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Early brain injury alters both structural and functional connectivity between the cerebral hemispheres. Despite increasing knowledge on
the individual hemispheric contributions to recovery from such injury, we know very little about how their interactions affect this
process. In the present study, we related interhemispheric structural and functional connectivity to receptive language outcome following
early left hemisphere stroke. We used functional magnetic resonance imaging to study 14 people with neonatal brain injury, and 25
age-matched controls during passive story comprehension. With respect to structural connectivity, we found that increased volume of
the corpus callosum predicted good receptive language outcome, but that this is not specific to people with injury. In contrast, we found
that increased posterior superior temporal gyrus interhemispheric functional connectivity during story comprehension predicted better
receptive language performance in people with early brain injury, but worse performance in typical controls. This suggests that inter-
hemispheric functional connectivity is one potential compensatory mechanism following early injury. Further, this pattern of results
suggests refinement of the prevailing notion that better language outcome following early left hemisphere injury relies on the contribu-
tion of the contralesional hemisphere (i.e., the “right-hemisphere-take-over” theory). This pattern of results was also regionally specific;
connectivity of the angular gyrus predicted poorer performance in both groups, independent of brain injury. These results present a
complex picture of recovery, and in some cases, such recovery relies on increased cooperation between the injured hemisphere and
homologous regions in the contralesional hemisphere, but in other cases, the opposite appears to hold.

Introduction
The proliferation of axonal fibers during the perinatal period
establishes interhemispheric connectivity (Innocenti and
Bressoud, 2003; Innocenti and Price, 2005; Paul, 2011; Takahashi
et al., 2012), primarily via the corpus callosum. This process is
fundamentally altered by early brain injury (Moses et al., 2000;
Back et al., 2001, 2002; Rosen, 2003; Paul, 2011). Early injury also
alters the contributions of each hemisphere to language (Staudt et
al., 2001, 2002; Raja Beharelle et al., 2010), but this has been
investigated without examining cross-hemispheric interactions.
In fact, with few exceptions (Fair et al., 2010; Raja Beharelle et al.,
2010), the prevailing notion of language recovery following early
injury is via compensation (or “takeover”) of function by the
nondominant hemisphere (Hertz-Pannier et al., 1997; Müller et
al., 1998; Staudt et al., 2002; Lidzba and Staudt, 2008). Here, we

investigate whether continued contribution of the injured left
hemisphere is important for language recovery. We relate both
interhemispheric structural connectivity of the corpus callosum
and interhemispheric functional connectivity of perisylvian re-
gions to receptive language outcome following early stroke.

Interhemispheric structural and functional connectivity
In primates the corpus callosum maintains an anteroposterior
topography such that the rostrum, genu, and anterior-to-mid
body contain fibers of the prefrontal, premotor, and motor cor-
tices, and the posterior body and splenium contain fibers from
the parietal, temporal, posterior cingulate, and occipital cortices
(for review, see Abe et al., 2004; Hofer and Frahm, 2006;
Schmahmann and Pandya, 2006; Zarei et al., 2006; Chao et al.,
2009; Westerhausen et al., 2009; Putnam et al., 2010; Saenz and
Fine, 2010). In response to injury, the corpus callosum is affected
in a topographic manner in both adults (de Lacoste et al., 1985)
and children with early brain injury (Moses et al., 2000), with a
persistent hypoplasia in children of those callosal regions most asso-
ciated with the site of injury. Thus, there is evidence that affected
interhemispheric connectivity persists beyond the time of the lesion.

Functionally, the corpus callosum mediates both inhibitory
and excitatory interhemispheric transfer (Mountcastle et al.,
1992; Yazgan et al., 1995; Bloom and Hynd, 2005) that may be
important for higher level cognition (Seymour et al., 1994; Zaidel
and Iacoboni, 2003), including language (Hines et al., 1992). Dis-
ruption of callosal fibers affects blood oxygenation level-
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dependent (BOLD) functional magnetic resonance imaging
(fMRI) connectivity (Quigley et al., 2003; Johnston et al., 2008),
which is associated with attentional and somatomotor outcomes
in adults after stroke (Grefkes et al., 2008; Carter et al., 2010;

Wang et al., 2010; Grefkes and Fink, 2011). It remains unknown
if such changes affect language, but these results suggest that
changes in interhemispheric functional interactions might also
affect recovery after congenital brain injury.

