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The budding yeast Saccharomyces cerevisiae has been used extensively for the

study of cell polarity, owing to both its experimental tractability and the high

conservation of cell polarity and other basic biological processes among eukar-

yotes. The budding yeast has also served as a pioneer model organism for

virtually all genome-scale approaches, including functional genomics, which

aims to define gene function and biological pathways systematically through

the analysis of high-throughput experimental data. Here, we outline the contri-

butions of functional genomics and high-throughput methodologies to the

study of cell polarity in the budding yeast. We integrate data from published

genetic screens that use a variety of functional genomics approaches to query

different aspects of polarity. Our integrated dataset is enriched for polarity pro-

cesses, as well as some processes that are not intrinsically linked to cell polarity,

and may provide new areas for future study.
1. Introduction
Cell asymmetry, or polarity, refers to spatial differences in shape, structure or

function of cellular components. Cell polarity is a defining feature of almost all

cells, and is used differently based on cell type to modulate cell behaviour and

define distinct cellular domains. The budding yeast Saccharomyces cerevisiae is

an attractive model for studying the establishment of cell polarity for two main

reasons: (i) core biological processes in S. cerevisiae are conserved in higher eukary-

otic cells, allowing inference of function; and (ii) yeast is an experimentally

tractable organism that is amenable to genetic manipulation [1].

The field of functional genomics aims to define gene (and protein) functions

and interactions, using data derived from genome-scale experiments. As noted

above, model organisms like yeast have been essential for annotating gene func-

tion and for developing tools and approaches that have driven major advances

in functional genomics and genome biology. In this review, we highlight

research that has made use of functional genomics approaches to study polarity

in S. cerevisiae. We then describe general trends identified through the analysis

of 35 genome-wide genetic screens from different groups, which suggest that

there are several essential biological processes required for cell polarity in

yeast. Finally, we discuss our view of future directions for cell polarity research

using functional genomics approaches in yeast. It is beyond the scope of this

review to give a detailed description of the biology of polarity in yeast, but

we refer the reader to excellent reviews recently published by the YeastBook

project [2,3].

Saccharomyces cerevisiae cells become polarized during three discrete phases:

budding, mating (shmoo formation) and filamentous growth. Each of these

modes of polarized cell growth is regulated by different spatio-temporal and bio-

logical cues, but all hinge on a common series of molecular polarity determinants

beginning with the small guanosine triphosphatase (GTPase) Cdc42. Budding is

internally induced at the time of cell cycle commitment in late G1 (figure 1a),

which is regulated by the cyclin-dependent protein kinase Cdc28 [4–6]. Cortical

spatial landmarks inherited from the previous round of cell division determine

the bud site and lead to activation of small GTPase molecules and their regula-

tors: Rsr1, Cdc24 and Cdc42 (figure 1b). Active cycling of Rsr1 GTPase

between GDP- and GTP-bound forms is hypothesized to concentrate the
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Figure 1. An overview of Cdc42 regulation during polarized bud growth.
(a) Budding occurs when the cell switches from isotropic to apical cell
growth, leading to the formation of a bud. (b) Bud-site selection protein
Rsr1 activates the GEF Cdc24, which converts Cdc42 to its active GTP-bound
state. Activated Cdc42 binds to numerous effectors, promoting actin patch
nucleation, actin cable assembly and septin/actomyosin ring assembly.
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Figure 2. An overview of Cdc42 regulation during mating. (a) Mating begins
after exposure to mating pheromone from cells of the opposite mating type,
which leads to the outgrowth of a mating projection, or ‘shmoo’. (b) The
same Cdc42-based machinery used in budding drives polarized cell growth
and shmoo formation during mating. In addition to regulating polarized
secretion, Cdc42 also regulates the mating MAPK signalling pathway to
turn on mating-specific genes required for cell fusion and the cyclin-
dependent kinase inhibitor Far1, leading to G1 arrest.
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activated form of Cdc42 and Cdc24, the guanine nucleotide-

