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Abstract
The 50th anniversary of the classic Monod–Wyman–Changeux (MWC) model provides an
opportunity to survey the broader conceptual and quantitative implications of this quintessential
biophysical model. With the use of statistical mechanics, the mathematical implementation of the
MWC concept links problems that seem otherwise to have no ostensible biological connection
including ligand–receptor binding, ligand-gated ion channels, chemotaxis, chromatin structure and
gene regulation. Hence, a thorough mathematical analysis of the MWC model can illuminate the
performance limits of a number of unrelated biological systems in one stroke. The goal of our
review is twofold. First, we describe in detail the general physical principles that are used to
derive the activity of MWC molecules as a function of their regulatory ligands. Second, we
illustrate the power of ideas from information theory and dynamical systems for quantifying how
well the output of MWC molecules tracks their sensory input, giving a sense of the “design”
constraints faced by these receptors.
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Introduction
Modern biology has garnered deep insights from a large collection of “model systems”
ranging from specific molecules such as hemoglobin, Lac repressor and the nicotinic
acetylcholine (nACh) receptor to organisms such as Escherichia coli and its phages to the
fruit fly Drosophila melanogaster and beyond.1,2 Studies of “model” molecules such as
hemoglobin have given rise, in turn, to very general statistical mechanical models that
provide a simple link between the structural conformation of these molecules and their
regulation by external ligands. One such model, the Monod–Wyman–Changeux (MWC)
model,3,4 is beginning to assume similar proportions in biology to those of the Ising model

© 2013 Published by Elsevier Ltd.

Correspondence to Rob Phillips: Department of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
phillips@pboc.caltech.edu.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jmb.2013.03.013

NIH Public Access
Author Manuscript
J Mol Biol. Author manuscript; available in PMC 2013 September 28.

Published in final edited form as:
J Mol Biol. 2013 May 13; 425(9): 1433–1460. doi:10.1016/j.jmb.2013.03.013.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://dx.doi.org/10.1016/j.jmb.2013.03.013


in physics, which has been used to explain diverse phenomena ranging from magnetism to
the liquid–gas transition.5 As we describe in this article, the MWC model sheds light on a
similarly broad swath of biological phenomena.

A signature feature of any powerful model is its ability to make convincing connections
between apparently unrelated phenomena. A simple search on the initials “MWC” on
PubMed reveals the vast array of different molecular situations in which researchers have
appealed to the MWC model as an instructive conceptual framework. A similar search on
the Web of Science in December of 2012 reveals 1517 unique citations for the 1963 paper of
Monod, Changeux and Jacob and 6086 unique citations for the 1965 paper of Monod,
Wyman and Changeux.3,4 In speaking of the papers that introduced these ideas, Monod
noted “The first paper was, really, on the idea of indirect regulation. Which I think is the
really important idea. The second paper is a physical-chemical interpretation of this fact in
terms of the geometry of the molecule”.6 In our paper, we hope to explain why Monod
christened the idea of indirect regulation embodied in the MWC model “the second secret of
life”6 by mathematically examining the general implications of the indirect regulation
concept and its implementation in statistical mechanical language. It is interesting to note
that, of the two papers, the second paper4 is more cited than the first,3 despite Monod's claim
of the greater importance of the former.

Indirect regulation, the subject of the first of this important pair of papers and a key feature
of the MWC model, arises when a macromolecule of interest has two classes of
conformational states, which we will refer to generically as the inactive and active states.
The molecular decision of whether or not the macromolecule is active is dictated by the
binding of some regulatory ligand or ligands that bind preferentially to one state over the
other, thereby tilting the balance between the inactive and active states.2,4,7,8 As we will see
below, in the simplest variant of the model, there are thus four distinct states, active and
inactive both with and without ligand. This simplest picture can serve as the starting point
for a whole suite of more complex models involving multiple binding sites and hence,
cooperativity, different sets of intermediate states and multiple ligands, for example.

The organization of the paper is as follows. In States and Weights in the MWC Setting, we
show how “states-and-weights” diagrams illustrate all of the different microscopic states
available to an MWC molecule and how statistical mechanics can be used to assign
“statistical weights” to each such state. With these results in hand, we show how to compute
the activity of an MWC molecule as a function of the concentration of its governing ligand.
In Case Studies in MWC Thinking, we highlight a few of the many biological processes that
can be described by an MWC model, including ligand-gated ion channels, two-component
signal transduction systems and gene regulation. Some of the unexpected predictions that
arise from such models are highlighted in these various examples. In An Information-
Theoretic Perspective of the MWC Concept, we then consider how information theory can
be used to characterize the ability of MWC molecules to “read” the state of their
environment and to convert it into cellular decisions. In Dynamical MWC, we introduce a
simplified model of dynamics for MWC molecules and analyze how well such molecules
“read” an environment whose state is changing in time. In Discussion, we close by reflecting
on the MWC concept as viewed through the prism of “toy models” in statistical mechanics
and how it provides a powerful complement to more microscopically realistic perspectives
that have emerged from structural biology. Some of the detailed steps of our derivations are
presented in several appendices that follow the reference list. We consider these appendices
an important part of the overall review since they provide details for results used in the
literature that are rarely presented pedagogically, if at all.
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The references cited throughout the paper are intended to provide an entry into the vast
literature on the MWC concept with special emphasis on how physical scientists have
exploited the model. Specifically, we place less emphasis on fitting the data for one
particular molecule and more emphasis on the general features of such molecules and the
physical constraints that they must face. Given the more than 7000 citations of the two
papers that launched the MWC world view, it is no surprise that our list of references is
representative rather than complete, and we apologize in advance to those whose important
work has been neglected.

States and Weights in the MWC Setting
For the purposes of this article, we define an MWC molecule as having two classes of
structural states.3,4 In the case of hemoglobin, for example, these states correspond to the
famed “T” (tense) and “R” (relaxed). For ligand-gated channels such as the nACh receptor
or cyclic guanosine monophosphate (cGMP)-gated ion channels such as those found in
photoreceptors, these two states correspond to the closed and open states of the channel.9

These same ideas can be used even farther afield such as to describe different structural
states of chromatin in which the DNA molecule is either “inaccessible” or “accessible”.10,11

In this section, we will denote the two states of the receptor by “I” and “A”, referring to the
inactive state and to the active state, respectively. Our goals in this section are twofold. First,
we aim to discuss indirect regulation and cooperativity in the MWC model. Second, and
perhaps more importantly, we aim to provide a clear recipe for converting diagrammatic
descriptions of ligand–receptor binding (“states diagrams”) into testable equations. To
achieve the latter goal, we begin this section by describing the noncooperative one-site
MWC molecule. Then, we focus our attention on the general n-site MWC molecule from
which we can understand how the indirect regulation inherent in the MWC model can give
rise to apparently cooperative interactions.

An MWC molecule with a single binding site has four possible states: the receptor can be
inactive or active, and the binding site can have or cannot have a bound ligand. Figure 1a
provides a generic schematic of these four distinct molecular situations and also lays the
groundwork for a statistical mechanical investigation of the relative probabilities of these
different states. Each of the possible microscopic states has probability proportional to its
Gibbs factor, exp(−(Estate − nstate μ)/kBT), where Estate is the energy of the microscopic state
of interest, nstate is the number of ligands bound to the receptor in that state and μ is the
chemical potential that here encapsulates the free-energy cost of moving a ligand molecule
from the solution to the receptor.2,5 For the remainder of this article, we define the variable

 as is typically done in the statistical mechanics literature.

We can decompose the energy of a state Estate into two different contributions: the
conformational energy of the receptor and the energy of binding a ligand. We label the
conformational energy of the active receptor as εA, the conformation energy of the inactive

receptor as εI, the energy of binding a ligand to the active receptor as  and the energy of

binding a ligand to the inactive receptor as . Calculating the conformational energy of the
receptor or the energy of binding a ligand from first principles could be incredibly
complicated, as it depends on the details of the bonding interactions within the receptor,
between the receptor and the surrounding solution and between the receptor and ligands.
The free-energy cost of removing a ligand from a dilute solution is encapsulated in the
chemical potential μ,
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(1)

where μ0 and c0 are an unspecified reference chemical potential and its corresponding
(unspecified) reference ligand concentration. Using the prescription that each state has a
probability proportional to exp(−β(Estate − nstate μ)), we find “weights” shown in Fig. 1a for
each state. From these weights, we can derive the probability of the one-site receptor being
active, which can be calculated as the sum of the weights of the active receptor normalized
by the total sum of all of the weights, namely,

(2)

Figure 1b shows that the probability of the active state increases as ligand concentration
increases; this curve is often called the “activity curve”.

We can also derive the “binding curve” as the average number of bound ligands, which for
the one-site receptor is the sum of the weights of the receptors with one ligand normalized
by the total sum of all of the weights,

(3)

When the active state has a larger affinity for the ligand than the inactive state, ,
both pactive and 〈Nbound〉 increase with the ligand concentration c. These are consequences
of the fact that an increase in ligand concentration increases the statistical weight of the
bound, active state relative to the weight of the unbound, inactive state. Figure 1c plots the
probabilities of each of these states as a function of concentration. As expected, the inactive,
unbound state dominates at low ligand concentrations and the active, bound state dominates
at high concentrations.

