cells proceeds via

the same basic positive feedback and competition process

(figure 1) as in cells breaking symmetry, with the exception

that Rsr1 biases the location of initial polarity cluster growth.

Quantification of the time taken to resolve multi-cluster

intermediates indicated that competition was slower in

RSR1/RSR1 cells than in rsr1D/rsr1D cells (figure 3c). Potential

reasons for this difference are considered in the Discussion.

It was conceivable that the synchrony protocol we used

might alter the polarization process. However, we detected

competition between polarity clusters even in unsynchro-

nized proliferating cells (15 of 40 diploids imaged; figure 3d ).

To assess how polarization dynamics might be affected by

actin-mediated processes like vesicle trafficking, we imaged

unsynchronized cells treated with latrunculin A to depoly-

merize F-actin. As before, several cells (eight of 32 diploids

imaged) displayed competition between polarity clusters

(figure 3e). However, whereas in untreated cells the polarity

site remained stably located until bud emergence, a subset of

latrunculin-treated cells (nine of 32 diploids imaged) displayed

polarity-site ‘relocation’ (figure 3f). In these cases, the Bem1

cluster disappeared from one pole and appeared at the other,

sometimes repeatedly (a ‘ping-pong’ pattern: figure 3g). This

phenotype suggests that in the absence of F-actin, landmarks at

both poles (in diploids) continue to compete for polarity proteins

even after a large polarity cluster has formed. Thus, F-actin may

be needed to ‘lock in’ the initially chosen polarity cluster.
(b) Dynamics of polarization in RSR1 cells
In rsr1D/rsr1D cells, initial clustering of polarity factors is

followed by dispersal and re-clustering in an oscillatory

manner, presumably as a result of negative feedback in the

polarity circuit [13] (figure 4a). Comparison of RSR1/RSR1
and rsr1D/rsr1D cells revealed significant differences in the

dynamics of polarity clusters: the initial clustering was

slower in RSR1/RSR1 cells, and subsequent dispersal was

also slower (figure 4b). As a result, Bem1 levels did not oscil-

late with high amplitude in RSR1/RSR1 cells (because

haploid cells polarize near the previous cytokinesis site and

Bem1 is localized to both the cytokinesis site and the polarity

site, the dynamics of polarization are harder to distinguish in

haploids so this analysis focused on diploid cells). Peak levels

of Bem1 at the polarity site were lower in RSR1/RSR1 cells

than they were in rsr1D/rsr1D cells (figure 4c and the

electronic supplementary material, movie S1).
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RSR1 cells (n ¼ 39). Each dot represents one cell; the line is the average coexistence time. (d ) Competition between Bem1-GFP clusters is also observed in unsyn-
chronized RSR1/RSR1 cells. (e) Competition between Bem1-GFP clusters is also observed in latrunculin A-treated RSR1/RSR1 cells lacking F-actin. ( f ) Latrunculin A-
treated RSR1/RSR1 cells sometimes display ‘relocation’ of the Bem1-GFP cluster from one pole to the other. (g) In extreme cases, the Bem1-GFP cluster in latrunculin
A-treated cells relocates back and forth repeatedly between the two poles. Scale bars, 2 mm. (Online version in colour.)

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20130006

5

In addition to the differences discussed above, a subset of

RSR1 and RSR1/RSR1 cells (17 of 51 haploids and 12 of 65

diploids) exhibited a behaviour not seen in rsr1D/rsr1D
mutants: Bem1 accumulated to intermediate levels at one pole

but then appeared to fluctuate rapidly at that pole for 10–

20 min before strengthening and coalescing to a tighter spot

prior to bud emergence (figure 5). This subset of cells appears

to polarize by a two-step process in which an initial stage (not

obvious in the majority of cells imaged) involves low-level

noisy recruitment of Bem1 to Rsr1-demarcated sites. Possible

interpretations of this result are considered in the Discussion.
(c) Modelling bud-site selection
As discussed above, bud-site-selection landmark proteins are

thought to promote local accumulation of Rsr1-GTP, which
recruits Cdc24 to sites specified by the landmarks (see Introduc-

tion). This would generate a ring of Cdc24 GEF in haploids, and

two patches of GEF at opposite poles in diploids. To ask

whether such GEF patterns would, in combination with the

known symmetry-breaking mechanism, lead to the polarity

protein localization observed in RSR1 cells, we turned to com-

putational modelling.

