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Abstract

Background—Dependent drug users show a diminished neural response to punishment, in both
limbic and cortical regions, though it remains unclear how such changes influence cognitive
processes critical to addiction. To assess this relationship, we examined the influence of monetary
punishment on inhibitory control and adaptive post-error behaviour in abstinent cocaine dependent
(CD) participants.

Methods—15 abstinent CD and 15 matched control participants performed a Go/No-go response
inhibition task, which administered monetary fines for failed response inhibition, during collection
of fMRI data.

Results—CD participants showed reduced inhibitory control and significantly less adaptive post-
error slowing in response to punishment, when compared to controls. The diminished behavioural
punishment sensitivity shown by CD participants was associated with significant hypoactive error-
related BOLD responses in the dorsal anterior cingulate cortex (ACC), right insula and right
prefrontal regions. Specifically, CD participants’ error-related response in these regions was not
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modulated by the presence of punishment, whereas control participants’ response showed a
significant BOLD increase during punished errors.

Conclusions—CD participants showed a blunted response to failed control (errors) that was not
modulated by punishment. Consistent with previous findings of reduced sensitivity to monetary
loss in cocaine users, we further demonstrate that such insensitivity is associated with an inability
to increase cognitive control in the face of negative consequences, a core symptom of addiction.
The pattern of deficits in the CD group may have implications for interventions that attempt to
improve cognitive control in drug dependent groups via positive/negative incentives.

Keywords
Performance monitoring; error-related; drug dependence; cocaine; cognitive control

1. INTRODUCTION

An abnormally high sensitivity to the rewarding properties of drug taking and cognitive
control dysfunction are evident across substance-use dependent (SUD) populations and are
predictive of poor treatment outcomes (especially relapse during abstinence; Goldstein and
Volkow, 2011; Koob and Volkow, 2010). There is also evidence to suggest that this
hypersensitivity extends to non-drug rewards (e.g., money) in drug-dependent populations
and drug-naive children who have familial ‘risk” for SUD (Hommer et al., 2011), however,
the findings are qualified by the use of paradigms that may be confounded by the
requirement for temporal discounting and or risk taking (MacKillop et al., 2011). While
contemporary neurobiological models highlight the importance of reward sensitivity and
cognitive control in SUD (Jentsch and Taylor, 1999; Naqvi and Bechara, 2009; Paulus,
2007), it is unclear how these two features, abnormal reward sensitivity and cognitive
control dysfunction, interact. One example of this interaction and the focus of the current
study is a diminished ability to exert impulse control, and adapt behaviour, in response to
negative feedback (punishment).

Previous research examining the processing of non-drug rewards in SUD samples has
typically focused on positive (e.g., monetary reward) rather than negative outcomes (e.g.,
monetary punishment; Bjork et al., 2008b; Buhler et al., 2010; Monterosso et al., 2007;
Reuter et al., 2005), revealing significant differences in functional activity within the reward
network, when compared to healthy controls. The changes to non-drug reward processing in
addiction have been argued to result from the transient increases in dopamine induced by
drugs generating overly positive reward prediction errors (Schultz, 2011). In combination
with increased reward sensitivity, drug addicted individuals show a reduced sensitivity to
punishment in their behavioural performance (Bechara et al., 2002). Functional MRI studies
of addicted drug users have also shown a diminished neural response to monetary loss (Beck
et al., 2009; Bjork et al., 2008a; Wrase et al., 2007), in both sub-cortical limbic regions such
as the striatum and cortical regions such as the anterior cingulate and insula cortices. These
studies have typically not examined the consequences on behaviour of this reduced response
to loss.