Some readers may find Eqs. (2) and (3) unfamiliar since activity curves and binding curves
are often written in terms of a different set of parameters. Thermodynamic language is often
used instead of statistical mechanical language, employing dissociation constants†‡

 and  and the conformational equilibrium constant L
= e−β(εA−εI).2 Note that, as commented on previously, only energy differences are
meaningful. With this parameterization, the activity curve for the one-site MWC molecule
has the form

†In the more general case, this dissociation constant is the equilibrium constant for a reaction in which the ligand binds to a particular
site on the receptor. As all sites of the receptor in the MWC model described here are identical, it does not matter which one we
consider.
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(4)

and the binding curve has the form

(5)

The thermodynamic formulation is directly related to the original MWC parameters§. The
activity curve and binding curve given in Eqs. (4) and (5) can in turn be fit to the MWC
equation for pactive to find the microscopic parameters of the MWC model, for example,

, L. For the rest of this paper, we will use a combination of statistical mechanics

and thermodynamic notation: dissociation constants  and  will be used in preference

of  and , respectively, and conformational energies εA and εI
will be used in preference of the conformational energy equilibrium constant L. Of course,
this choice is a matter of personal taste; we find that the notation favored here combines the
brevity of the original MWC notation4 with the clarity of biophysical understanding
provided by statistical mechanics notation.

The concept of indirect regulation is already present in a one-site MWC molecule.
Typically, the inactive receptor is more energetically favorable than the active receptor, εA >
εI or L > 1. The presence of ligand shifts the balance toward the active receptor because the
binding of ligand to the active receptor is more favorable than the binding of ligand to the

inactive receptor, that is, . However, studying the one-site receptor
cannot elucidate the phenomenon of cooperativity, in which the binding of one ligand
appears to encourage or discourage the binding of the next. Thus, we turn our attention to a
more general n-site MWC molecule. Some details of cooperativity calculations are confined
to Supplemental Information, Appendix 1.

‡The dissociation constants and equilibrium constants are related via the equations .

§The original MWC parameters measure ligand concentration α in units of the active state dissociation constant , that is,

, and denote the ratio of dissociation constants as .
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As for the one-site MWC molecule, the n-site MWC molecule can be in either an active
state or an inactive state, and in each state, each of the n sites can either be empty or have a
bound ligand. A full states-and-weights diagram would therefore have 2 × 2n states.

The weights assigned to each state follow the general pattern set forth in Fig. 1a, and
deriving the formulas for key quantities such as pactive follows similar logic to that of the n =
1 case. For the reader's convenience, a number of these key formulas are listed for the
general MWC molecule with n binding sites in Fig. 2, including formulas for the activity
curve pactive and the binding curve 〈Nbound〉. Note that when faced with some new problem,
we find that it is often much simpler to write down the various states and their associated
statistical weights in statistical mechanical language and then to convert to a more familiar
Kd language at the end. It is for this reason that we illustrate the results in both languages.

As n increases, the activity curves become flatter for high and low concentrations and
steeper near the “transition point”, the halfway point between a minimally and maximally
active receptor denoted by c* in Fig. 2. This steepness is a signature of cooperativity, which
means that the binding of one ligand seems to encourage or discourage the next.8,12,13 In the
MWC model, this phenomenon is the result of indirect regulation rather than direct
regulation: the presence of ligand increases the probability of the receptor existing in the
state with higher ligand affinity, thereby increasing the probability of the next ligand
binding. There are certainly other models that can explain cooperativity, often by postulating
direct energetic interactions between bound ligands.2 One popular and simple model of
cooperativity postulates that activity curves follow the Hill function2,12,13 given by

(6)

If the Hill function were derived from a states-and-weights diagram similar to that in Fig. 1a,
then there would only be two states for this receptor with identical binding sites of
dissociation constant KA: a receptor with no ligands bound and a receptor with h ligands
bound. This is often not a realistic mechanistic explanation for cooperativity despite the Hill
function's ubiquitous presence in the biological literature. However, h is a useful proxy for
the degree of cooperativity in the system since it quantifies exactly the steepness of the
activity curve at the transition point. Similarly, one can define an effective Hill coefficient,
heff, for any activity curve as twice the slope of the activity curve on a log–log scale at its
transition point.12 A formula for heff in the case of the MWC model is given in Fig. 2. The
effective Hill coefficient is a useful heuristic for cooperativity. If |heff| > 1, then the presence
of one bound ligand increases the likelihood of the next ligand binding, a signature of
positive cooperativity; if |heff| < 1, then the presence of one bound ligand decreases the
likelihood of the next ligand binding; and if |heff| ≃ 1, then the binding of one ligand
indifferent to the binding of the next, a signature of no cooperativity. As shown in
Supplemental Information, Appendix 1, the effective Hill coefficient for the MWC molecule
can be summarized as follows. When the active state and the inactive state of an MWC
molecule with multiple binding sites have different ligand affinities, |heff| > 1, and when
there is only one binding site or when the two states have equal affinity for the ligand, then
there is no signature of cooperativity, |heff| = 1. To model an MWC molecule with negative
cooperativity, one needs to introduce repulsive interaction energies between ligands, as was
done by Narula and Igoshin, for example.11

With the statistical mechanical preliminaries now in place, the remainder of the paper is
devoted to specific case studies. Each such study is introduced either to highlight some
specific twist on the statistical mechanical analysis (such as the presence of more than one
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binding site) or to examine modern applications of the MWC concept to problems of current
interest.

Case Studies in MWC Thinking
The MWC concept presented above has been applied to a very wide array of different
molecular scenarios, as evidenced by the massive citation list.

In the 1960s, the MWC concept and related models were used to great effect as the basis for
thinking about several important “model” molecules,4,14,15 most famously, hemoglobin. For
a beautiful review on the evolution of thinking on hemoglobin, see the work of Eaton et al.16

Recall that the hemoglobin molecule binds oxygen molecules, which are then delivered to
tissues throughout the body. Hemoglobin can bind up to four oxygen molecules and
therefore has a more complicated states-and-weights diagram and activity curve than that of
the simpler one-site receptor in Fig. 1. One of the signature features of the binding curve of
oxygen on hemoglobin is its characteristic sigmoidal shape that indicates the existence of
cooperativity, described in detail in the previous section. Traditionally, one of the most well
studied ways of characterizing cooperativity is through the Hill function as already
discussed in Eq. (6). As we already noted in States and Weights in the MWC Setting, Hill
cooperativity is very strict in the sense that, from a statistical mechanical perspective, it
banishes the states of partial occupancy that are present in the MWC framework. One of the
key insights of the MWC perspective is that it too can give rise to sigmoidal binding curves,
but on the basis of a different underlying picture of the allowed molecular states. Models of
ligand–receptor binding that include intermediate states can also give rise to sigmoidal
binding curves, but unlike the MWC model, these models often posit direct energetic
interactions between bound ligands. In the remainder of this section, rather than focusing on
MWC classics such as hemoglobin, we highlight the spectrum of more recent examples of
the MWC concept that have been applied to topics of great current research interest ranging
from bacterial chemotaxis to the accessibility of chromatin to DNA binding proteins.

MWC ligand-gated channels
The cell membrane is richly decorated with a host of different molecular species, many of
which detect and respond to molecules present in the external milieu. Ion channels are one
of the most important examples of such membrane-bound proteins that respond to external
cues resulting in changes of the cellular state such as a change in the membrane potential.
One mechanism by which ion channels can detect environmental signals is through an
MWC-like mechanism: when a molecule binds to the channel, it shifts its equilibrium such
that the open state is more likely than the closed one. There are a number of important
ligand-gated ion channels, but we will primarily focus on two examples: (i) the nACh
receptors at neuromuscular junctions17 and (ii) cGMP-gated ion channels that enable
photoreceptors to amplify their response to light.9,18

Figure 3a shows the states and weights for a toy MWC model of an ion channel in which we
imagine that there are two distinct binding sites for the relevant ligand. The four states on
the left of Fig. 3a correspond to all the different variants on the closed state and the four
states on the right correspond to the different variants of the open state. For convenience, we
have taken the conformational energy of the closed state to be zero while the conformational
energy of the open state is given by ε.We can add up the statistical weights for all of the
open states permitting us to compute the open probability as
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(7)

Much effort on the use of MWC models has been aimed at the rigorous attempt to figure out
the answers to precise questions such as how many binding sites are present in the MWC
molecule of interest, whether or not those sites are heterogeneous and what are the precise
values of the molecular parameters associated with the various states. Of course, these
questions are all of great interest. We show an example of the kind of data that engenders
these discussions in Fig. 3b, which shows the open probability of cGMP-gated ion channels
as a function of the concentration of cGMP. These channels are a key part of the signal
transduction pathway in the retina, undergoing a gating transition from open to closed when
photoreceptors are exposed to light.2,18,20 The key point for our discussion here is to note
that the MWC concept gives us a framework for thinking about how channel gating depends
upon key parameters such as the ligand concentration, the number of binding sites (as
revealed in the effective Hill coefficient) and a variety of other quantities of interest,
including those shown in Fig. 2.2,19,21