exchange factor (GEF) of Cdc42, at the selected bud site

[2,7,8]. Polarization of Cdc42 triggers the switch from isotropic,

symmetrical growth to non-symmetrical growth along an axis

dictated by the septins and the actin cytoskeleton [5,9]. First,

Cdc42 activates Bni1, a formin that together with Bnr1 assem-

bles the filamentous (F) actin cables [10]. Polarized F-actin

cables function as tracks along which the myosin motor,

Myo2, moves exocytic vesicles from the Golgi [11,12], as well

as numerous other organelles [13–16], to the incipient bud

site, promoting growth of the bud. The polarisome complex

(consisting of Spa2, Pea2, Bni1, Bud6, Msb3 and Msb4) promo-

tes this actin-mediated exocytosis by coupling the extension of

F-actin cables with vesicle fusion [17]. Cortical actin patches are

also polarized in response to Cdc42 activation and are

nucleated by the highly conserved Arp2/3 complex following

its activation by the Cdc42-regulated kinases, Cla4 and Ste20

[18,19]. Actin patches play an integral role in endocytosis,

allowing for regulation of lipid and protein levels at the mem-

brane of the emerging bud [20]. Second, septins are recruited to

the bud neck following activation of the Rho-like GTPases Gic1

and Gic2 by Cdc42, and form a ring-shaped cytoskeletal
complex that associates with the plasma membrane, providing

a diffusion barrier between the mother and the bud [21,22].

The septins also provide a scaffold upon which the contractile

actomyosin ring is assembled. During telophase, triggered by

the mitotic exit network, the septin hourglass shape splits

into two rings, surrounding the cytokinetic machinery [23].

As the actomyosin ring contracts, the cytoskeletal and exocytic

machinery, which earlier in the cell cycle promoted bud

growth, is redirected from the bud cortex to the bud neck,

delivering post-Golgi vesicles to the actomyosin ring [24].

Alternatively, polarity in both mating and filamentous

growth is induced by external cues. Mating is initiated

upon exposure to the mating pheromone from cells of the

opposite mating type, which leads to the outgrowth of a

mating projection (shmoo), allowing for growth toward the

source of the pheromone [25,26] (figure 2a). As in the process

of budding, Cdc42 also plays a central role in polarized cell

growth and shmoo formation during mating. In addition to

driving polarized secretion to the growing shmoo tip,

Cdc42 also regulates the Ste20 kinase, which triggers acti-

vation of the mating mitogen-activated protein kinase
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Figure 3. An overview of Cdc42 regulation during filamentous growth.
(a) Filamentous growth occurs when cells elongate and exhibit enhanced
cell adhesion, leading to a switch from yeast cell form to filamentous
form. (b) Filamentation occurs when nitrogen starvation is sensed by Sho1
and Msb2, leading to the activation of Cdc42 and the downstream activation
of the MAPK pathway. This leads to both cell elongation via a G2 delay as
well as the expression of the flocculin Flo11 and other adhesion proteins.
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(MAPK) signalling pathway to turn on mating-specific genes

required for cell fusion and Far1, an inhibitor of Cdc28 (figure

2b). Filamentous growth is initiated in the absence of a nutri-

ent-rich environment and involves cell elongation and

enhanced cell adhesion, leading to a switch from spherical

form to filamentous form and enabling expansion to new

environments [27,28] (figure 3a). During filamentous

growth, Cdc42 interacts with two key proteins to promote

filamentation: (i) Cdc42 binds to the membrane protein

Msb2, which, together with Sho1, senses nitrogen starvation;

and (ii) Cdc42 interacts with the Ras2 GTPase, which also

regulates the nitrogen starvation response. These interactions

stimulate actin filamentation and secretion in the direction of

growth, and also activate the MAPK pathway. The MAPK

pathway consists of many of the same components that are

involved in the mating pheromone response and leads to

the activation of Flo11, a flocculin that allows for fibrous

interconnections to form between cells (figure 3b). While

the molecular basis of cellular polarity has been intensively

studied for many years, the highly dynamic nature of the

polarity process suggests that many players may remain to
be discovered. Below, we summarize functional genomics

efforts that aim to uncover new regulators of cell asymmetry

and polarized growth in S. cerevisiae.
2. High-throughput methods for polarity studies
The ease of genetic manipulation in S. cerevisiae has enabled

the creation of a wealth of large-scale collections of strains

with deleted [29,30], hypomorphic [31–34], tagged [35–37]

or over-expressed genes [38–43], as well as the development

of new methods for performing cost-effective and straightfor-

ward systematic analyses. Here, we give an overview of

methodological advances in the fields of yeast genomics,

microscopy and proteomics that have contributed to our

understanding of cell polarity (figure 4).