Table 1. Demographic and neurological profile for people with early injury

Participant Sex Hand
Lesion
side

Age at
exam Description of injury Gyral site of lesion

Cerebral
palsy? Epilepsy?

Time since
lesion (mo) FVL

103 F L L 19 y, 1 mo FTPO vascular injury with ventricular
enlargement (no FLAIR available)

Inferior and middle frontal; insula; superior
and middle temporal; supramarginal and
angular; lateral occipital

Y N 229 0.42

104 F L L 10 y, 9 mo FTPO vascular injury with ventricular
enlargement (no FLAIR available)

Inferior frontal; insula; pre-and postcentral;
superior temporal; superior parietal;
supramarginal and angular; lateral
occipital

Y N 129 0.38

107 F L L 28 y, 4 mo Periventricular injury damaging thalamus
and caudate

No direct cortical damage Y N 340 0.09

114 F L L 29 y, 10 mo Periventricular injury No direct cortical damage Y N 358 0.02
117 M L L 10 y, 5 mo FTP vascular injury with expansion of left

lateral ventricle
Insula; superior temporal; supramarginal Y N 125 0.19

119 M L L 10 y, 7 mo Periventricular injury with damage to
caudate

No direct cortical damage Y N 125 0.07

130 F L L 13 y, 7 mo Periventricular injury with damage to
thalamus and caudate—putamen

No direct cortical damage Y N 163 0.05

132 F L L 12 y, 0 mo Vascular injury with damage to thalamus
and caudate

No direct cortical damage Y N 144 0.07

134 F L L 7 y, 2 mo Periventricular injury (right hemisphere
shunt)

Precuneus Y N 86 0.09

135 F R L 18 y, 2 mo Focal vascular lesion damaging putamen;
white matter lesion

No direct cortical damage N Y 218 0.0005

137 M L L 13 y, 11 mo Periventricular injury with additional
expansion of the right ventricle

Supramarginal; angular; superior
temporal

Y Y 167 0.19

147 M R L 7 y, 7 mo Frontal vascular injury Precentral N Y 91 0.04
152 F L L 11 y, 11 mo Vascular lesion damaging putamen

extending to frontal cortex
Precentral Y N 143 0.06

157 M L L 12 y, 4 mo Vascular periventricular leukomalacia No direct cortical damage Y N 148 0.01

M, Male; F, female; L, left; R, right; y, years, mo, months; FTPO, frontal, temporal, parietal, occipital.

Table 2. Anatomical description of the cortical and cerebellar ROIs

ROI Anatomical structure Brodmann’s area Delimiting landmarks

IFGTr Pars triangularis of the inferior frontal gyrus 45 A, coronal plane defined as the rostral end of the anterior horizontal ramus of the lateral fissure
P, vertical ramus of the lateral fissure
S, inferior frontal sulcus
I, anterior horizontal ramus of the lateral fissure

IFGOp Pars opercularis of the inferior frontal gyrus 44 A, anterior vertical ramus of the lateral fissure
P, inferior precentral sulcus
S, inferior frontal sulcus
I, anterior horizontal ramus of the lateral fissure to the border with insular cortex

SMG Supramarginal gyrus 40 A, postcentral sulcus
P, sulcus intermedius primus of Jensen
S, intraparietal sulcus
I, sylvian fissure

STGp Posterior superior temporal gyrus 22 A, a vertical plane drawn from the anterior extent of the transverse temporal gyrus
P, angular gyrus
S, lateral fissure
I, dorsal aspect of the upper bank of the superior temporal sulcus

MTGp Posterior middle temporal gyrus 21 A, a vertical plane drawn from the anterior extent of the transverse temporal gyrus
P, temporo-occipital incisure
S, ventral aspect of the lower bank of the superior temporal sulcus
I, dorsal aspect of the upper bank of the inferior temporal sulcus

STSp Posterior superior temporal sulcus 22 A, a vertical plane drawn from the anterior extent of the transverse temporal gyrus
P, angular gyrus and middle occipital gyrus and sulcus
S, angular and superior temporal gyrus
I, middle temporal gyrus

Cerebellar cortex Cortex of the cerebellum Cortex of the cerebellum

A, Anterior; P, posterior; S, superior; I, inferior.
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We explored this issue by examining interhemispheric struc-
tural and functional connectivity and its relation to language
recovery in 14 people with early brain injury and 25 uninjured
controls. We expected that changes to callosal morphology and
interhemispheric functional connectivity of inferior frontal, in-
ferior parietal, and posterior superior temporal regions known to
be involved in language comprehension would be reliable predic-
tors of receptive language following early brain injury.