Cocaine addiction, and addiction more generally, is associated with significant cognitive
control dysfunction (Bolla et al., 1999; Garavan and Hester, 2007; Goldstein et al., 2001; Li
et al., 2008). Such dysfunction is thought to play a role in addiction because of the critical
role cognitive control plays in inhibiting the immediate pursuit of rewarding stimuli and the
development of maladaptive patterns of behaviour (Kalivas and Volkow, 2005). For
example, drug addicted individuals will consistently choose smaller immediate rewards in
preference to larger, but more delayed, rewards (irrespective of whether the reward is
hypothetical or real; Kirby and Petry, 2004; Petry, 2001). Given that increased sensitivity to
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reward and a blunted sensitivity to punishment appear to reduce drug users’ control over
rewarding stimuli, it is of interest whether this group shows the same punishment-related
improvement in cognitive control observed in healthy controls (Simoes-Franklin et al.,
2010). The use of punishment to shape appropriate behaviour is also a key element of
clinical (and criminal law) interventions for drug addiction, and its reduced effectiveness
with drug abusers has widespread ramifications.

Drug addicted participants have also been shown to have diminished feedback-related
activity during cognitive errors, principally in the anterior cingulate and insula cortices
(Franken et al., 2007; Hester et al., 2009b; London et al., 2005). Error-related activity in
these regions is known to be critical to post-error processes such as conscious error detection
and post-error adaptation of performance (Hester et al., 2009a; Kerns et al., 2004), with the
diminished error-related activity in addiction linked to poor error awareness (Hester et al.,
2009b; Moeller et al., 2010). Previous studies have not manipulated punishment to examine
how this influences the level of error-related hypoactivity, or the potential consequence of
diminished responsivity to punishment on adaptation of performance

The aim of the current study was to examine how these two features — abnormal punishment
sensitivity and cognitive control dysfunction, interact via the administration of Go/No-go
response inhibition task that indexes the ability to exert impulse control, and adapt
behaviour, in response to negative feedback (punishment). Response inhibition performance
was assessed during differing levels of monetary feedback (neutral and punishment) for
inhibition failures, and the association of this response to subsequent behavioural
adaptations and cognitive control performance. We hypothesized that CD participants would
show significantly poorer inhibitory control performance when compared to control
participants, particularly under conditions of monetary punishment (relative to neutral). And,
further, that the poorer performance under punishment conditions would be associated with
a hypoactive error-related response in CD participants, particularly in regions critical to
post-error adaptive behavior such as the dACC. The rationale for recruiting abstinent
cocaine users was to assess neurocognition in this domain without the acute influence of
recent cocaine use.

2. METHODS AND MATERIALS

2.1 Subjects

Fifteen abstinent cocaine dependent (CD) participants (2 female, mean age = 38.2, range =
24-51) were recruited from in-patient and outpatient addiction treatment centres located in
New York State. 15 matched control participants (2 female, mean age 42.7, range: 23-55)
were recruited from the Volunteer Recruitment Pool at Nathan S. Kline Institute for
Psychiatric Research. Groups were also matched for educational attainment (Cocaine: 13.1
years, Control: 13.0) and Wide Ranging Achievement Test (WRAT) estimated 1Q (CD:
98.9, Control: 102.8). All 15 patients received a primary Axis | diagnosis of Cocaine
Dependence and from the onset of treatment were closely monitored for continued
abstinence with random urine toxicology testing for multiple substances at least two times a
week for at least the 4 weeks prior to participating in the study. Patients would also meet at
least once a week with a personal counsellor who was accredited through the state of New
York as an alcoholism and substance abuse counsellor. The duration of abstinence, as
assessed through negative biweekly random urine screens for the durations noted, was
confirmed with the counsellors at the addiction treatment centres. Exclusion criteria are
provided in the supplementary materials’.

1Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:...
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The average time since last use of cocaine was self-reported at 335 days (range 30-1825
days), and participants reported using cocaine for an average of 5.12 years (range = 1 to 16
years). The duration of lifetime use and self-reported abstinence duration were not
significantly related (r = -.19, p = .53). The duration of cocaine use and period of abstinence
were not significantly related to the other demographic variables (i.e., age, education,
WRAT IQ).