MWC and bacterial chemotaxis
A second recent application of the MWC model that illustrates its adaptability to new
experimental situations is that of bacterial chemotaxis, the process whereby bacteria are
observed to move up gradients of chemoattractant.22,23 In the time since the development of
the MWC concept, one of the best studied (at least in quantitative detail) examples of signal
transduction in living organisms is provided by this fascinating directed motion.
Specifically, bacterial motility in these situations is characterized by “runs” during which the
bacterium uses its flagella to swim in a roughly straight path, punctuated by “tumbles”
during which the bacterium reorients and then swims off in a new direction (see Fig.
4a).22,25

The circuit that mediates this bacterial decision making has been subjected to detailed
experimental scrutiny, and recent fluorescence resonance energy transfer (FRET)
experiments26,27 provide precise quantitative data on the signal transduction pathways
involved in bacterial chemotaxis. For our purposes here, the key point is that the bacterial
surface is decorated with chemoreceptors that serve the role of detecting chemoattractants in
the surrounding medium and then changing the state of phosphorylation of its diffusible
response regulators (CheY). Once phosphorylated, CheY-P then induces the bacterial
flagellar motor to undergo a change of rotational direction that leads to a tumble. This
process is shown schematically in Fig. 4b. In this case, the chemoreceptor is actually
inactive in the presence of ligands. In the presence of chemoattractants, the bacterium is
what Howard Berg has dubbed an “optimist” and would like to simply keep going in the
same direction (i.e., to not undergo a tumble).

The MWC concept has been applied in both clever and subtle ways to describe the response
of bacteria to chemoattractants through sets of different different chemoreceptors as
indicated schematically in Fig. 5.28–31 The simplest MWC description of a chemotactic
receptor is identical with the scenario shown in Fig. 1 except that, in this case, binding to the

inactive state has the lower Kd (i.e.,  or ), which means that, in the
absence of ligands, the receptor is active and that binding of ligands renders the receptor
inactive. This is shown in Fig. 4c. The simplest model of activity as a function of
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chemoattractant concentration is given by Eq. (2), but respecting the condition 

or  described above. This is consistent with Berg's optimism principle in the
sense that, with chemoattractant present, the bacteria tumble less often.

Figure 5 shows how the simplest MWC concept can be extended to account for several
particularly interesting features of chemoreceptors in bacteria. For instance, multiple
receptors are clumped together into clusters, an aspect of these receptors that has been long
recognized and recently studied systematically across different species.32–35 For the case of
clusters of size n and all of the same species, the activity is given by

(8)

a simple extension of the models introduced already and which can be developed in direct
analogy with the way we worked out the ion channel open probability in Fig. 3. The
consequence of this clustering is an effective increase in cooperativity that sharpens the
response of the chemotactic two-component signaling system to chemoattractant with
respect to the response of a single chemoreceptor.

The FRET experiments of Sourjik and Berg measured the fluorescence signal change when
the response regulator CheY-P interacts with downstream signaling partners, thereby
effectively measuring activity curves for a number of different mutants of the receptors that
mediate chemoreception. These experiments provided stringent constraints on any
theoretical explanations set forth to explain chemotactic activity.26,27 Indeed, models
following the MWC concept found that the only way to explain the data was to consider that
the receptor clusters are chemically heterogeneous, which means that a specific cluster of
chemoreceptors will contain receptors of more than one type that have different binding
affinities for the same chemoattractant. Specifically, as shown in Fig. 5, if there are n copies
of the first receptor type and m copies of the second receptor type, when constructing the
states-and-weights diagram, we must sum over all possible states of activity and ligand

occupancy. If we ascribe binding constants  and  to the second receptor type, the
activity of the receptor cluster as a function of chemoattractant concentration is given by

(9)

a result used to consider the activity data coming from FRET experiments for a number of
different chemoreceptor mutants in quantitative detail.28–31

As shown in this section, the MWC model has been used to great effect in a number of
different situations, producing powerful predictions and insights into cellular signaling. We
now describe a completely different implementation of the MWC concept in the context of
the behavior of genomic DNA.

MWC and genomic accessibility
The MWC model has been recently and perhaps unexpectedly applied to transcriptional
regulation.10,11,36,37
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Genomic DNA can exist in a compact state (i.e., nucleosome bound or in some higher-order
chromatin configuration) that is inaccessible to various molecules, for example, to
transcription factors that activate some gene of interest. However, sufficiently high
concentrations of transcription factors (i.e., the ligand) can increase the favorability of the
chromatin open state, even though the open conformation of chromatin incurs a free energy
cost. As will be discussed below, there are many variants on this basic picture in which
combinations of transcription factors lead to different logic functions such as AND, OR and
so on.11 Our aim here is to illustrate the overarching conceptual picture through several
specific examples.

As a first foray into DNA accessibility problems from the MWC perspective, we consider
the accessibility of a DNA segment wrapped within a single nucleosome. To get a first
impression of the kinds of molecular states of interest and how they can be described using
statistical mechanics, Fig. 6 shows a hypothetical eukaryotic promoter bound with some
disposition relative to a nucleosome. We note from the outset that, because of the rules of
nucleosome positioning,38–40 the real situation is more subtle than this and that this example
is intended only to illustrate the “indirect regulation” that could be exercised by the presence
of nucleosome-bound DNA. As seen in the figure, the DNA segment of interest harbors both
a promoter and a binding site for a transcription factor. When the promoter is wrapped
within the nucleosome, the gene of interest is inactive. The four states of this promoter in
this simple model then correspond to inactive and active configurations of the promoter and
the transcription factor binding site either unoccupied or occupied, with the transcription
factor serving as the ligand in much the same way as other ligands did in previous examples.
Computing the probability of the active state follows the developments described above and
further details can be found elsewhere (see chapter 10 of Phillips et al.).2,41

One of the most compelling discoveries to emerge from the study of eukaryotic gene
regulation, especially in multicellular organisms, is the existence of binding sites contained
on the DNA known as enhancers that result in regulatory “action at a distance”.
Interestingly, the MWC concept is also useful for characterizing these ubiquitous eukaryotic
regulatory architectures. The concept of such enhancers is that there are binding sites that
are not in genomic proximity to the promoter they control. Depending upon the binding of
transcription factors to these enhancers, the genes will be expressed to differing extents. A
particularly intriguing aspect of these enhancers from the point of view of more traditional
views of gene regulation is their extreme flexibility—in some cases, there seems to be a
generic indifference to the number of binding sites, their specific position and even their
chemical identity.42

For example, the embryonic development of the fruit fly D. melanogaster's body plan is
determined by the expression levels of a hierarchy of genes with single-cell resolution43,44

along the anterior–posterior axis of the embryo. One such gene is even-skipped, which is
expressed in seven stripes along the anterior–posterior axis of the embryo. Each one of these
stripes is controlled by an individual enhancer located up to 8 kb upstream or downstream of
the actual eve gene.42 The enhancer that controls stripe 2, for example, is located 1.5 kb
upstream from the gene and in its minimal form spans 480 bp.45 It contains several binding
sites for two activators and two repressors. Specifically, it has three binding sites for the
activator Bicoid despite the fact that the deletion of one of these sites does not cause any
qualitative changes to the output pattern.45 Perhaps more revealing in terms of the flexibility
of these regions is the fact that this enhancer sequence has undergone significant changes
throughout evolution while retaining its function. For example, in Drosophila
pseudoobscura, the same enhancer has lost and gained binding sites while the remaining
binding sites have changed in their affinities with respect to the D. melanogaster enhancer.
The spacing between some of these sites has also changed in some cases by up to 80 bp.46
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Nevertheless, when the D. pseudoobscura enhancer is introduced into D. melanogaster, not
only does it result in a very similar pattern of expression but also it can even rescue
mutations in the eve gene.46–48

Recent quantitative models that have had some success in explaining these observations are
predicated on the idea that these enhancers affect gene expression levels by controlling
chromatin accessibility. This is in stark contrast to a picture in which transcriptional
cooperativity is attributed to direct interactions between transcription factors and the basal
transcription apparatus. Figure 7a shows a schematic example of how the MWC concept can
be applied to model chromatin state. In the “closed” or inaccessible state, the DNA is
wrapped up in some tight nucleosomal configuration, here indicated by one of many
hypothetical higher-order chromatin structures (i.e., the putative 30-nm fiber).1 While in this
state, the promoter of interest is hypothesized to be unavailable for transcription. The
concept of the model is that RNA polymerase and transcription factors can bind more easily
to DNA when it is in its open or accessible state, indicated schematically in Fig. 7 by DNA
that is freely available in the “open chromatin” configuration.