Materials and Methods
Participants
Fourteen individuals with prenatal or perinatal brain injury of vascular
origin, predominately involving the left hemisphere were studied (9
[64%] females, range � 7 years 2 months–29 year 10 months; M [SD]
age � 176 [83] months). Table 1 provides the neurological and demo-
graphic profile of each participant. Participants were recruited through
local and national support groups for childhood “hemiplegia” (hemipa-
resis) as well as by referrals from area neurologists. While individuals
with right-sided lesions and congenital malformation were excluded, we
had no other exclusion criteria on the basis of race, sex, degree of current
hemiparesis, or lesion site in the left hemisphere. All participants had
suffered predominantly unilateral brain damage, due to prenatal or peri-
natal stroke, where perinatal stroke is defined as occurring between the
20th week of gestation and the 28th postnatal day. This consensus defi-
nition was developed jointly at a workshop sponsored by the National
Institute of Child Health and Human Development and the National
Institute of Neurological Disorders and Stroke of the National Institutes
of Health of the United States (Raju et al., 2007). Twenty-five age-
matched controls, including siblings of these participants and those of
several other brain-injured individuals from a larger sample (Raja Be-
harelle et al., 2010), comprised the comparison group (16 [64%] females,
range � 8 years 6 months–38 years 11 months; M [SD] age � 203 [97]
months; two participants were left-handed). The group with injury and
the comparison group did not differ significantly in their age at exami-
nation, t(30.66) � 0.90, p � 0.38, Welch-corrected. The participants in-
cluded here were a subset of those participants examined in Raja
Beharelle et al. (2010) who successfully completed a story comprehen-
sion task during fMRI scanning. An additional eight participants were
removed from analysis because of excessive motion during the functional
scan (�15% of time points exceeded 1 mm, n � 6; Johnstone et al.,
2006), or because of scanner artifact (n � 2). Handedness was deter-
mined according to the Edinburgh handedness inventory (Oldfield,
1971). All adult participants gave written informed consent. Participants
�18 years gave assent and informed consent was obtained from a parent.
The Institutional Review Board of the Biological Sciences Division of The
University of Chicago approved the study.

We note that this particular sample was comprised of people with both
subcortical and cortical lesions. While the type/site of injury is a potential
factor influencing the brain’s response to insult, both types of lesion that
we investigate have been associated with language reorganization. For
example, Staudt et al. (2001) found that, like people with injuries directly
impacting the cortex (Hertz-Pannier et al., 2002; Liégeois et al., 2004),
people with periventricular injuries can also show recruitment of the
contralesional right hemisphere during certain language tasks. In fact,
correlations between the site of injury and outcome are inconsistent

(Liégeois et al., 2004), particularly in prenatal and perinatal injury; extent
of damage seems to be a better predictor for outcome, and we include this
factor in our analysis (Anderson et al., 2011). Furthermore, people in the
sample were predominantly left-handed, which is consistent with prior
work investigating people with left hemisphere injuries, and which sug-
gests compensatory organization of the motor system in response to
injury (Carr et al., 1993; Staudt et al., 2000, 2001, 2002; Eyre, 2007). This
also suggests that even in the cases of small injuries, there was a compen-
satory response to the injury in the people comprising the sample. Fi-
nally, we note that three people with injury had a history of epilepsy,
which is known to affect development in these children, and has potential
implications for neuroplasticity of language. In some work, epileptic
tissue in the left hemisphere has not observably affected the organization
of language in children (DeVos et al., 1995; Duchowny et al., 1996), but
others provide evidence of different neural organization in these individ-
uals (Brázdil et al., 2005; Ballantyne et al., 2007; Kadis et al., 2007). Thus,
it is possible that epilepsy affects language organization in these three
children.

fMRI stimuli
Functional scans were acquired while participants passively viewed ad-
aptations of Aesop’s Fables under an audiovisual condition in which the
storyteller was visible from the waist up, and made natural co-speech
gestures as she told the story (Dick et al., 2009; Skipper et al., 2009).
Participants participated in three additional audiovisual and auditory-
only conditions, which were not analyzed here but described previously
by (Dick et al., 2009). In summary, the present analysis included the time
series from two stories (M � 53 s) each separated by 16 s of baseline
fixation. Audio was delivered through headphones (85 dB SPL). Video
was presented through a back-projection mirror.