(a) Genetic assays
Yeast researchers have used forward genetic screens produc-

tively for many years to discover regulators of cell polarity.

For example, CDC42 was first identified in classical genetic

screens for temperature-sensitive mutants that arrest their

cell cycle with a uniform morphological phenotype [19,44].

More recently, so-called reverse genetic approaches, which

involve assessment of the phenotypic consequences of a

known genetic mutation, have provided a means to immedi-

ately link genotype to phenotype. The budding yeast

heterozygous deletion collection is composed of a set of

diploid yeast strains in which each of the approximately

6000 genes is individually deleted and replaced with a drug

resistance cassette [29,30]. The deletion collection was the

first genome-scale reagent produced for reverse genetics

screens and was used to generate the haploid non-essential

deletion collection (consisting of strains harbouring deletion

mutations in 80% of yeast genes), inspiring the development

of numerous methods for the manipulation of these collec-

tions. In particular, synthetic genetic array (SGA) analysis

automates yeast genetics and has enabled high-throughput

genetic studies in yeast. The SGA method involves a set of

replica pinning and serial selection steps, allowing facile intro-

duction of any marked allele into any set of arrayed strains in a

high-throughput manner [45].

A major application of SGA analysis has involved sys-

tematic assessment of genetic interactions (GIs) between

two partial or complete loss-of-function alleles [46–53].

A GI can be defined as an unexpected deviation in double

mutant growth rate, using colony size as a proxy for cellular

fitness [54]. A negative GI, in which the double mutant has a

more severe fitness defect than would be predicted based on

the fitness of the two single mutants, suggests that the

two genes have a redundant role as components of parallel

pathways. A positive GI, in which the double mutant is

more fit than expected, suggests that the two gene products

may function in the same pathway. A global survey of GIs

between approximately 5.4 million gene pairs revealed an

interesting relationship between GIs and the essentiality of

protein complex members; genes encoding components of

non-essential complexes show predominantly positive GIs,

whereas negative GIs are more often found among genes

encoding components of essential complexes [55]. This obser-

vation suggests that essential complexes contain internal

redundancy, allowing retention of function after loss of a

single complex member. Additionally, GI profiles (the set of
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Figure 4. An overview of functional genomics approaches in the study of polarity. This review focuses on the use of genomic, cell biological and proteomic assays to
study polarity in yeast.
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GIs for a particular gene) can be used to infer gene function

through a ‘guilt by association’ principle of analysis: genes

that have similar GIs are likely to encode proteins that are

part of the same pathway or complex. The first proof-of-prin-

ciple work validating SGA analysis as a method for mapping

synthetic lethal (negative) GIs included a focus on cell

polarity genes and revealed new components of pathways

known to regulate actin cable nucleation [45]. Alternative

methods of assaying GIs involve competitive growth assays

of pooled yeast strains (for example, deletion mutants) that

each contain a unique ‘molecular barcode’. Flanked by

common PCR priming sequences, all barcodes can be

amplified simultaneously, allowing for analysis by either

microarray hybridization or sequencing [56–61].