Even within the relatively simple scenario depicted in Fig. 7a, there is already a great deal of
conceptual and quantitative flexibility to account for a host of different regulatory
architectures. For example, one can imagine situations such as shown in Fig. 7b in which the
transcription factors are more favorably bound in either the closed or the open conformation,
thus stabilizing one state or the other. Similarly, one can imagine both positive and negative
cooperativity between the transcription factors themselves through direct physical contacts,
permitting the construction of various logic functions such as AND and OR functions (and
many others).11 From the perspective of the MWC model itself, the key parameters that
come into play are the difference in energy between the closed and open conformations, Δε
= εc − εo, the binding energies (or Kd values) for the relevant transcription factors in each of
the states and the effective Hill coefficient that can be tuned by changing the number of
binding sites for the DNA binding proteins in question. In Fig. 7c, we show an example of
how the probability of being in the active state depends upon the concentrations of the two
species of transcription factor.

The Bohr effect generalized
A beautiful example of the unifying power of MWC models is the suggestion of an analog
of the Bohr effect in the context of chromatin. The reader is reminded that the Bohr effect
refers to the oxygen binding properties of hemoglobin and how the affinity for oxygen is
tuned by changes in the pH, for example, as shown in Fig. 8a. Originally, the Bohr effect
was an empirical observation. In the language of MWC models, however, the Bohr effect
can be thought of in terms of how the binding curves are altered as the difference in energy
between the two conformational states is changed. Mirny recently described an analogous,
Bohr-like effect in gene regulation using the MWC model of chromatin state in which (for
example) changes in the histone–DNA affinity can affect changes in the occupancy curve as
shown in Fig. 8b.10

Specifically, we consider the example given in Fig. 7b for the case in which the two binding
sites are used by the same transcription factor. In this case, we can use the states and weights
highlighted in Fig. 7b to compute the probability that the DNA will be in the closed
(inactive) state as

Marzen et al. Page 11

J Mol Biol. Author manuscript; available in PMC 2013 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(10)

Note that, for the case considered here, the two enhancers bind the same transcription factor
with the same affinities, although those affinities are different in the open and closed
chromatin conformations. From Fig. 2, the average number of bound transcriptions factors is

(11)

As seen in Fig. 8b, the modulation of this binding curve as a function of the energy
difference between open and closed chromatin conformations, εo − εc, reflects the chromatin
Bohr effect.

Interestingly, the mutants considered in the bacterial chemotaxis setting correspond
effectively to different states of methylation of the chemotaxis receptors.26,27 Like in the
case of chromatin, our view is that the theoretical models using the MWC concept in that
context too are yet another example of the “Bohr effect”, but now in the context of
chemotaxis.28–31 This discussion provides a prime example of the unexpected biological
insights that come from classifying biological topics on the basis of their conceptual
proximity based on the underlying physics or mathematics, rather than on the basis of
biological concepts.

An Information-Theoretic Perspective of the MWC Concept
The MWC model provides a simple conceptual mechanism whereby ligands can regulate “at
a distance”. For instance, as described in Case Studies in MWC Thinking, enhancers can
affect the expression of a distant gene.49 So far, we have focused on the generic features of
MWC models and how to calculate molecular activity from pictures of states. However, a
powerful advantage of an analytically tractable model such as the MWC model is that it can
be used to calculate quantities that are difficult to measure but that still have great
conceptual value. Calculating these quantities can shed light on how a regulatory system
works and why it works in the way that it does. In this section, we shift away from a
discussion of the MWC model itself and ask more general questions about the capacities of
MWC molecules as regulators.

Specifically, we discuss the recent information-theoretic description of MWC molecules as
sensors of ligand concentration.8,50,51 To see what ideas are in play, consider the case of
bacterial transcription. If E. coli are grown in media rich in lactose instead of glucose, they
produce an enzyme to digest the lactose. This production is mediated by transcription factors
that allow information about the environmental conditions (lactose and glucose
concentrations) to affect protein production (β-galactosidase enzyme) by influencing the
likelihood of an RNA polymerase molecule to transcribe the relevant gene. Evolutionarily, it
seems highly beneficial for an organism to excel at gathering information about
environmental conditions and using that information to regulate protein production.
However, such descriptions are qualitative, whereas we desire a way to quantify “how well”
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the output of a sensor (e.g., β-galactosidase production) tracks noisy sensory input (e.g.,
lactose concentration).

One quantification strategy is to make an educated guess as to how the molecule's behavior
affects the organism's fitness. This approach is fraught with risk, as what initially appears to
be noise often turns out to be signal in biological systems,52–54 and biological intuitions for
fitness functions are often based on these guesses as to what is a signal and what is noise.
For example, it is of course interesting that the sensory systems described by MWC models
can be tuned to mimic the Boolean logic gates that underlie today's computers,11,55 but there
is no guarantee that MWC molecules have been selected to mimic Boolean logic gates.
There is a more general quantitative framework, information theory, that does not require
knowing exactly what computation is being done by the cell but that still allows us to
quantify how well the sensor output tracks input.56

Many have already written excellent reviews of information theory with a biological
bent57–61; thus, we will just introduce the definitions that we need for this section. Given a
black box system (e.g., an MWC molecule) that takes a noisy input X (ligand concentration)
and returns a noisy output Y (whether or not the receptor is in the active state), then
measuring Y provides information about the state of X. There is a unique function that will
quantify the information content of a probability distribution subject to certain plausible
assumptions about the form of this function.56,62,63 From this function, we can specify the
amount of information about X gained by measuring Y as the “mutual information”
I(X;Y)56,62,63 (see Supplemental Material, Appendix 2 for details). There are several ways
to calculate the mutual information, but the one that we will focus on here uses the
conditional probability of y given x, p(y|x), and can be written as

(12)

If Y tracks X well, then I(X;Y) is large; on the other hand, if Y and X are independent, then
I(X;Y) = 0.62,63 What is the maximal amount of information one can expect between input
and output? An answer to this question can be captured mathematically by computing the
“channel capacity”, which is the mutual information for an optimal p(x), explicitly

(13)

See Supplemental Material, Appendix 2 for details.

The quantities described above provide principles for quantifying what is possible in a
molecular signaling system, and interestingly, some biological systems seem to be operating
very close to channel capacity. A spectacular example of this appears to be the expression of
the Hunchback protein in the early Drosophila embryo, which is activated by the Bicoid
transcription factor. It has been argued that the probability distribution of the Bicoid
transcription factor is optimized so as to maximize the mutual information between this
input and the output Hunchback expression level.50 Case studies such as these have
motivated other investigators to study the channel capacity of MWC models more
generally,8 a topic we take up below.

We stress here that not all MWC molecules are near-optimal sensors, nor should we expect
them to be. For instance, hemoglobin picks up oxygen in the bloodstream and deposits that
oxygen in distant tissues. This task does not necessarily require maximizing the mutual
information between oxygen concentration and the number of oxygen molecules bound to
hemoglobin. However, many of the MWC molecules described in Case Studies in MWC
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Thinking are likely to be high-performance sensors of their environment. The nACh receptor
at the neuromuscular junction must turn a chemical signal in the form of diffusing
acetylcholine (ACh) molecules into a corresponding electrical signal that can contract a
muscle fiber. If nACh receptors misrepresent an incoming signal, the consequences could
range from an inability to stimulate the motor system to an inability to stop moving.
Similarly, the cGMP receptor must turn a chemical signal based on the presence of light in
the environment into an electrical signal. If our cGMP receptors in our photoreceptors do not
accurately represent the incoming light signal, then we will not be able to see. These and
other such receptors could encode information about ligand concentration in terms of the
average number of bound ligands or the probability that the receptor is in the active state.
Hence, it makes sense to study the sensing properties of MWC molecules, and our
motivation for doing such an analysis is inspired by a recent general analysis of the sensing
properties of MWC molecules.8

In the remaining portion of this section, we use a toy model of N independent ligand-gated
ion channels (inspired by the example of nACh receptors) to illustrate how to quantify the
ideas presented in the previous paragraph. Though we will use the specific language of ion
channels, the concepts apply much more broadly. Indeed, general reflections of this kind
were analyzed comprehensively and in more generality elsewhere.8 Here, we present an
abridged version of their analysis specialized to a toy model of a ligand-gated ion channel
such as the nACh receptor; many of the calculational details have been relegated to
Supplemental Material, Appendix 3.

Model system: nACh receptors
To illustrate the power of these information-theoretic principles, we now investigate in detail
an MWC model of a ligand-gated ion channel. Again, the hope is that calculations on this
toy model will provide some qualitative insight into their functionality.