We adapted a model that was originally developed to des-

cribe symmetry-breaking polarization in yeast (see Methods)

[10,11,13]. The model contains positive feedback owing to the

Bem1 complex (figure 1) as well as negative feedback via modi-

fication of the Bem1 complex to an inert cytoplasmic state

(electronic supplementary material). Stochastic noise was

added to the least abundant species (Bem1 complex) as

described [13]. However, the model does not incorporate

downstream cytoskeletal polarization, and therefore lacks
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F-actin, which has been suggested to either reinforce

[32,33,35,36] or perturb [31,37–39] polarity. The model exhibits

the formation of multiple Cdc42 clusters that compete,
resulting in a single final polarity cluster (figure 6a). With our

model parameters (electronic supplementary material, table

S2), the simulations evolve to a single polarity peak in

3–7 min, which is a bit slower than the approximately 2 min

it takes, on average, in vivo (figure 3c).

To this symmetry-breaking model, we added spatially

patterned GEF activity to represent the Cdc24 recruited by

Rsr1 (hereafter ‘Rsr1–GEF’). Haploid RSR1 cells were mod-

elled with a ring of Rsr1–GEF activity surrounding the

cytokinesis site. The total Rsr1–GEF activity was initially

set equal to 2.5% of the Bem1-associated GEF in the model.

Under these conditions, Cdc42 accumulated in a ring and

remained there for more than 1000 s without evolving to a

single peak at the periphery of the ring (figure 6b). As we

never observed a ring of Cdc42 in cells, this model fails to

recapitulate the effect of Rsr1 on polarity establishment.

Our simulations indicate that even a modest amount of

spatially patterned GEF can have a powerful influence on the

symmetry-breaking system, overriding its ability to generate

a single peak. We considered two possible adjustments that

might limit this effect. First, we eliminated the Rsr1–GEF

after initiating the simulation. As shown in figure 6c, shutting

Rsr1–GEF off did allow the system to evolve to a single

peak, but the peak was always centred in the middle of the

ring. Second, we tested whether a weaker Rsr1-associated

GEF might bias (rather than override) the Bem1 system. With

a persistent Rsr1–GEF at 0.025% of the Bem1–GEF, the initial

ring also evolved to a single Cdc42 peak centred in the middle

of the ring (figure 6d).

In cells, polarization in the centre of the ring would lead

to formation of a bud within the previous division site.
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Although this does not occur in wild-type cells, it does occur

at high frequency in rga1D mutants [34]. Rga1 is a Cdc42-

directed GAP that accumulates at the division site in cells

undergoing cytokinesis. It is thought to remain after cyto-

kinesis, creating a ‘plug’ within the Rsr1–GEF ring that

discourages polarization within the ring [34].

To take into account the localized GAP activity provided by

Rga1, we raised the model GAP activity within the ring. We

then simulated the two scenarios above: transient Rsr1–GEF

or weak Rsr1–GEF. In the transient Rsr1–GEF simulation, we

also made the Rga1–GAP plug transient, as Rga1 relocalizes

to the polarity site following polarization [40]. If both Rsr1–

GEF and Rga1–GAP were turned off simultaneously,

simulations again evolved to a peak in the centre of the ring

(not shown). But if the Rga1–GAP was switched off more

than 45 s after the Rsr1–GEF, then the initial ring gradually

evolved to a Cdc42 peak at the ring periphery (figure 6e).
With a weak persistent Rsr1–GEF, the system also evolved to

a single Cdc42 peak at the periphery of the ring (figure 6f).
The final position of the peak varied from simulation to
simulation as a result of noise, but in contrast to the random pla-

cement observed without Rsr1–GEF, most peaks were near the

ring (figure 6g). Thus, an immobile ring of Rsr1–GEF with an

internal plug of Rga1–GAP can recapitulate the final Cdc42 dis-

tribution attained in RSR1 haploids, but only if the Rsr1–GEF is

either weak or transient.

Diploid RSR1 cells were modelled by assuming that they

have two patches of Rsr1–GEF at the proximal and distal

poles. An Rga1–GAP plug was added at the proximal pole,

as described above. In this scenario, simulations rapidly devel-

oped a single peak of Cdc42 at the distal pole (figure 7a).

Similar behaviour was observed for weak Rsr1–GEF (0.025%

of Bem1–GEF: figure 7b). Polarization was more rapid than it

was in simulations lacking the Rsr1–GEF (figure 6a), and the

RSR1 diploid simulations never developed more than one

polarity cluster. Thus, a little Rsr1-localized GEF is sufficient

to bias the location of polarization.

We also simulated a diploid lacking the Rga1–GAP, and in

this case, the simulations developed two peaks of Cdc42, one at

each pole (figure 7c). Even with weak Rsr1–GEF (0.025% of
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Bem1–GEF: figure 7d ), or transient Rsr1–GEF (figure 7e), we

did not observe competition between the peaks.