Other types of GIs have proved useful for exploring cell

polarity pathways. In particular, complex haploinsufficiency

(CHI) occurs when a heterozygous double mutant exhibits a

more severe phenotype than the corresponding heterozygous

single mutants. CHI is thought to identify genes that function

within the same pathway or structure and provides useful

insight in predicting multigenic influences in human dis-

orders. CHI has been heavily used to explore GIs specific to

strains heterozygous for different alleles of the actin gene

[62,63]. For example, these screens revealed inappropriate

and excessive actin assembly in strains deleted for genes that

encode components of the endosomal sorting complex

required for transport (ESCRT), leading to an unusual reloca-

lization of F-actin to prevacuolar endocytic compartments

called E-bodies [62]. Although actin’s involvement with endo-

cytosis is well established, this discovery marked the first

instance of F-actin accumulation on E-bodies. Interestingly,

CHI screens have also drawn a convincing link between the

actin cytoskeleton and several proteasome components includ-

ing numerous members of both the 19S regulatory particle and

the 20S core particle. This observation suggests that loss of pro-

teolytic activity may indirectly affect actin and cell polarity,

and that there may in fact be a direct physical interaction

between the proteasome and actin filaments [63].
Genetic interactions caused by changes in gene dosage

have also been systematically explored using gene over-

expression libraries. Synthetic dosage lethality (SDL), wherein

overproduction of one gene product exacerbates a mutant phe-

notype, has been used to identify kinase targets whose

regulated phosphorylation is important for cell polarity

[52,64]. For example, follow-up of an SDL screen revealed

that phosphorylation of Rga2, a GTPase-activating protein for

Cdc42, by the cyclin-dependent protein kinase Pho85 inhibits

Rga2 activity to ensure appropriate activation of Cdc42

during cell polarity establishment [64]. Dosage suppression,

wherein overproduction of one gene rescues a mutant pheno-

type of another gene, often reveals downstream components of

the pathway and has been used productively by many groups

to study cell polarity pathways [65–68]. Finally, numerous

polarity screens have assessed the effects of single gene per-

turbations, either mutation or overexpression, in specific

conditions including chemical or environmental stress [69–75].

In addition to colony size, more specific colony-based assays

have been used to discover genes involved in polarity and mor-

phogenesis. For example, regulators of the mating pathway have

been identified by screening yeast mutant strains for defects in

activation of a relevant reporter gene [76–79]. Additionally, as

filamentous growth is in essence a colony phenotype distin-

guished by filaments of interconnected cells, screens for

colony morphology have been used with great success to impli-

cate genes in filamentous differentiation [3,80–88]. Interestingly,

the vast majority of mutants identified in colony morphology

screens do not show compromised fitness [87], highlighting

the importance of morphology-based assays as a complement

to fitness-based assays to uncover cell polarity mechanisms.
(b) Microscopy-based assays
In order to fully dissect the spatio-temporal dynamics of the

intricate biological systems controlling cell polarity, numer-

ous qualitative and quantitative cellular imaging and

analysis techniques have been developed, which can be
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used alongside the sophisticated genetics outlined in §2a. As

polarized growth is characterized by distinct subcellular

changes in morphology, systematic image-based approaches

to directly observe cell morphology during budding, shmoo

formation and hyphal outgrowth are very powerful. Global

analysis of protein localization in S. cerevisiae is possible

owing to the availability of an enormously useful collection

of strains each expressing a unique endogenously tagged

green fluorescent protein (GFP)-fusion protein [35,36]. The

original analysis of this collection identified almost 250 pro-

teins that localize to the primary compartments involved in

polarization (bud, bud neck, actin cytoskeleton and cell per-

iphery), comprising approximately 4% of the total number

of tagged proteins [35]. So far, the GFP library has seen lim-

ited use for exploring cell polarity pathways—one screen

identified proteins that localize to the mating projection in

pheromone-treated cells [89]. A more common approach has

been to study changes in the localization of cell polarity-

specific proteins fused to a fluorescent moiety in the deletion

collection or in the context of gene overexpression [53,90–98].

For instance, the deletion mutant array was screened for mis-

localization of modified Snc1-GFP, yeast synaptobrevin, to

identify novel regulators of its internalization [53].

While extremely useful for live-imaging, fusion to a fluor-

escent protein tag may lead to mislocalization of some proteins

owing to steric hindrance or inhibition of critical protein–

protein interactions, or even reorganization of subcellular com-

plexes [35]. Also, multimerization of the fluorescent protein

moiety can lead to artefactual formation of foci [99]. These

effects can be minimized by carefully choosing the size and

position of fluorescent labels, and selecting those that best

complement corresponding loss-of-function alleles in phenoty-

pic assays or in known GIs, for example synthetic lethality.