Behavioral outcome measures
Four measures of receptive language ability and one measure of nonver-
bal ability were administered as part of a battery of neuropsychological
assessments. Participants completed the receptive language subtests and
the Listening to Paragraphs measure of the Clinical Evaluation of Lan-
guage Fundamentals III (CELF III; Semel et al., 1995). The receptive
language subtests included requiring the participant to point to target
pictures in response to spoken sentences, and to choose a number of
orally presented words that go together. The Receptive Language Index is
derived from the subtests aimed at listening and auditory comprehen-
sion. The Listening to Paragraphs subtest, which requires that partici-
pants listen to paragraphs and respond to comprehension questions,
provides an additional measure of auditory language comprehension.
Participants were also given the Johnson–Newport Grammaticality
Judgment task (Johnson and Newport, 1989, 1991), which requires par-
ticipants to make a judgment about the grammaticality of orally pre-
sented sentences. Finally, participants also completed the Wechsler Adult
Intelligence Scale III (if they were �16 years; Wechsler, 1997) or the
Wechsler Intelligence Scale for Children III (if they were �16 years;
Wechsler, 1991). From this examination, we derived a Verbal Compre-
hension Index from the Vocabulary, Similarities, Information, and
Comprehension subtests, and a Perceptual Organization Index from the
Picture Completion, Block Design, and Matrix Reasoning subtests. The
receptive language measures (Listening to Paragraphs, Verbal Compre-
hension Index, Johnson–Newport, and CELF Receptive Index) were each

Table 3. Group performance on behavioral measures of receptive language and of nonverbal IQ

Typical controls Early left injury

Behavioral measure M SD M SD Differencerob (SE) 95% CI

Receptive language
Listening to Paragraphs 9.8 2.6 7.4 2.6 2.3 (1.0) 0.5 to 4.0
Verbal Comprehension 100.9 17.7 94.9 20.6 6.5 (6.5) �6.4 to 19.1
Newport Grammaticality Index 131.0 7.0 120.6 17.9 5.7 (3.0) �0.4 to 11.5
CELF Receptive 100.3 20.7 88.8 22.0 9.6 (5.7) �1.6 to 20.8

Performance IQ Measure
Perceptual Organization Index 108.7 11.8 94.6 20.7 11.5 (4.6) 2.4 to 20.5

Differencerob , Robust estimate of the difference.

5614 • J. Neurosci., March 27, 2013 • 33(13):5612–5625 Dick et al. • Interhemispheric Connectivity after Early Brain Injury



expected to relate to functional brain activity during the story com-
prehension task administered during fMRI, while the Perceptual Or-
ganization Index served as a nonverbal performance IQ measure, and
was not expected to show such a relation. Table 3 summarizes the
outcome measures.

Data acquisition and analysis
MRI scans were acquired at 3 T with a standard quadrature head coil
(General Electric). High-resolution T1-weighted images were acquired

(120 axial slices, 1.5 � 0.938 � 0.938 mm). For
functional scans, thirty sagittal slices (5.00 �
3.75 � 3.75 mm) were acquired using spiral
BOLD acquisition (TR/TE � 2000 ms/25 ms,
FA � 77°). The first four scans of each run were
discarded. Special steps were taken to ensure
that children who were scanned were properly
acclimated to the scanner environment. Fol-
lowing Byars et al. (2002) we included a
“mock” scan during which children practiced
lying still in the scanner while listening to pre-
recorded scanner noise. When children felt
confident to enter the real scanner, the session
began.

Analysis steps
Several analyses were performed: (1) a tradi-
tional “block” analysis on the whole brain to
determine activity above a resting baseline, (2)
a regions of interest (ROI) analysis to assess
interhemispheric functional connectivity, and
(3) morphometric analysis of the corpus callo-
sum and corticospinal tract. These measures were
related to the behavioral outcome measures.