2.2. Inhibition Punishment Task

We examined response inhibition performance (see Figure 1; Simoes-Franklin et al., 2010),
via a motor Go/No-go response inhibition task that alternates between neutral and
punishment conditions. The Punishment Go/No-go (PGNG) task presents a serial stream of
cycling shapes (square, circle, triangle), each presented for 900ms followed by a 100ms
inter-stimulus interval. Participants were trained to respond to each of the stimuli with a
single ‘Go trial’ button press, and withhold this response whenever a shape repeated on
consecutive trials. The task alternated between neutral and punishment conditions every 30
trials. In the neutral condition the symbols were presented in white and participants were
instructed to perform the task as accurately as possible. In the punishment condition stimuli
were presented in red and participants were instructed that they would lose 15c¢ (from an
initial amount of $20) for each commission error during a No-go trial. Four blocks of 360
trials, divided into 12 alternating runs of neutral and punishment conditions (30 trials per
run), were administered to participants. The blocks included 144 No-go trials (72 per
condition).

2.3. Data Analysis

The fMRI data acquisition and pre-processing analysis is detailed in the supplementary
materials2. A mixed regression group fMRI analysis was employed comprising five
regressors. A square-wave regressor, convolved with a standard hemodynamic response
function, coded for the neutral-punishment pattern in a block design manner, using the
Neutral condition as a baseline and the punishment condition as the On period (block
regressor). Group activation maps for event-type (stops, errors) and the punishment block
were determined with one-sample t-tests against the null hypothesis of zero event-related
activation changes (i.e., no change relative to baseline). Significant voxels passed a
voxelwise statistical threshold (#=4.31, p<.001) and were required to be part of a larger
142ul cluster of contiguous significant voxels.

The primary comparison of interest was group differences in activation between the
punishment and neutral conditions, for both stops and errors. For instance, the activation
clusters from the whole-brain analyses of stops from each group and each condition were
used to create a map for the purposes of a functionally-defined ROI analysis. This map
includes the voxels of activation indicated as significant in any of the constituent group
maps. The mean activation for each cluster in the combined stops map was calculated and
the mean activation levels for punishment and neutral stops were compared using repeated
measures ANOVA (group x condition), corrected via a modified Bonferroni procedure for
multiple comparisons (Keppel, 1991). These steps were repeated to compare activity levels
for errors in the neutral and punishment conditions.

2Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:...
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3. RESULTS

3.1. Behavioural Results

Performance indices for both control and CD participants are presented in Table 1. Control
participants’ inhibitory control, as measured by No-go accuracy, was significantly better
than CD participants, A1,28)=4.38, p<.05. A main effect of condition was also present, with
performance in the punishment condition significantly better than the neutral condition,
H1,28)=40.6, p<.01. The improvement in performance during the punishment condition
relative to the neutral condition was greater for controls when compared to CD participants,
but the interaction effect failed to reach significance, A1,28) = 3.01, p=.09. Go-trial
omission error rates were below 1% and did not differ across groups or condition (p > .05).

Control participants’ Go trial response time (RT) was not significantly different to the CD
participants, A1,28) = 2.03, p=.16. Go RTs were significantly slower during the
punishment condition when compared to the neutral, A1,28) = 6.67, p= .01, however, the
magnitude of this effect for control participants (14ms) was not significantly larger than for
CD participants (4ms), A1,28) = 2.05, p = .16. Response times during failed attempts to
withhold during No-go trials did not demonstrate significant main effects of group, A1,28)
=0.41, p> .05, or condition, A1,28) = .01, p> .05, or an interaction between these factors,
A1,28) =0.85, p> .05.