One alternative to fluorescently tagging full-length proteins

is to use fluorescent dyes that bind to specific proteins or sub-

cellular compartments. For instance, rhodamine–phalloidin

binds to F-actin and is commonly used to visualize the actin

cytoskeleton. Calcofluor-white, which binds to chitin in the

cell wall and highlights cell shape and bud scars, has been suc-

cessfully used to identify genes involved in polarized budding

[91]. Lastly, the lipophilic dye FM4-64 can be used to track

endocytosis and endosomal trafficking in live cells [92].

Despite various technical challenges, microscopy-based

assays remain the premier method for gaining insights into

subcellular morphological changes.
(c) Proteomics assays
In parallel with systematic genetic approaches to identify the

components of the polarity machinery, important advances

have been made in the study of cell polarization using various

proteomic methods. The yeast two-hybrid assay involves

detection of a protein–protein interaction between two pro-

teins fused to portions of a transcription factor [100], and has

been used widely to explore protein complexes important for

cell polarity in yeast [101–104]. For instance, using approxi-

mately 70 cell polarity components as bait, Drees et al. [103]

identified approximately 130 novel physical interactions

which provided an integrated network of signalling, cyto-

skeleton and organellar proteins directing cell polarity

development. More recently, the integrated membrane yeast

two-hybrid (iMYTH) system has enabled detection of

protein–protein interactions that occur at the membrane by
taking advantage of two split halves of a ubiquitin variant

that can be reconstituted by association of two interacting pro-

teins. The cytosolic deubiquitination enzymes recognize this

reassociated ubiquitin form and cleave off a chimeric transcrip-

tion factor linked to the ubiquitin, allowing for its translocation

to the nucleus and subsequent activation of reporter gene tran-

scription [105,106]. A conceptually similar method called the

protein complementation assay (PCA) involves reconstitution

of enzyme activity by interaction of a tagged protein of interest

with an incomplete portion of a reporter enzyme [107]. One

advantage to PCA and iMYTH is that genes are expressed

from their endogenous promoters, and the interaction can

occur in the endogenous cellular compartment, even if that

compartment is outside of the nucleus. For example, in a sys-

tematic study by Tarassov et al. [108], interactions among the

components of the Arp2/3 actin assembly complex, the actin

patch and the exocyst were found, identifying a potential

protein network involved in bud polarization, bud-neck

organization and cytokinesis. This description of new connec-

tivity between distinct complexes provides insight into the

dynamic movements of polarity and exocyst components

between the bud tip and the bud neck during cell division.

In a complementary approach, protein–protein inter-

actions can be directly queried at the proteomic level using

affinity-purification or fractionation coupled with mass spec-

trometry (AP–MS) [109–111]. This approach can identify all

members of a protein complex, although it does not dis-

tinguish between direct and indirect physical interactions.

Proteomic profiles of various subcellular compartments

involved in cellular polarization have been analysed by

mass spectrometry, including the vacuole [112], cell wall

[113] and plasma membrane [114]. Additionally, post-transla-

tional modifications (specifically phosphorylation) have been

surveyed in cells treated with mating pheromone to identify

phosphoproteome changes during mating [115]. Datasets

describing the results of several global proteomics assays

have revealed integral members of the polarity machinery

and provide a rich resource for further analysis of polarity

pathways [108,116,117].
3. Analysis and synthesis of genetic screens
As summarized above, many functional genomics approaches

have been used to study cell polarity in yeast. We wondered

whether particular approaches were more suited for the analy-

sis of different aspects of cell polarity—for example, are

specific types of genes best identified with a particular

method (cell biological as compared to fitness-based readout,

for example), and are different polarity processes best queried

with a certain approach (budding as compared to filamenta-

tion)? To begin to address these questions, we aimed to

compile an inclusive, unbiased list of existing genome-wide

datasets that either assessed the GIs between genes involved

in different aspects of cell polarity or analysed chemo-GIs

using compounds with known effects on the processes that

establish cell polarity. A survey of the literature uncovered

35 published works from numerous groups (see electronic

supplementary material, table S1), which included data on

3492 unique open reading frames (roughly 58% of the entire

genome). As a filtering metric only those genes that were

observed in four or more screens were integrated into our

polarity network (n ¼ 485; figure 5 and electronic
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supplementary material, table S2). We used GO Slim enrich-