To see why ligand-gated ion channels could plausibly be conceptualized as sensors, we now
describe the nACh receptors that lie at neuromuscular synaptic junctions, which are a key
component of the communication pathway between the nervous system and the motor
system. When our brain decides that a particular muscle should contract, for example, to
avoid a hot stove, a motor neuron releases vesicles of ACh molecules across a synaptic gap
to a muscle fiber. On the other side of this synaptic gap are many thousands of nACh
receptors, with a surface density of roughly 105 receptors per square micron. The diffusing
ACh molecules bind to the nACh receptors, stochastically opening some number Nopen of
the total number of receptors N. Each open channel allows for an influx of sodium ions and
an outflux of potassium ions, which results in a net depolarization of the muscle fiber. When
membrane potential reaches threshold, the muscle fiber contracts.64,65

Extensive studies have revealed that nACh receptors behave as MWC molecules, though the
two binding sites in a nACh receptor are not necessarily identical, and there are likely more
than two states of the nACh receptor.66,67 However, despite its short-comings, the two-state
MWC model of the nACh receptor's response to ACh is an excellent example with which to
illustrate the information-theoretic underpinnings of decision making based upon input–
output functions.

It is clear that, in order to operate effectively, nACh receptors should respond quickly to
commands from the nervous system. As described above, the response of nACh receptors
should reflect the size of the stimulus. Ligand-gated ion channels more generally face a
difficulty similar to that of nACh receptors: they convey information about some stimulus
from the outside to the inside of the cell body, and they use energy by virtue of maintaining
a difference between the ion concentrations inside and outside of cells. Inspired by the
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example of the nACh receptor, we investigate the ability of ligand-gated ion channels to turn
an input, ligand concentration c, into an output, the number of open ion channels Nopen.
Conceptually, we are asking how well the Nopen output tracks the c input. The calculations
shown here are merely illustrative of the kinds of calculations that could be done to elucidate
the functioning of a particular sensory system. There are plenty of systems, including this
ensemble of nACh receptors, whose input might be best described by a magnitude other than
c and whose output might be best described by a magnitude other than Nopen.

In general, this problem is challenging since c and Nopen are both fluctuating quantities,
typical of any such microscopic variable in biology. Even if each receptor experienced
exactly the same ligand concentration, the number of open ion channels is still subject to
fluctuations. In particular, for every ligand concentration, there is a corresponding
probability of being open, popen(c). Recall from Eq. (7) and Fig. 3 that this probability is
given by

(14)

where  is the dissociation constant of the open ion channel,  is the dissociation
constant of the closed ion channel and ε is the energy difference between the closed and
open ion channels. Even when ligand molecules are absent, there is a nonzero probability of
being in the active state. This limit defines the minimum, baseline probability of being open
given by

(15)

Likewise, as the ligand concentration tends to infinity, there is a nonzero probability of the
receptor being in the inactive state and the ion channel being closed. This limit as c → ∞
defines a maximum value of the probability of being in the open state, namely,

(16)

For example, for the nACh receptor, we have  and  using
characteristic MWC parameters for this channel.68 Thus, there is a probability that all N
nACh receptors will be closed, but this probability is very small even when [ACh] = 0.

With N identical and independent ion channels, the conditional probability that Nopen of the
ion channels are open given a ligand concentration c is the binomial distribution

(17)

This binomial distribution has mean N̅open(c) = Npopen(c) and variance

. For each value of c, the distribution p(Nopen|c) is highly
peaked about its mean, as can be seen in Fig. 9, a fact that we will use later on to evaluate
the channel capacity using a “small-noise approximation”. However, there are still
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fluctuations in Nopen that prevent the output Nopen from determining the ligand
concentration c noiselessly.

As ligand concentration varies, the most likely value of Nopen varies from  to

. The “dynamic range”8 captures the range of this likely output,

(18)

The dynamic range already provides a first glimpse into how well the output Nopen follows
the input c; the larger the dynamic range, the better Nopen will be able to distinguish between
different values of c despite the intrinsic fluctuations in Nopen. This quantity is shown in Fig.
10a as a function of the difference in energy between the inactive state and the active state
(−ε) and the difference in ligand binding affinity between the active and inactive states

( ) for a fixed N = 105. In this plot, we also show the point corresponding to the
experimentally available data for the nACh receptor, just for comparison.68 Figure 10d
shows the dynamic range of a two-site MWC molecule as a function of the number of
receptors N using characteristic MWC parameters for the nACh receptor.68

We are now ready to calculate the mutual information between the concentration of ligand
and the number of open channels. If the joint probability distribution of c and Nopen is
p(c,Nopen), then following the procedure outlined in Eq. (12), mutual information is defined
as

(19)

As shown in Supplemental Material, Appendix 2, by invoking key approximations such as
the “small-noise approximation”, this can be simplified as

(20)

Notice that, in this equation, we have replaced the probability distribution p(Nopen) with the
value of the probability around the mean of the distribution, p(N̅open). This latter distribution
is directly determined by the probability distribution of the ligand concentration p(c) since
N̅open = Npopen(c) and thus the probability distributions of c andN̅open are related by

.

Without measuring the probability distribution of ligand concentration p(c), we are unable to
calculate the mutual information given in Eq. (20). Hence, we instead calculate the channel
capacity by considering the distribution p(c) or, equivalently, the distribution p(N̅open) that
maximizes the mutual information. We hope that the channel capacity can still give insight
into the workings of the system, as it did for the Hunchback/Bicoid gradient.50 We note that
some of the systems described by the MWC model are unable to alter the probability
distribution of ligand concentrations and are therefore unlikely to operate at channel
capacity. For example, bacteria cannot usually control the probability distribution of
chemoattractant in the environment so that their bacterial chemotactic receptors operate
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constantly at channel capacity. However, the body can alter the probability distribution of
ACh concentration at the neuromuscular junction by altering the size distribution and
number distribution of synaptic vesicles. In short, a calculation of the channel capacity will
not always be meaningful, but we suspect that this calculation can be made relevant for
ligand-gated ion channels and other MWC molecules. The optimal p(N̅open) can be found
using variational calculus, a step that is described in Supplemental Material, Appendix 3.
The form of p(N̅open) that maximizes the mutual information is

(21)

where Z is a normalization constant,

(22)

Using Eqs. (21) and (22) to simplify Eq. (20) yields

(23)

indicating that the channel capacity increases as the noise of the output decreases. In
Supplemental Material, Appendix 3, we compute Z explicitly, thus permitting us to write the
channel capacity of the N identical uncoupled ligand-gated ion channels as

(24)

where  and  are given by Eqs. (15) and (16). A more general formula for the
channel capacity of N receptors when each receptor has n binding sites is given in Ref. 8,
and a more detailed derivation of the channel capacity is given elsewhere.51,58,69,70

Dynamic range and channel capacity are closely related to the previously described concept
of cooperativity. A receptor with a high degree of cooperativity will have a “steeper”
activity curve popen(c) near its transition point. Intuitively, increasing the cooperativity
increases the ability of the system of N independent receptors to differentiate between

different ligand concentrations c near the transition point. For a given , increasing

cooperativity will increase , thereby increasing dynamic range and channel capacity
according to Eqs. (18) and (24), respectively. The left column of Fig. 10 below shows how
dynamic range, channel capacity and effective Hill coefficient vary as a function of MWC
parameters, the conformational energy difference (ε) and the difference in binding energy

( ). Recall that the effective Hill coefficient, defined in States and Weights in the MWC
Setting and Fig. 2, is a measure of the degree of cooperativity. All three quantities are highly
correlated and are largest when the closed ion channel is far more energetically favorable
than the open ion channel and when the open ion channel has much higher affinity for the
ligand than the closed ion channel. The results of Ref. 8 also show that all three quantities
increase when n increases, since increasing the number of sites increases the effective Hill
coefficient.
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The right column of Fig. 10 shows that the dynamic range increases linearly with the total
number of ion channels N but that channel capacity increases more slowly as the logarithm
of N. Increasing the total number of ion channels always increases the channel capacity, but
increasing the channel capacity by n bits requires increasing the total number of ion
channels (and the average number of ion channels) by a factor of 4n. However, increasing
the total number of ion channels requires manufacturing proteins, which requires materials
and energy.2,71 Hence, increasing the channel capacity might be potentially energetically
expensive. Again, we emphasize that these calculations are merely illustrative, and we are
not claiming that nACh receptors or any other receptors have this tradeoff between energy
and information.

Optimization principle: Maximization of mutual information
Operating at channel capacity requires that the probability distribution of ligand
concentration takes on a peculiar form shown in Fig. 9. If the measured distribution of
ligand concentration matched this predicted probability distribution, then this match would
provide additional support for the claim that the ensemble of ligand-gated ion channels have
evolved to maximize mutual information between the input (c) and the output (Nopen) within
biophysical constraints. Such a measurement was made for the Bicoid/Hunchback system in
the early Drosophila embryo, and the predicted probability distribution of Hunchback gene
expression was strikingly close to the empirical probability distribution.50 Sometimes, an
organism cannot control the probability distribution of ligand concentration, but this does
not preclude use of information theory. For instance, the chemotactic receptors described in
Case Studies in MWC Thinking must use information about chemoattractant concentration
to decide on whether the cell runs or tumbles. There are different information-theoretic
optimal ways to move in different chemoattractant gradients, and the optimal movements
can be compared to the observed movements of the organism, as was done in Ref. 72.