Post-error slowing, calculated as the difference in reaction time between the Go Trial RT
immediately prior and following a failed No-go response (i.e., positive scores indicate post-
error slowing), demonstrated a a significant effect of condition, A1,28) = 8.57, p=.007,
wherein post-error slowing was greater for the punishment than neutral condition (the
neutral condition showed virtually no post-error change). The main effect of group was
significant, A1,28) = 4.23, p=.04. The significant interaction between condition and group,
H1,28) = 4.34, p= .04, highlighted the substantially greater post-error slowing of control
participants in the punishment condition when compared to CD participants (55ms versus
8ms), whereas no difference was present during the neutral condition (7ms versus 0.1ms).
The same pattern of significant effects is observed when post-error slowing is calculated
using the difference in reaction time between the failed No-go response and the Go Trial
immediately following it. These results demonstrated a significant effect of condition,
H1,28) = 4.74, p< .05, wherein post-error slowing was greater for the punishment than
neutral condition (the neutral condition showed post-error speeding). The main effect of
group was significant, A1,28) = 4.83, p < .05. The significant interaction between condition
and group, A1,28) = 4.08, p < .05, highlighted the substantially greater post-error slowing
from control participants in the punishment condition when compared to CD participants
(63ms versus —17ms), F(1,28)=9.35, p < .05, whereas no difference was present during the
neutral condition.

Individual differences in the magnitude of post-error slowing during the punishment
condition correlated with response inhibition accuracy during the punishment condition (r
= .37, p=.04), whereas the equivalent measures in the neutral condition did not
significantly relate (r=-.19, p> .05). Examination of the relationship between self-report
measures of cocaine use (years of use, period of abstinence) and task performance revealed
no significant correlations.

3.2. Imaging Data

3.2.1 Tonic Activity—The block analysis identified 18 regions that were tonically more
active during the punishment condition relative to the neutral condition (see Table 2), which
are largely consistent with a previous study examining a different sample of healthy controls
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(Simoes-Franklin et al., 2010). Of these regions, several demonstrated a significant group
effect, including bilateral middle frontal, dorsal anterior cingulate, left putamen and left
inferior frontal gyrus. All regions showed significantly greater activity for CD participants in
comparison to controls, and no region showed the opposite pattern. Control group activity in
four of the regions showing a group difference (right middle frontal, left inferior frontal and
right superior parietal cortices) did not significantly exceed baseline (t-test versus zero
activity). This finding would suggest that CD participants were tonically activating regions
not typically activated by control participants.

Activity for the CD group did not significantly correlate with either duration of cocaine use
or period of abstinence.

3.2.2. Errors—The analysis of event-related error activity examined the influence of
condition (punishment, neutral), group (CD, control), and their interaction. A main effect of
condition was observed in four regions (see Table 3), with a cluster in the right insula cortex
demonstrating significantly greater activity during the punishment condition when compared
to the neutral condition (see Figure 2). The opposite effect was seen in the right
supramarginal, right angular and left inferior parietal gyri. There were no main effects of
group but there were significant interactions between group and condition in four regions,
with three clusters in the right insula, dorsal ACC and right middle frontal gyrus
demonstrating a significant increase in activity during the punishment condition when
compared to the neutral condition for control but not CD participants (Figure 2). In contrast,
activity in the right angular gyrus was significantly greater in the neutral condition when
compared to the punishment condition for CD participants, but not control participants.

The relationship between error-related activity, duration of cocaine use and period of
abstinence were also examined using correlation analyses. Duration of use positively
correlated with punishment condition error activity in the right middle frontal region (r=".
54, p=.03), and days of abstinence positively correlated with neutral condition activity in
left inferior frontal (r= .53, p=.04), dorsal ACC (r= .54, p=.04) and right insula (r= .54,
p=.04) regions. These relationships did not survive correction for multiple comparisons.

The difference between tonic activity levels during the punishment and neutral conditions
was calculated using the error-related regions of interest (ROI), indicating six regions with
significantly greater tonic activity during the punishment condition: right insula, dorsal
ACC, left inferior frontal gyrus, right superior temporal gyrus and the right middle frontal
gyrus. Of these regions, the left inferior frontal cluster was the only ROI to show a
significant group difference, with significantly greater activity for the CD participants in
comparison to control group. Thus, the reduced event-related activity for punished errors
observed in CD participants was not due to this group showing greater tonic activity in these
same areas.