ment analysis [118] to identify biological processes that were

over-represented in this dataset. As expected, the dataset

was significantly enriched for genes with annotated roles in

processes essential for cellular polarization, including cyto-

skeletal organization ( p , 5.9 � 1026), cell wall organization

( p , 2.9 � 10210), cellular membrane organization ( p , 9.4 �
1028) and transport ( p , 1.5 � 1028). The dataset was also

enriched for genes with roles in a number of processes that

require the establishment of cell polarity, such as pseudohy-

phal growth ( p , 1.3 � 10214), conjugation ( p , 2.1 � 1025),

cell budding ( p , 5.5 � 1025) and cytokinesis ( p , 2.4 �
1028). Thus a significant fraction of the genes identified in sys-

tematic polarity screens (26%) have well-characterized roles in

cellular polarization.

We anticipated that our analysis would identify a set of

core polarity genes required in all polarity assays. Indeed,
genes encoding polarisome components (Bni1, Spa2 and

Pea2) and actin cytoskeleton components (Sla1, Tpm1,

Sac6, Abp1 and Rvs161) were identified in seven or more

screens. We had further predicted that specific biological pro-

cesses would be enriched depending on the way cell polarity

was queried. To test this idea, we defined three general cat-

egories in which to bin the published datasets: (i) type of

polarized growth (analysis of budding/cytokinesis, filamen-

tous growth or mating); (ii) type of mutation or sensitized

background (deletion, overexpression or chemical treatment);

and (iii) phenotypic readout (colony size, colony morphology,

single-cell analysis or reporter detection) (see electronic

supplementary material, table S2). Surprisingly, the same

subset of GO Slim functional categories was enriched irrespec-

tive of categorization. For example, OST3 (which encodes a

subunit of the oligosaccharyltransferase complex important

for N-glycosylation) was identified in a variety of phenotypic
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assays in all three types of polarized growth assays. Ost3 has

not been previously recognized as a ‘core’ regulator of polarity

although it has numerous synthetic sick and lethal interactions

with polarity genes [50,69,70] and is required for pseudohy-

phal growth [87], response to alpha factor [60] and proper

sorting of a secreted protein [78,79]. OST3 is also implicated

in resistance to aureobasidin A, a chemical inhibitor of com-

plex sphingolipid synthesis which disrupts filamentous actin

cables in growing yeast cells [56,119], suggesting a central

role of OST3 in polarized growth. Interestingly, OST6, a hom-

ologue of OST3, is not present in our polarity network

(observed in only two screens, as opposed to 10 in the case

of OST3). This observation agrees with several pieces of evi-

dence indicating that Ost3 and Ost6 are alternative members

of the OST complex [120,121], suggesting that the Ost3 inclus-

ive complex may have a more central role in cell polarity,

although further studies are needed to elucidate this potential

functional difference. We reason that our compiled dataset

identifies a core set of processes essential for all aspects of

polarity, in addition to the previously annotated polarity pro-

teins, for example the polarisome components. These

processes include the coordination of vesicle-mediated trans-

port ( p , 4.9 � 10216), cell wall ( p , 2.9 � 10210) and cell

membrane organization ( p , 9.4 � 1028), and activities of

the cytoskeleton ( p , 5.9� 1026), regulated by response to

stress ( p , 3.8 � 1025) and chemicals ( p , 6.8� 1026) through

transcription ( p , 9.5� 1029) and protein modification

( p , 9.6� 1027). In support of this general idea, many of the

gene products identified in multiple screens are annotated as

phenotypic capacitors (127 of 485 polarity genes, from the set

of 502 identified capacitors), gene products that contribute to

phenotypic robustness, and which when deleted cause a high

amount of variance in several polarity-based phenotypes [122].