The idea that biological systems might have evolved to maximize the mutual information
between their “input” and “output” is certainly not new. This optimality principle has
previously been applied to a variety of “information bottlenecks” in the brain, in which some
physical barrier prevents information in one region from being copied directly into another
region, but where the second region needs the information encoded by the first region. For
example, the light intensities hitting photoreceptors must be encoded as binary spikes sent
by retinal ganglion neurons to the lateral geniculate nucleus, and the distribution of spike
times chosen should convey maximal information about the incident light intensities.57,59 A
few investigators have begun to calculate the mutual information between the input and
output of molecular systems,60,73,74 in particular, for genetic regulatory circuits and signal
transduction pathways.

It is important to note that mutual information calculations are suggestive and potentially
helpful for understanding organism behavior but never definitive. Mutual information
between the input and output could be well correlated with another quantity that the system
has evolved to maximize, in the same way that cooperativity is correlated with dynamic
range and channel capacity in the calculation above. Additionally, in these calculations, we
might have incorrectly identified the input and output of the system.

Finally, mutual information calculations can be incredibly difficult. In particular, it is often
difficult to analyze nonlinear systems subject to time-varying environmental stimuli and
systems with feedback. Many biological systems, however, respond nonlinearly to time-
varying environmental stimuli and are part of a feedback loop. Analyzing these systems
using information theory will likely require theoretical advances in communication theory.
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Dynamical MWC
Molecules that are described in terms of the MWC concept are not necessarily optimal
information encoders as described in the previous section. Nevertheless, there are many
processes in the life of an organism where signaling molecules should respond quickly and
definitively to changes in ligand concentration. Another feature that might be expected of
such molecules is that they block out high-frequency molecular noise so that they only
respond to changes that occur over “long” time-scales. To explore such time-dependent
properties, we need to go beyond the equilibrium statistical mechanics description exploited
thus far.

Though the original formulation of the MWC model was primarily an equilibrium concept,
generalization to the dynamical situation is relatively straightforward and has been
undertaken by many workers in the meantime,8,75–81 sometimes under the heading of the
“kinetic allosteric model”.82–84 The chemical reactions underlying the dynamical MWC
model were outlined in one of the original papers,4 and an application of transition state
theory85–87 to those chemical reactions yields the kinetic allosteric model. The dynamical
MWC model that we will present in this review article uses only the law of mass action and
does not come close to using the full power of transition state theory, which can calculate
the values of rate constants from first principles.85–87

A smaller set of researchers have turned to the language of control theory88,89 to describe
the kinetics of MWC molecules using transfer functions.8,80,90,91 In doing so, these
researchers have described the dynamics of an MWC molecule using frequency instead of
time. The two descriptions are mathematically related; high-frequency signals oscillate
quickly and change on small timescales, whereas low-frequency signals oscillate slowly and
change on long timescales. Transfer functions and frequency response functions are often
economical ways of describing the response of a system to a change in the inputs. These
functions are often used in electrical engineering and signal processing to design filters that
block noise and not signal. More recent articles have calculated the transfer functions that
describe how MWC molecules respond to changes in ligand concentration8,80 and showed
that a general MWC molecule does not respond strongly to quickly changing ligand
concentrations.8

In this section, we will describe a general approach to the dynamics of MWC molecules,
once again illustrated through the special case of ligand-gated ion channels. Specifically, we
will examine the response of such a channel to changes in the concentration of the relevant
gating ligand.

Transition matrices and master equations
The general MWC molecule can be active or inactive and can have anywhere from 0 to n
ligands bound to it in each of these states of activity, giving a total of 2 × 2n states. For even
small numbers of binding sites, models of the transitions between these 2 × 2n states can
become unwieldy. However, if all of the binding sites are identical, then this description can

be greatly simplified. There are  different ways for the receptor with n sites to bind k
ligands, but all of these configurations have the same energy and therefore the same
Boltzmann weight. Hence, we can describe the state of an n-site MWC molecule in terms of
only two variables: the configurational state of the receptor and how many ligands are bound
to the receptor in total. In this simplified description, there are 2 × (n = 1) different states for
an MWC molecule with n binding sites. For example, for the toy model of the nACh
receptor considered here, the possible ligand–receptor configurations are {O2,O1,
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O0,C0,C1,C2} where Oi denotes the open nACh ion channel with i bound ACh molecules
and Ci denotes the closed nACh ion channel with i bound ACh molecules, as shown in Fig.
11. The state of the system x(t) can be described as a list of the concentrations of each of
these configurations,

(25)

although the ordering of the states in x is completely arbitrary. A dynamical MWC model
will describe how x evolves with time. If the system is Markovian (“memory-less”), then x
obeys a first-order ordinary differential equation,

(26)

where M is a so-called “transition matrix” of size 2(n + 1) × 2(n + 1). For those unfamiliar
with matrices and vectors, row i of Eq. (26) is

(27)

and this formulation is mathematically equivalent to that given by Eq. (26). Deriving a
dynamical MWC model is therefore equivalent to specifying the elements of the transition
matrix, Mij.

The statistical mechanics of chemical reactions constrains the form of the matrix elements
Mij. To see this, consider the situation shown in Fig. 11: how might we change the
concentration of open ion channels with two ligands bound, [O2]? Based on the arrows in
the diagram, there are two elementary reactions that can change this concentration. First, a
ligand could bind to the open site of an open ion channel with one ligand bound, O1 + L →
O2. Second, an open ion channel with two bound ligands could lose one ligand to the
solution, O2 → O1 + L. The law of mass action implies that

(28)

The kinetic rates kO2→O1 and kO1→O2 are linked together by the requirement that the ratio

of kinetic rates yields the equilibrium constant, . The factor of 2 in the reaction
rate for O1 + L → O2 arises because of a degeneracy in state space: there are two “types” of
O1 molecules, one in which the ligand is bound at the left site and one in which the ligand is
bound at the right site. An alternative and equivalent viewpoint is that there are two ligands
on O2 that can unbind from the receptor, but there is only one site on O1 to which a ligand
can bind.8 The kinetic rates kO1→O2 and kO2→O1 reflect the height of activation energy
barriers between the states, and the concentration dependence of the reaction rates encodes
the frequency with which the reactants will meet. Those readers interested in calculating
these rates more exactly using transition state theory should consult other references, for
example, Refs. 85,86. Note that Eq. (27) when i = 1 is

Marzen et al. Page 20

J Mol Biol. Author manuscript; available in PMC 2013 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(29)

Comparison of Eqs. (28) and (29) indicates that

(30)

Where c = [L], the ligand concentration. The rates kO1→O2 and kO2→O1 are denoted as the
forward and backward rates fO and bO, respectively. Similar logic can be used to determine
the rest of the transition matrix M, which we list in full here as

(31)

The rates fO, bO, fC, bC, fL and bL correspond to the forward and backward rates for binding
a ligand to the receptor in its open state, the forward and backward rates for binding a ligand
to the receptor in its closed state and the forward and backward rates for switching from the
closed state to the open state, respectively, as shown in Fig. 11. See Supplemental Material,
Appendix 4. The ratio of forward and backward kinetic rates is the equilibrium constant,
yielding

(32)

The transition matrix M in Eq. (31) includes only a subset of the elementary reactions that
could affect concentrations of the various ligand–receptor configurations. For example,
another elementary reaction that is often included in dynamical MWC models is O2 → C2,
which describes the phenomenon of the ion channel opening and closing while ligands are
bound. It is also possible to allow for rate constants for each binding site to be different or to
allow for rate constants that change as a function of the total number of ligands. However,
the transition matrix in Eq. (31) has sufficient complexity to give the correct qualitative
behavior of the transfer function.8 Our aim is to illustrate the general principles underlying
dynamical MWC models, not to find the exact kinetic rates or transfer function for a
particular receptor.

Equations (26) and (31) give us a simple framework with which to analyze the dynamics of
an MWC molecule. In fact, if the concentration is a function of time c(t) and the rate
parameters are constant, then there is an exact analytic solution for the state vector x(t),89

namely,

(33)

If M is a function of x(t) because the rate parameters are being continuously altered by some
feedback mechanism, then solving Eq. (26) becomes a much more challenging proposition
unless there is a separation of timescales. For instance, if the equilibration time between
MWC states is much smaller than the timescale on which rate constants are altered, then x(t)
≃ xeq. This assumption can be a useful approximation for simulating systems with feedback,
for example, the precise adaptation of bacterial chemotactic receptors.24
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Responses to changes in ligand concentration: The frequency response of an MWC
molecule

One of the most interesting properties of a ligand-gated ion channel such as the nACh
receptor is that it operates outside of equilibrium. Its task is to transition to the active state
(i.e., open ion channel) when vesicles of ACh are released and travel across the synaptic
gap. This means that, at the time of an incoming action potential, the nACh receptor must
respond to what is essentially a jump in ACh concentration. Similar arguments can be made
with sudden changes in chemoattractant concentration in the setting of bacterial chemotaxis
or changes in the acetylation of a histone in the context of chromatin serving as two specific
examples.