An examination of the relationship between post-error slowing and BOLD activity in the
error-related clusters during the punishment condition revealed two significant relationships,
in the right middle frontal gyrus (r= .64, p=.01), and dorsal ACC (r= .38, p=.03), with
the relationships in the right insula (r= .35, p=.06) demonstrating a similar trend. The right
MFG cluster relationship was consistent across groups (controls: r = .65; CD: r = .66),
whereas the relationship in the right insula (controls: r = .40; CD: r = —.04) and dorsal ACC
(controls: r =.37; CD: r = —.05) was greater for controls than for CD participants.

3.2.3. Stops—The analysis of event-related response inhibition-related activity identified a

significant main effect of condition on clusters in right inferior frontal, dorsal ACC, left
insula, posterior cingulate, bilateral putamen, right precuneus and right caudate (Table 4).
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All regions showed significantly reduced activity in the punishment condition compared to
the neutral condition. CD participants showed significantly greater activity than control
participants in nine clusters, including dorsal ACC, posterior cingulate, bilateral putamen,
bilateral IFG, left insula and right superior frontal gyrus. A significant interaction between
condition and group was seen in both the right caudate and posterior cingulate, wherein CD
participants showed significantly greater activity during the neutral condition compared to
punishment condition, whereas control participants showed no difference.

Within stop-related regions, tonic activity was significantly greater for the punishment
condition in several clusters, including bilateral putamen, dorsal ACC, left cuneus and left
insula. CD participants showed significantly greater tonic punishment activity in the left
putamen and posterior cingulate clusters.

The relationship between stop-related activity, duration of cocaine use and period of
abstinence were also examined using correlation analyses. Duration of use positively
correlated with both neutral and punishment condition stop activity in the right caudate (r=".
54, p=.03; r=.55, p=.03), and during the punishment condition in the right putamen (r=".
54, p=.03). The correlations did not survive correction for multiple comparisons.

4. DISCUSSION

Given the previous findings of reduced punishment sensitivity in CD participants, we
hypothesized that, relative to matched controls, they would show poorer cognitive control
and performance adaptation (post-error slowing) in response to the imposition of monetary
penalties for response inhibition failures. Consistent with previous findings (Ersche et al.,
2010; Fillmore and Rush, 2002; Goldstein et al., 2004; Hester and Garavan, 2004; Li et al.,
2006; Verdejo-Garcia et al., 2007), CD participants had significantly impaired inhibitory
control when compared to control participants in both the neutral and punishment
conditions. The punishment manipulation significantly improved response inhibition
performance for both groups, when compared to the neutral condition, and there was an
indication in the data that CD participants may be less able to improve their performance in
response to punishment than controls (the interaction effect, p = .09). This pattern of deficits
was observed without significant demographic differences (e.g., education, 1Q or age).

The response to monetary penalties by the CD group, albeit substantially poorer than
controls, was associated with significantly greater tonic and phasic inhibition-related BOLD
activity. During the punishment blocks of the inhibition task, CD participants tonically
increased activity (in comparison to controls) in both cortical regions associated with
successful response inhibition in controls, for example, the dorsal ACC, and those not
significantly activated by controls, such as the left inferior frontal gyrus and right superior
parietal lobule. These regions and additional ones such as the right IFG, considered critical
to response inhibition, also showed significantly greater event-related response inhibition
activity for the CD group, when compared to controls. While response inhibition
performance remained significantly poorer for the CD group, the pattern of inhibition-
related activity during the punishment condition is consistent with them ‘rising to the
challenge’ of the increased incentive to perform with greater tonic and phasic levels of
control. For example, left IFG activity has been seen in both abstinent drug dependent
participants and stroke lesion patients, as a compensatory, but less able substitute, for right
IFG dysfunction (Connolly et al., 2011; Nestor et al., 2011; Swick et al., 2008). An
important exception to this pattern was the lack of such an improvement in the processing of
errors.