The ineffective competition in these simulations could result

from the development of comparably sized Cdc42 peaks. During

competition, the relative advantage of the winning peak

depends on the magnitude of the difference between the peaks

[11]. Thus, close-to-equal peaks take a long time to develop

asymmetry. Consistent with this hypothesis, simulations lacking

the Rga1–GAP in which the Rsr1–GEF was uneven (so that

more Cdc42 was recruited to one pole than the other) led to

more effective competition between the two peaks (figure 7f,g).

Competition was considerably slower with high Rsr1–GEF

(2.5% of Bem–GEF: figure 7f ) than with low Rsr1–GEF

(0.025% of Bem–GEF: figure 7g), indicating that the continuing

presence of the Rsr1–GEF antagonizes competition.
(d) Imaging Bem1-GFP in rga1D/rga1D diploid cells
To ask whether diploids lacking Rga1 would develop two

polarity peaks at opposite poles, we imaged polarity estab-

lishment in rga1D/rga1D homozygous mutants. Most cells

developed a single peak (figure 8a; electronic supplementary

material, movie S2). Some cells (four of 21 diploids imaged)

did develop two polarity clusters, but these intermediates

were rapidly resolved to a single peak (figure 8b). Under

our imaging conditions, RSR1/RSR1 diploids had a

marked preference to polarize at the pole opposite the neck

(62 of 65 cells). This preference was less strong in the

rga1D/rga1D mutants (16 of 21 cells), suggesting that the

Rga1 GAP accounts for part, but not all, of the bias.
4. Discussion
(a) Wild-type cells exhibit competition between

polarity clusters
The bud-site-selection system in yeast is often said to dictate

the position at which the next bud will emerge. However, it

has long been recognized that bud-site-selection landmarks

actually specify a restricted subset of preferred positions,

rather than dictating a single site [17]; the basis for selecting

the final bud-site position (and the reason why there is

only one) has been mysterious. One possibility is that Rsr1,

which has the capacity to oligomerize [41], picks one

among the permitted positions and then recruits Cdc42 and

other polarity factors to the chosen site. In this view, the

yeast cell’s symmetry-breaking capability might be con-

sidered a backup or failsafe system, not normally called

upon to participate in wild-type cells.

Arguing against the idea that Rsr1 picks a unique site, we

found that RSR1/RSR1 cells often developed more than one
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cluster of polarity factors before evolving to a single polarity

peak. This behaviour suggests that competition between the

clusters is important in selecting the single winning polarity

site in wild-type cells. It could be that Rsr1 simply biases

the symmetry-breaking process to initiate polarity clusters

at any of the permitted sites. In this view, polarity establish-

ment occurs in much the same way with or without bud-site

selection, and the uniqueness of the final polarity site is

attained by competition (between distant clusters) and/or

merging (of nearby clusters).

(b) Effect of the bud-site-selection system on the
dynamics of polarization

The dynamics of polarity establishment, as revealed by ima-

ging Bem1-GFP, displayed surprising differences between

RSR1/RSR1 and rsr1D/rsr1D cells. As reported previously

[13], in rsr1D/rsr1D cells Bem1 clusters formed rapidly, and

then dispersed and reformed in an oscillatory manner. By com-

parison, in RSR1/RSR1 cells the Bem1 clusters grew more

slowly, peaked at a lower intensity and then approached an

intermediate intensity without marked oscillation (figure 4).

These features may all be linked: given a system with both posi-

tive feedback and delayed negative feedback, the dynamics of

the system will depend on the relative timeframe with which

the feedback loops take effect. If positive feedback is fast,

then the system will tend to polarize a lot of Bem1 before the

negative feedback kicks in, after which the strongly activated

negative feedback would disperse much of the polarized

protein. But if the initial positive feedback is slow, then the

negative feedback will ‘catch up’ as the system polarizes, redu-

cing the peak polarity and dampening oscillations. Given these

considerations, we interpret the observed differences in

polarity dynamics to stem from a primary difference in the

rate at which positive feedback builds the polarity cluster.

The unexpected conclusion is that the presence of Rsr1 some-

how slows the initial growth of the polarity cluster.