The integrated polarity dataset was also enriched for pro-

cesses not obviously related to polarity, which may provide

some insight into the interconnected nature of cellular architec-

ture. Some biological processes, for instance mitochondrion

organization, are not closely connected to cell polarity based

on their correlation in global GI profiles [47] but appear fre-

quently in genome-wide cell polarity screens. For example,

ILM1 has a proposed function in mitochondrial maintenance

and was identified in 11 of 35 polarity datasets [81]. Interest-

ingly, while the GI profiles of most mitochondrial genes are

not highly correlated to those for the polarity machinery in

the global GI network [47], the GI profile of ILM1 is similar

to the profiles of genes involved in cell wall synthesis and

integrity, including SMI1 and FKS1 [47], consistent with a

role for ILM1 in cell polarization. Moreover, an ilm1D mutant

is highly sensitive to several drugs that inhibit polarity-related

processes, including latrunculin (prevents actin polymeriz-

ation), papuamide B (disrupts plasma membrane integrity)

and caspofungin (disturbs cell wall integrity) [56]. Other

genes connect mitochondria to polarity: members of the

Mgm1/Ugo1/Fzo1 complex, which is required for mitochon-

drial morphology and genome maintenance, were repeatedly

identified in the cell polarity screens analysed here (see

electronic supplementary material, table S2). Direct links have

also been reported between mitochondria and F-actin:

disruption of actin cables results in altered mitochondrial

morphology, and mitochondria use actin cables to facilitate

migration to the daughter cell during mitosis [123]. One poss-

ible model for the involvement of mitochondrial maintenance

genes in polarity suggests that mitochondrial dysfunction
inhibits cellular polarization through the action of the

mitochondrial retrograde signalling pathway which relays

alterations in mitochondrial function to the nucleus, leading

to specific adaptive changes in nuclear gene expression [82].

Our analysis of published cell polarity screens also high-

lighted genes of unknown function that appeared in several

screens and may represent previously unappreciated regulators

of cell polarity. Of particular note is AIM44, whose product

localizes to the bud neck [35]; a strain deleted for AIM44 is

highly sensitive to numerous chemicals affecting polarity pro-

cesses, including papuamide B, latrunculin, caspofungin and

auroebasidin B among others [56]. The genetic profile of

AIM44 is highly correlated with several genes that are involved

in regulating the onset of cell polarization, including SWI5, a

cell-cycle regulated transcription factor required for M/G1

and G1-specific gene expression, RGL1, a regulator of Rho1 sig-

nalling which is localized to the bud neck, and PKH1, which

regulates endocytosis and the maintenance of cell wall integrity

[47]. Together, these data implicate AIM44 in cell polarity and

suggest that further characterization of its function should be

fruitful. Indeed, recent work by Meitinger et al. [124] suggests

that AIM44 plays a role in regulating Cdc42 and Rho1 to estab-

lish a novel cell polarity cue at the cell division site. We provide

the integrated cell polarity dataset in full in the electronic sup-

plementary material, table S2, and anticipate that further

amalgamated analyses using these and other data will provide

a useful resource for cell polarity research.
4. Perspectives and future directions
The study of cell polarity in yeast has been dramatically

enhanced by the application of high-throughput approaches,

which can provide an unbiased view of conserved biological

processes. So far, systematic genetic screens have largely

focused on the analysis of single and double deletion mutants

using simple phenotypic read-outs, for example colony size,

which has provided biologically rich information. In the next

few years, cell polarity research is likely to be advanced on

several fronts. First, yeast researchers are now poised to shift

towards large-scale analysis of higher order combinations of

genetic lesions, including triple mutant analysis, and combi-

nations of genetic and chemical perturbations. Higher order

multiplexing of mutant strains is now technically feasible

owing to recent adaptations of pooled competitive growth

assays [58]. Also, most genome-wide screens to date have

used deletion alleles of non-essential genes and mechanisti-

cally uncharacterized conditional alleles of essential genes

[31–34]. Many cell polarity components are essential or have

multiple roles, and their analysis demands a more sophisti-

cated approach. High-throughput methods for generation of

gene mutations [31,125–127] mean it is now feasible to con-

struct strain libraries carrying point mutations in all yeast

genes, as opposed to deletion or other loss-of-function alleles.