In contrast to control participants, CD participants also failed to show post-error slowing of
response speed in response to inhibition errors during the punishment condition. Adopting
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such a cautious pattern of post-error behaviour has been argued to represent an adaptive
behavioural response during speeded response tasks such as the Go/No-go task (Hajcak et
al., 2003; Kerns et al., 2004). Our results support this contention with increased post-error
slowing associated with improved inhibition accuracy. Previous studies have indicated
deficits in post-error adaptive behaviour in cocaine users (Franken et al., 2007; Li et al.,
2006), though several have found intact post-error slowing during neutral conditions (Hester
etal., 2007b; Li et al., 2008). For example, Li and colleagues (Li et al., 2006) showed that
the increased stop-signal RTs (SSRT) of cocaine addicted subjects were accompanied by
smaller response slowing on trials that followed both errors and successful inhibitions. The
group difference in SSRT was eliminated by factoring out the post-trial slowing effect,
suggesting that the apparent impulse control deficit of users may be driven by deficits in a
proactive rather than reactive control system. In the present data, there also appeared to be a
general trend for speed-accuracy tradeoff in the Go trial RT performance, with performance
in the punishment condition significantly slower than the neutral condition. While the
punishment-related slowing in control participants was greater than CD, consistent with
their higher accuracy for this condition, the interaction effect between group and condition
for Go Trial RT and inhibition accuracy were both non-significant. Similarly, previous fMRI
studies examining speed-accuracy trade-off have found that increased cautiousness results in
reduced activity in key parts of the response inhibition network, namely the right IFG and
dorsal ACC, during successful inhibition (Forstmann et al., 2008; Jahfari et al., 2012). The
present results identified such a pattern when comparing successful stops in the punishment
and neutral condition, as well as significant group differences in these regions (CD greater
than control), but failed to find significant interaction effects between group and condition
that would be consistent with a heightened tendency for control participants to enact
proactive cognitive control during the punishment condition and CD participants a reactive
control approach.

The isolation of deficient post-error slowing to the punishment condition might also suggest
that such adaptive behaviour, or the absence therein, may be particularly sensitive to the
contingencies inherent to the task, for example, where post-error slowing offers the greatest
advantage to task performance (Bissett and Logan, 2012). The observation that neither
group showed post-error slowing during the neutral condition may also be consistent with
this theme, as our previous use of the Go/No-go task has also showed post-error speeding
(Hester et al., 2007a, 2005). Our version of the task does not present consecutive no-go trials
and on average they were 7 trials apart, diminishing the adaptive value, in comparison to
other tasks such as the Stroop, Stop-signal and Flanker that often feature consecutive
incongruent trials, of immediately slowing responses post-error. The results also appear
consistent with the previous demonstrations of reduced sensitivity to monetary loss in
cocaine users (Goldstein et al., 2007), but further demonstrate that such insensitivity is
associated with an inability to increase impulse control in the face of negative consequences,
a core symptom of drug addiction.

The diminished behavioural sensitivity to punishment shown by CD participants was
associated with hypoactive error-related BOLD responses, when compared to control
participants, in the dorsal ACC, right insula and right middle frontal regions. Specifically,
CD participant’s error-related response in these regions was not modulated by the presence
of punishment, whereas control participants’ response showed a significant BOLD increase
during punished errors. While hypoactive error-related activity in CD participants has
previously been observed in both the ACC and insula (Franken et al., 2007; Kaufman et al.,
2003), along with diminished neural sensitivity to monetary loss (Goldstein et al., 2007), the
current data indicates a confluence of these factors that results in a diminished response to
punished errors. One potential consequence of this diminished response is the failure to
engage adaptive post-error corrective behaviour. The magnitude of error-related dorsal ACC
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activity has previously been linked with post-error slowing (Danielmeier et al., 2011;
Debener et al., 2005; Hester et al., 2007a) and the present data demonstrate this relationship
during the punishment condition, within each of the regions showing diminished error-
related activity for CD participants.