How might Rsr1 slow initial polarization? It seems poss-

ible that at early stages during polarity establishment, the

Rsr1–GEF distributed over a relatively large area leads to

prolonged competition between the allowed sites. This scen-

ario might explain another behaviour we observed in a subset

of both haploid RSR1 and diploid RSR1/RSR1 cells (figure

5): a faint and fluctuating Bem1-GFP signal was observed

for several minutes in the areas expected to harbour active

Rsr1 (the division site in haploids and the distal tip in

diploids) prior to development of a single strong polarity

site. Perhaps this reflects prolonged and ineffective compe-

tition, as seen in our simulations containing an Rsr1–GEF

ring. However, our simulations of wild-type diploids did

not capture this effect: with a circular patch (rather than a

ring) of Rsr1–GEF, the simulations rapidly polarized towards

the centre of the patch (figure 7a). Thus, it remains unclear

why RSR1/RSR1 cells would polarize more slowly than

mutants lacking Rsr1.

(c) Modelling bud-site selection
Previous studies showed that GTP-Rsr1 binds to Cdc24 and

that this interaction is required for bud-site selection [28,29].

Thus, the simplest hypothesis to explain how Rsr1 biases polar-

ization is that it recruits Cdc24 from the cytoplasm to all cortical

sites containing landmark proteins. Using a computational
model previously developed to simulate symmetry-breaking

polarization, we explored whether such a localized

Rsr1–GEF would suffice to yield the polarity protein behav-

iour observed in cells. With no Rsr1–GEF, this model

initiates Cdc42 clusters owing to molecular noise, and as the

clusters grow, they compete or merge with each other to

yield a final strong polarity peak (figure 6a).

We added a localized Rsr1–GEF either as a ring, repre-

senting Axl2/Rsr1-mediated Cdc24 recruitment in haploids,

or as two patches, representing Bud8/Rsr1- and Bud9/

Rsr1-mediated Cdc24 recruitment in diploids. We also

added a central ‘plug’ with higher GAP activity in the

middle of the ring (or one of the patches) to simulate the

reported exclusion zone enforced by the centrally located

GAP, Rga1 [34]. Our simulations indicated that this system

could yield a single polarity site at an appropriate location.

However, to obtain that result it was necessary to make the

Rsr1–GEF either very weak or transient.
(d) Localized Rsr1 – GEF could interfere
with competition

Models containing an Rsr1–GEF ring totalling 2.5% of the

Bem1–GEF available for positive feedback recruited polarity fac-

tors to a stable ring, which did not resolve to a single peak of

Cdc42 (figure 6b: this was not affected by the presence or absence

of a GAP plug in the centre of the ring). Thus, the presence of

even a relatively weak Rsr1–GEF was sufficient to suppress

the competition process that yields a single peak. This effect

could be overcome either by greatly reducing the amount of

Rsr1–GEF or by making the Rsr1–GEF transient. The ability

of Rsr1–GEF to interfere with competition may explain the unex-

pected finding that RSR1/RSR1 cells took longer than rsr1D/

rsr1D cells to transition from a two-polarity-cluster intermediate

to the final single-polarity-site state (figure 3c).

Models containing two patches of Rsr1–GEF but lacking

a GAP plug (simulating rga1D/rga1D mutant diploids) devel-

oped two polarity peaks that did not resolve to a single peak

in a relevant (approx. 10 min) timeframe, even with a very

weak or transient Rsr1–GEF (figure 7). By contrast, rga1D/

rga1D mutant cells displayed rapid competition and no

defect in developing a single polarity site (figure 8). Why is

competition so much more powerful in cells than it is in

our model simulations? In the model, competition builds

on initial differences between peaks that develop owing to

molecular noise. In cells, it may be that noise stemming

from vesicle traffic (not present in our model) is more power-

ful in generating these differences, promoting competition.

It is also possible that competition is enabled by some

other factor that discourages polarization at the previous

division site. Although haploid rga1D cells polarize preferen-

tially at the division site [34], we found that diploid rga1D/

rga1D mutants retained a bias to polarize away from the

division site. A very recent study identified a new Cdc42

antagonist present at the division site that collaborates with

Rga1 to prevent budding at that site [42]. Modelling a situ-

ation with two uneven patches, competition was more

effective and our simulations did evolve towards a single

polarity site. However, even in this case, a persistent Rsr1–

GEF impaired competition (figure 7). Thus, as for the haploid

ring simulations, effective polarization would occur only if

the Rsr1-recruited GEF were very weak or transient.
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(e) Does the Rsr1 – GEF play additional roles beyond
bud-site selection?