To see the significance of the temporal response of an MWC molecule, consider the
following two hypothetical ligand-gated ion channels that can be described by the MWC
model. One receptor responds very quickly to changes in ligand concentration, tracking the
changes in ligand concentration with high fidelity. The second receptor takes a longer time
to respond to changes in ligand concentration. If stray ligand molecules (or some other
competing ligand such as nicotine) occasionally find their way to these receptors, then the
signal that the two receptors send to the motor neuron soma will be quite different. The first,
quick receptor will track the quickly changing concentrations of ligand, causing a
correspondingly rapid change in membrane voltage. The second, slower receptor will not
necessarily be able to track the quickly changing ligand concentrations, resulting in slower
but more deliberate responses of the membrane voltage.

To quantify this, we could first determine how an MWC molecule with two binding sites
responds when perturbed from its rest state, and we can solve this problem exactly using Eq.
(33). To find the probability of the channel being open from the state vector x, we need to
compute

(34)

where the projection vector is defined as PR = (1 1 1 0 0 0) and the total concentration of
receptor molecules [R] = [O2] + [O1] + [O0] + [C0] + [C1] + [C2] is constant. Combining
Eq. (34) above with Eq. (33) that describes the evolution of the state vector, we can now
write the time evolution of the open probability as

(35)

Figure 12a shows plots of popen(t) for a step function increase in ligand concentration, which
could be a simple approximation for the change in ACh concentration during the
transmission of an action potential, for example. The step function increase in ligand
concentration leads to a slower, almost rounded step function increase in the probability of
the channel opening; this curve is a linear combination of exponentials whose decay
constants are the eigenvalues of the transition matrix.89

The rounded response of the ion channel to changes in the concentration suggests that the
receptor has difficulty responding to quickly changing concentrations. In other words, high-
frequency responses are damped relative to lower-frequency oscillations, and thus sharp
changes in ligand concentration become “rounded”. A much more economical way of
quantifying this idea is to calculate the frequency response function of the ion channel,
which is defined as
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(36)

where F(popen) denotes the (invertible) Fourier transform of popen(t), namely,

(37)

and F(c) is the Fourier transform of the ligand concentration. One of the typical assumptions
of Eq. (36) is that an oscillatory ligand concentration with frequency ω will lead to an
oscillatory popen at frequency ω.

The oscillatory response of the receptor is therefore characterized by its amplitude, that is,
how strongly it feels the effects of that oscillatory ligand concentration, and its phase, that is,
the phase delay between when ligand concentration and popen reach their respective
maximum in time. The amplitude of the frequency response function |G(ω)| indicates which
frequencies the system blocks and which frequencies it passes. In engineering applications,
the shape of |G(ω)| is often designed to attenuate unwanted noise while passing the signal
through the system largely unaltered, thereby increasing the signal-to-noise ratio. This type
of filtering can substantially affect the fitness of an organism. For instance, the ability of E.
coli to sense chemoattractants depends strongly on the frequency filter properties of its
bacterial chemotactic receptors.92 Many biological systems act as low-pass frequency
filters,8,80,90–92 which means that |G(ω)| is relatively large for small ω and that |G(ω)| trails
off rapidly for ω above a certain “cutoff frequency” ωcutoff. This finding holds for MWC
molecules, and the cutoff frequencies of MWC-like receptors are given by the time
constants of their internal dynamics,8 as we will illustrate below for a toy model of a ligand-
gated ion channel such as the nACh receptor.

To find G(ω) for a toy model of a ligand-gated ion channel, we choose a particular initial
ligand concentration and consider only small fluctuations since a ligand-gated ion channel
responds to changes in ligand concentration in a nonlinear way. We present only a sketch of
the derivation here, but we show more mathematical details in Supplemental Material,
Appendix 5. If the changes in ligand concentration are sufficiently small, then it is
appropriate to deal with this system as a perturbative one and to expand the equations above
about a particular ligand concentration c0, using

(38)

If Δc(t) < < c0, then we can similarly write

(39)

and

(40)

where |Δx(t)| < < |x0| and Δpopen(t) < < popen(c0). The entries in the transition matrix M in
Eq. (31) are all linear functions of the ligand concentration c, which allows us to rewrite the
transition matrix as a linear function of Δc(t),

(41)

where
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(42)

and

(43)

This decomposition is approximately true for more complicated transition matrices whose
entries are nonlinear functions of c, as can be shown using a Taylor expansion. Substituting
Eqs. (41), (39) and (40) into our first-order differential equation for x in Eq. (26) yields a
linear first-order differential equation

(44)

Recall that the quantity Δpopen can be related to the change in state vector using Eq. (34),

(45)

Equation (44) is easily solved in the Fourier domain because time derivatives , once
Fourier transformed, turn into multiplication by iω, yielding

(46)

Solving for  by rearranging terms in this equation above gives

(47)

From this, we can find the Fourier transform of Δpopen as

(48)

and from this, the frequency response function of this ligand-gated ion channel,

(49)

By diagonalizing the matrix iω − M0, we can rewrite this frequency response function as
linear combinations of frequency response functions Gk(ω),
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(50)

where

(51)

and ak(c0) are linear weighting coefficients that are frequency independent and ωcutoff,k are
the different internal time constants of the MWC molecule. These cutoff frequencies are
complicated functions of the various kinetic rates that do not have any obvious scaling
relationship with the MWC parameters since equilibrium constants say nothing about how
quickly the corresponding reactions occur. These filters in Eq. (51) are low-pass first-order
frequency filters since

(52)

will be roughly constant at low frequencies,  when ω < < ωcutoff,k, and

will drop sharply at higher frequencies,  when ω > >ωcutoff,k. Essentially, high-frequency
noise in ligand concentration will be “filtered out”. A ligand-gated ion channel cannot track
changes in ligand concentration that happen more quickly than the fastest time constant of
its internal dynamics. The frequency response of this ligand-gated ion channel is shown in
Fig. 12 as a function of both frequency and mean ligand concentration c0. The response is
generally decreased when the ligand-gated ion channel is saturated, which confirms a
reasonable intuition: that a ligand-gated ion channel with both binding sites filled with
ligand will have a hard time responding to any changes in ligand concentration.

Here we note that a similar analysis applies to all systems whose dynamics can be described
by an equation such as Eq. (26), that is, any Markovian system.89 If perturbations are larger
and depend on time in a more complicated fashion, the response will not necessarily take the
form of a first-order low-pass filter. A Markovian system with feedback, for instance, can
act as a higher-order low-pass frequency filter.90

Discussion
In his wonderful book The Eighth Day of Creation, Horace Freeland Judson describes the
work culminating in the MWC model as follows: “Two decades of work had coalesced; as
the theory of the repressor had done, yet in a manner more fundamental and embracing,
allostery brought diverse and apparently contradictory modes of regulation under an
overarching singular vision”. In our article, we have examined the way in which this
overarching singular vision can be cast in the language of statistical mechanics and used to
describe a stunningly broad variety of different biological circumstances. Though we accept
the proposition that science moves forward by forceful and detailed debates about very
specific molecular mechanisms, we also think that it is sometimes useful to step back and
take a broader view of the features that the many different molecular mechanisms have in
common.

The papers from the early 1960s that introduced this important class of two-state models
described both a concept and a specific class of models.3,4 One of the points of our article
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has been to argue that, in some cases, an emphasis on specific molecular details can lead to
molecular obfuscation rather than molecular enlightenment. For example, in considering
some particular molecule such as hemoglobin, the nACh receptor or some transcription
factor, deep and far-reaching debates focus on very specific molecular mechanisms. An
example of some of the different subsets of states that can be included when constructing a
statistical mechanical or kinetic model of a given molecule is shown in Fig. 13.93,94 One can
easily go even farther to include other features such as the distinction between different
subunits as demonstrated clearly in the case of hemoglobin, to name but one example.16

When these mechanisms are recast in mathematical form, they lead in turn to an allied
passionate discourse on the ability of this or that molecular model to “fit” particular data
sets. From our perspective, the more important service of such models is to provide a
unifying framework that casts completely different systems such as hemoglobin and
nucleosomes in the same light and that make polarizing predictions about new classes of
experiments.