Previous studies have identified insular cortex activity during punishment (Sanfey et al.,
2003; Wachter et al., 2009), with the level of activity linked to the magnitude of (Elliott et
al., 2000) and individual sensitivity to punishment (Samanez-Larkin et al., 2008). The region
is thought to be generally representative of negative emotional states, including diverse
states such as hunger, pain, anger and disgust (Naqvi and Bechara, 2009). Craig (2009) has
hypothesised that rather than a reaction to punishment directly, anterior insula activity
represents awareness of an outcomes’ salience and our emotional reaction to it. Greater
activity in the insula therefore indicates heightened awareness of the emotional significance
of an outcome. Recent work has consistently demonstrated insular cortex dysfunction is
associated with addiction (Nagvi and Bechara, 2009; Paulus, 2007), particularly poor
decision making that may contribute to continued drug taking in the face of significant
negative consequences (Paulus et al., 2005). The present result may offer a functional
neuroanatomical correlate for the relationship between insular cortex dysfunction and the
failure to adapt behaviour following negative outcomes.

Given our small sample size, we were unable to clearly assess the relationship between
duration of abstinence and behavioural/imaging findings. Future research to pursue this
question is of interest to test the hypothesis that the dysfunction detected in the present study
is a pre-existing condition that was not the result of cocaine use, and hence will not likely
‘correct” over time with the maintenance of abstinence. Recent findings have highlighted
that the impulse control problems and cortical dysfunction we identify here in abstinent
cocaine users, is present in both stimulant dependent individuals and their non-addicted
siblings (Ersche et al., 2012). Longitudinal research has similarly shown that two predictors
of developing later drug dependence among children who have yet to consume drugs is their
sensitivity to reward and cognitive control dysfunction (Lukasiewicz et al., 2008; Tarter et
al., 2003), with mounting evidence that dopamine receptor density (particularly in the
striatum) is linked to both these behavioural characteristics and the risk for developing a
drug dependence (Volkow et al., 2001). If the present findings are not related to cocaine use
per se, nor ameliorated by continued abstinence, there are potential implications for the
treatment and prevention of cocaine dependence, particularly the potential for punishment to
significantly influence the self-control required to maintain abstinence.

A limitation of the current study was the characterization of the sample as formerly
dependent cocaine users. While polydrug use, and co-morbid dependence, is typical in
cocaine dependent samples, chronic use of alcohol and heroin have both been shown, like
cocaine, to diminish cognitive control broadly, and specifically the error-related response
(Forman et al., 2004). While the size of our sample does not adequately cater for
examination of these co-morbid effects, it suggests that the diminished response to
punishment seen in the error-related response may be influenced by polydrug use, and
similarly, that the diminished sensitivity to punishment during cognitive control and error
processing may be a general phenomenon seen in drug dependence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Punishment Go/No-go Task

The PGNG task presents a serial stream of cycling shapes (square, circle, triangle) each
presented for 900ms followed by a 100ms inter-stimulus interval. Participants were trained
to respond to each of the stimuli with a single ‘Go trial’ button press, and withhold this
response whenever a shape repeated on consecutive trials. The task alternated between
neutral and punishment conditions every 30 trials. In the neutral condition the symbols were
presented in white and participants were instructed to perform the task as accurately as
possible. In the punishment condition stimuli were presented in red and participants were
instructed that they would lose 15¢ (from an initial amount of $20) for each commission
error during a No-go trial. Four blocks of 360 trials, divided into 12 alternating runs of
neutral and punishment conditions (30 trials per run), were administered to participants. The
blocks included 144 No-go trials (72 per condition).

Drug Alcohol Depend. Author manuscript; available in PMC 2014 November 01.



1duosnuey Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hester et al. Page 15

Figure 2. Error-related brain activity showing significant interaction (Condition x Group) effects
Bar graphs represent mean BOLD % signal change (relative to baseline) for each group
(Cocaine Dependent (CD), Control) during punishment and neutral condition errors. Error
bars represent the standard error of the mean. The MNI coordinates for each region are listed
in the title and the brain slices shown represent the view at the relevant x, y or z-coordinate
(e.g., coronal slices relate to the y-coordinate).
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