The idea that Rsr1 might interfere with effective polarization

(as it does in the simplified model) is at odds with a growing

body of evidence that Rsr1 actually promotes polarization,

beyond just bud-site selection. In the filamentous fungi

Ashbya gossypii and Candida albicans, Rsr1 is important for keep-

ing the polarity site from wandering away from the hyphal tip

[43,44]. Moreover, in Candida Bud5 is localized to hyphal tips

[45]. Similarly, in S. cerevisiae, Rsr1 and Bud5 become concen-

trated at the polarity site during bud emergence [22,23,25]. In

addition, RSR1 overexpression was found to partly suppress

the temperature sensitivity of specific cdc42 alleles [46],

suggesting that Rsr1 can assist in polarity establishment per

se, in addition to influencing the position of the polarity site.

These studies are all consistent with the hypothesis that

once established, a polarity site somehow recruits Bud5,

which could then activate Rsr1 to recruit more Cdc24. This

would reinforce polarity by providing a Cdc42–Bud5–

Rsr1–Cdc24–Cdc42 positive feedback loop acting in parallel

to the loop provided by Bem1. Such a parallel feedback loop

might help to explain why bem1D mutants can polarize at all.

To reconcile our observations with the data discussed

above, we suggest the following scenario. At early stages of

polarity establishment, the presence of GTP-Rsr1 at multiple

landmark-designated sites on the cortex biases the location of

polarity cluster initiation but then slows the growth of the clus-

ter and competition between clusters. At later stages, the

landmark-localized pool is somehow shut off, and Bud5 is

instead recruited to the chosen polarity site, reinforcing Cdc24

recruitment. The most parsimonious idea would be that the

loss of Bud5/Rsr1 from landmark sites is simply a consequence

of the recruitment of Bud5/Rsr1 to the polarity site. Alterna-

tively, Bud5 might be inactivated at the previous landmark

sites by some other mechanism. Thus, we speculate that Rsr1

plays two separate roles: in early G1 it helps to mark the sites

that initiate polarity establishment, and in late G1 it participates

in a positive feedback that reinforces polarization. The basis for

the switch between these roles remains to be determined.

( f ) The role of actin
We found that in diploids treated with latrunculin to depoly-

merize F-actin, the winning polarity site sometimes relocated

from one landmark-designated position to another. This obser-

vation suggests that F-actin may be required to stop the ‘losing’

landmarks from continuing to attract polarity factors once a

large polarity cluster is formed. In light of the hypothesized

Cdc42–Bud5–Rsr1–Cdc24–Cdc42 positive feedback loop dis-

cussed above, one possibility would be that Cdc42-oriented
F-actin mediates delivery of a polarity-site ‘landmark’ that

then draws Bud5 to the new polarity site, away from the

immobile bud-site-selection landmarks.

A role for actin-mediated vesicle traffic in providing positive

feedback for the polarity site has been vigorously advocated by

previous studies [32,33,35]. In those studies, it was assumed

that actin reinforced polarization by delivering Cdc42 itself to

the polarity site, whereas here we suggest that it may deliver

a landmark that serves to activate Rsr1 at that site. Consistent

with a role for actin and Rsr1 in the same pathway, both del-

etion of Rsr1 [8] and depolymerization of F-actin [33] can

block polarization when cells lack Bem1. Testing the hypothesis

will require identification of the proposed landmark(s).

In a few of the latrunculin-treated cells, the polarity site

repeatedly switched from one end of the cell to the other in a

‘ping-pong’ manner. This behaviour is strikingly reminiscent

of the oscillatory relocation of Cdc42 between the two cell

ends that was recently reported to occur during bipolar

growth of the cylindrical fission yeast, Schizosaccharomyces
pombe [47]. However, whereas in S. cerevisiae the behaviour is

only seen in cells with depolymerized actin, in S. pombe it

requires F-actin, so the role of actin must be different in the

two systems. Three factors are likely to underlie oscillatory relo-

cation in both systems: (i) the two cell ends contain tip proteins

that can attract polarity factors to those sites; (ii) competition for

limiting factors may explain why only one site at a time can

accumulate large amounts of Cdc42; and (iii) negative feedback

loops may explain why the winning site then disperses Cdc42,

allowing the other tip to gain the upper hand [13,47,48].
5. Conclusions
We suggest that by providing a spatially restricted Cdc24

GEF activity at landmark-designated sites, the bud-site-selec-

tion system biases where the symmetry-breaking positive

feedback will begin to concentrate polarity factors. Once

polarity sites develop, they compete or merge until there is

a single winner. Modelling predicts that the continued

action of landmark-localized GEF would interfere with com-

petition and merging, and we suggest that polarity factors

recruit Rsr1 and its regulators away from the landmarks in

order to reduce such interference. Rsr1 may then provide a

parallel positive feedback pathway to assist polarization.

A surprising observation, which remains to be explained, is

that the presence of Rsr1 slows the initial clustering of Bem1.
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