One of the most influential tools arising from studies of biological similarity are
phylogenetic trees, which succinctly capture the evolutionary history of the immense
biological diversity seen in both the hidden world of microbes and macroscopic organisms.
Historically, though much was learned about these questions by studying morphology and
form, a powerful modern alternative is based on comparing the genome sequences of
different organisms. The power of models such as the MWC model is that they serve as the
basis for a different kind of phylogeny, namely, a phylogeny of concepts in which
apparently completely distinct biological entities such as hemoglobin and chromatin end up
being described by precisely the same physics and mathematics. This conceptual phylogeny
then tells us stories about the function of one system in terms of the other in much the same
way that sequence gazing allows us to understand biological function in one organism by
studying another. In our view, the MWC concept should be seen as one of the key branches
on the “phylogenetic tree” of fundamental concepts that tie together diverse and broad
classes of molecules describing everything from enzyme action to molecular sensors (e.g.,
bacterial chemotactic receptors) to the physical state of genomic DNA. We have every
reason to expect that the next 50 years will see many more examples of the MWC concept
serving as the basis for fundamental biological insights.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
States-and-weights diagram of the one-site MWC molecule. (a) Each of the four states has
an associated energy, part of which is due to the conformational degrees of freedom of the
molecule and part of which reflects the free energy of the binding process. (b) pactive as
given in Eq. (2) as a function of concentration in units of the inactive state's dissociation
constant. The activity curve is shown on a log scale in the main plot and on a linear scale in
the inset. (c) The four curves show the probabilities of each of the distinct states as a
function of the ligand concentration. Each state is labeled by a pair of numbers. The first
number of the pair is 1 if the receptor is active and 0 if the receptor is inactive; the second
number of the pair is 1 if a ligand is bound and 0 if no ligand is bound. The parameter values

used in the figure are Δε = εI − εA = −4 kBT and .
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Fig. 2.
Table of key quantities that can be computed within the MWC framework. (a) The activity
curve on a linear scale for two MWC molecules: a one-site receptor with Δε = εI − εA = −4

kBT,  and , giving a difference in binding energy of

; and a two-site receptor with Δε = εI − εA = −4 kBT,

, and , giving a binding energy difference of

. (b) The activity curves from (a) with concentrations on a
log scale. The transition point concentration c* = 40.6 µM and effective Hill coefficient heff
= 1 are shown with vertical and horizontal lines, respectively, for the one-site receptor. (c)
This table gives formulas for some of the key parameters of interest in both statistical
mechanics and thermodynamic language. Here, n is the total number of binding sites on the
receptor, L = e−βΔε is the conformational equilibrium constant where Δε = εI − εA is the
difference in conformational energy between the inactive and active state,
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 is the inactive state's dissociation constant for ligand binding,

 is the active state's dissociation constant for ligand binding and c is the
ligand concentration.
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Fig. 3.
Toy model of a ligand-gated ion channel. (a) The model ion channel has two binding sites
for the control ligand and can exist in four distinct states of occupancy (i.e., empty, 2 ×
single occupancy, double occupancy) for both the closed and open states. (b) Open
probability for a cGMP-gated channel as a function of the cGMP concentration and fit to an
MWC model with four binding sites.19

Marzen et al. Page 34

J Mol Biol. Author manuscript; available in PMC 2013 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Bacterial chemotaxis. (a) A schematic showing the motion of a bacterium that consists of a
series of runs and tumbles. (b) A chemoreceptor and the bacterial flagellar motor are shown
in the same membrane region, although in real bacteria, they are often on opposite poles. In
the presence of ligand, CheY is not phosphorylated and hence the motor is not induced to
alter its rotation direction. (c) Activity of the chemoreceptor in the limits of low and high
chemoattractant concentration with MWC parameters taken from Ref. 24.
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Fig. 5.
States-and-weights diagram for chemotaxis clusters. The various states shown in the figure
correspond to different states of occupancy of the chemotactic receptors while in the inactive
state. There is a corresponding set of diagrams (not shown) for the active state. The
statistical weights of the different states reflect how many ligands have been drawn out of
solution to bind the chemoreceptors. The degeneracies correspond to how many different
ways there are of realizing a given state of binding. For example, in the second state shown
in the figure, there is only one ligand bound on one of the n class 1 receptors. The class 1
receptors and class 2 receptors have conformational energy ε(off) in the inactive state and
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ε(on) in the active state. The n class 1 receptors have dissociation constant  in the

inactive state and  in the active state; the m class 2 receptors have dissociation

constants  in the inactive state and  in the active state.
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Fig. 6.
MWC model of nucleosome accessibility. States-and-weights diagram for a toy model of
nucleosome accessibility that illustrates how transcription factors could alter the equilibrium
of nucleosome-bound DNA. εc and εo refer to the conformational energies of the closed and

open states, respectively, and  and  are the dissociation constants for transcription
factor binding in those two states.
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Fig. 7.
Schematic description of MWC chromatin. (a) The genomic DNA exists in two classes of
state, one of which is “off” and the other one of which is “on” and permits transcription.
Transcription factor binding controls the relative probability of these different eventualities.
(b) States and weights for the binding of two transcription factors, here denoted by A and B,
which occupy the open and closed conformations with different affinity. The concentration
of transcription factors A and B is given by cA and cB, respectively. The conformational
energies of the closed and open states are given by εc and εo. The dissociation constant for A

is  when chromatin is in the closed state and is  in the open state, and the

dissociation constant for B is  when chromatin is in the closed state and is  when
chromatin is in the open state.
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Fig. 8.
The Bohr effect and MWC models. (a) The Bohr effect and oxygen binding to hemoglobin
as a function of pH. The hemoglobin binding curves are shown for five values of the pH: (a)
7.5, (b) 7.4, (c) 7.2, (d) 7.0 and (e) 6.8. The vertical lines indicate the partial pressures
experienced in muscle and in the lungs. (b) The “Bohr effect” in the context of chromatin
showing how the occupancy of a transcription factor on nucleosomal DNA changes as the
histone–DNA affinity (for example) is changed, as described in Eq. (11). For the figure

shown here, we have  and . The closed state energy has been
chosen as the reference energy and is taken as zero.
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Fig. 9.
Information transmission through a two-site MWC molecule. The case of nACh receptors is
illustrated for concreteness. (a) ACh (input) binds to ligand-gated ion channels
(communication channel), thereby influencing the number of open ion channels (output). (b)
The probability distribution of ACh concentration that maximizes the mutual information
between input ([ACh]) and output (Nopen) from Eq. (21). (c) The MWC ligand–receptor
binding probabilities determine the conditional distribution of the total number of nACh
receptors open as a function of ACh concentration, p(Nopen|[ACh]) from Eq. (17), shown
here as a heat map. (d) The probability distribution of Nopen that maximizes the mutual
information between input ([ACh]) and output (Nopen). (b–d) Plots assume a total of 100
nACh receptors on the synaptic cleft for visualization purposes, although this underestimates
the number of nACh receptors on a typical synaptic cleft and all plots use MWC parameters
characteristic of nACh receptors.68
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Fig. 10.
Sensor properties of an ensemble of independent MWC molecules with two binding sites. In
plots (a), (b) and (d), the MWC parameters are characterized by − βε, the conformational
energy difference between the open and closed states (in units of kBT), and

, the difference in ligand binding energies between the open and
closed states (in units of kBT). (a) The effective Hill coefficient of a two-site MWC
molecule plotted as a function of MWC parameters. (b) The dynamic range of 105

independent two-site MWC molecules plotted as a function of MWC parameters. (c) The
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dynamic range of N two-site MWC molecule with MWC parameters characteristic of a
nACh receptor,68 plotted as a function of the total number of receptors N. (d) The channel
capacity of 105 independent two-site MWC molecules plotted as a function of MWC
parameters. (e) The channel capacity of N two-site MWC molecule with MWC parameters
characteristic of a nACh receptor,68 plotted as a function of the total number of receptors N.
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Fig. 11.
Dynamics of an MWC ligand-gated ion channel with two binding sites. (a) Schematic
showing states and rates of transition between MWC states in a simplified kinetic allostery
model. (b) Probabilities of being in each state as a function of time, starting from a
nonequilibrium configuration, as calculated using Eq. (33) with c = 0.5 µM and rate
constants fO = 1 µM−1 ms−1, bO = 170 ms−1, fC = 1 µM−1 ms−1, bC = 0.04 ms−1, fL = 1
µM−1 ms−1 and bL = 8 × 10−4 ms−1. The dotted lines show the equilibrium values of each of
these probabilities.
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Fig. 12.
Characterization of the response properties of a toy model for a ligand-gated ion channel. (a)
Step function increases in ligand concentration lead to smooth increases in the probability of
an open channel. (b and c) Plots of the magnitude |G(ω)| and argument arg(G(ω)) of the
frequency response function of the ligand-gated ion channel to small fluctuations in ligand
concentration. These frequency responses are shown as a function of the mean ligand
concentration c0 about which the ligand concentration fluctuations. Rate constants: fO = 1
µM−1 ms−1, bO = 170 ms−1, fC = 1 µM−1 ms−1, bC = 0.04 ms−1, fL = 1 µM−1 ms−1 and bL =
8 × 10−4 ms−1.
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Fig. 13.
Molecular cartoons showing the variety of different allowed states and subsets of states
considered in different models.93,94 The states shaded in light blue correspond to the
traditional MWC model. The states shaded in light pink correspond to a sequential model of
the KNF form.15 The green box surrounds all of the states and generalizes the MWC
scenario to include other intermediates. The version shown here is a slight variant on that
presented in the excellent review by Hilser et al.94
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