It is clear that SGA-based screens with strains carrying differ-

ent mutations in the same gene provide unique biological

information [32,62,128,129]. Thus, GI analysis with strains car-

rying specific mutations in cell polarity genes promises to lead

researchers into uncharted genetic territory.

Second, advances in automated image acquisition and

analysis for assessment of cell polarity phenotypes in sensi-

tized genetic or conditional backgrounds mean that image-

based screens should move to the forefront of cell polarity
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research in yeast [130]. To date, image-based screens using

the yeast deletion and other arrayed collections have collected

static images in a single focal plane [53,90–98]. However,

cell polarity is highly dynamic, and future analyses will

involve the high-throughput acquisition of three- and four-

dimensional spatial and temporal image sequences, using

multiple fluorescent markers to highlight numerous compart-

ments simultaneously. Until recently, the huge amount of

data generated by high-dimensional screens has made

analysis time-consuming and labour-intensive. However,

new algorithms for data extraction and expansions of readily

accessible software are making this type of screening more

practical for yeast laboratories [131–133], and automated

image-based analysis of cell polarity phenotypes should

become routine. This is important because visual analysis

of complex phenotypes is highly subjective and qualitative,

while computational extraction of cellular features and sub-

sequent statistical analysis provides an essential foundation

for quantitative biology. Finally, proteomics approaches are

also being expanded to take into account the dynamic

nature of cellular processes, defining abundance, localization,

protein–protein interactions and post-translational modifi-

cation for the yeast proteome, as well as changes in the

proteome in response to different growth conditions

[116,117,134]. In the future, using techniques that allow

quantification of absolute protein levels at the proteome

level, for example stable isotope labelling by amino acids in

cell culture (SILAC) [135,136], researchers will be able to

accurately assign protein abundance and stoichiometry of

cell polarity complexes in specific conditions, for instance

the phases of the cell cycle.

Computational and mathematical modelling of the cell

polarity machinery also provides new perspectives in under-

standing cell polarity. Some models are fairly linear and are

based on positive feedback and global inhibition [137,138],

whereas others are more complex and aim to directly address

molecular interactions underlying cellular polarization

[139,140]. Generally, these models rely on the application

and interpretation of our current knowledge of specific
targeting sequences and domains of proteins and have

already been successfully applied to identify candidate

genes, whose roles in polarity have then been assessed exper-

imentally [141]. For example, recent work revealed that

multiple clusters of polarity landmarks are formed in bud-

ding yeast cells and that the bud site is selected via

competition between these sites followed by negative feed-

back to dismantle all clusters but one [142]. Interestingly,

this observation predicts oscillatory polarization, as the posi-

tive feedback loop created by the polarity clusters is rapidly

antagonized by the negative feedback loop, and hints that

this system could be adapted to polarize several axes to

produce the complex morphologies observed in higher

eukaryotes. The integration of genome-wide data with the

predictive power of computational modelling provides a

unique way to survey previously unexplored areas of the

complete cellular network. Very few groups have ventured

into the field of mathematical modelling at a genome-wide

level, but the recent success of Chau et al. [141] in modelling

all possible feedback loops capable of polarizing the cell

highlights the potential for future research in this area.

In summary, the budding yeast continues to provide a

robust experimental platform to study gene function and

malfunction, and a guide for studying and interpreting bio-

logical pathways in more complicated systems. Indeed,

hypotheses generated in modern applications of yeast sys-

tems biology have contributed numerous valuable insights

to the broad range of cellular activities that underlie the

core biological process of polarity. More than 20 years ago,

studies in S. cerevisiae pioneered the identification of the

first major cell polarity regulators that are responsible for

orienting cell growth. More recent work using high-through-

put functional genomics approaches has begun to make sense

of how molecular interactions between key polarity determi-

nants are organized within cells and has provided new

insight into how polarity is generated and maintained. Ulti-

mately, these types of studies aim to approach the goal of a

complete description of the functions and interactions of all

the molecular components of a basic eukaryotic cell.
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