Postprocessing
Postprocessing of the fMRI data was con-
ducted using Analysis of Functional Neuroim-
ages software (http://afni.nimh.nih.gov) on
the native MRI images. For each participant,
image processing consisted of (1) 3D motion
correction using weighted least-squares align-
ment of three translational and three rotational
parameters, and registration to the first non-
discarded image of the first functional run, and
to the anatomical volumes; (2) despiking and
mean normalization of the time series; (3)
inspection and censoring of time points oc-
curring during excessive motion (�1 mm;
Johnstone et al., 2006); and (4) modeling of
sustained hemodynamic activity within a story
via regressors corresponding to the story con-
ditions, convolved with a gamma function
model of the hemodynamic response derived
from Cohen (1997). We also included linear
and quadratic drift trends, six motion parameters
obtained from the spatial alignment procedure,
and to remove additional sources of spurious
variance unlikely to represent signal of interest,
we included the time series signal from both lat-
eral ventricles, and from bilateral white matter
(Fox et al., 2005). This analysis resulted in a re-
gression coefficient for the audiovisual story and
an associated t statistic measuring the reliability
of the coefficient. False discovery rate (FDR;
Benjamini and Hochberg, 1995; Genovese et al.,
2002) statistics were calculated to correct for mul-
tiple comparisons at the individual participant
level (applicable for the functional connectivity
analysis). Baseline activation maps for the task
used in this study are provided, for typical chil-

dren and adults, in our prior reports (Dick et al., 2009, 2010, 2012).
We note that motion is a particular concern for clinical populations of

all ages as well as healthy children (Brown et al., 2010; Power et al.,
2012a). In the present study, we censored motion using a strict criterion
of 1 mm in any direction, and we additionally excluded participants in
which censored points exceeded 15% of the total number of time points
in any of the two runs. This meant that, for 37 of 39 participants, we
censored between 0 and 2% of time points. For two participants, we

Figure 1. Hemispheric volume loss was related to overall corpus callosum volume, replicating Moses et al., (2000). Left,
Correlation between focal lesion (FL) callosum size and the FHV (lesioned/intact hemibrain), from Moses et al. (2000). Right,
Robust elliptical plot of data from the present study showing a relation between callosum size in the early injury group, the FHV
(lesioned/intact hemibrain). rrob � robust correlation estimate. *, 95% CI did not cover zero.

Figure 2. Measures of Wallerian degeneration of the corticospinal tracts at the level of the cerebral peduncle (top) and medulla
(bottom) were not strongly related to corpus callosum volume. Inset shows transverse cuts parallel to the bicommissural plane,
with the superior cut at the level of the inferior colliculus (and through the cerebral peduncles), and the inferior cut at the medulla
immediately below the pons. rrob � robust correlation estimate.
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censored on average 8% of the time points
across the two runs. As we note above, we
implemented preprocessing steps that have
been shown to mitigate the effects of motion
on functional connectivity, including regres-
sion of motion parameters and regression of
signal from ventricular and white matter re-
gions of interest (Power et al., 2012b).

Surface reconstruction of anatomical
images and anatomical parcellation
into ROIs
To provide a semi-automated parcellation of
the cerebral cortex, cerebellar cortex, and cor-
pus callosum, we constructed 2D surface ren-
derings of each participant’s brain using
FreeSurfer (http://surfer.nmr.mgh.harvard.
edu; Dale et al., 1999; Fischl et al., 1999). Note
that our sample contained children as young as
7 years. However, we stress that although chil-
dren and adults do show differences in brain
morphology, FreeSurfer has been used to suc-
cessfully create accurate surface representa-
tions for children (Tamnes et al., 2010).

We also took special steps to ensure accurate
surface reconstructions for the people with
early brain injury. To do this we applied a novel
semi-automated method, which we term Vir-
tual Brain Transplantation (VBT; Solodkin et
al., 2010 for details of the method), to register
and parcellate brains containing focal injuries
into a surface space with anatomical accuracy.
This method is necessary in cases where the
lesion is large and/or remaining tissue is dis-
torted, and in such cases it is virtually impossi-
ble to obtain an accurate surface representation
and anatomical parcellation using standard
surface reconstruction procedures. The proce-
dure allows an accurate reconstruction of the
cortical surface by “filling in” the lesion with
“transplanted virtual tissue” from the nonin-
jured hemisphere, following a crucial step of
registering the two hemispheres to each other
using gyral patterns. This step, unique to VBT,
is important because of the brain atrophy that
occurs over time following a brain lesion. Thus,
this procedure provides accurate anatomical
landmarks to facilitate the standard alignment
and inflation algorithms used by the FreeSurfer
software for individuals without brain injury.
The accuracy of this method has been validated
against the parcellation obtained in a typical
brain, and in that same brain with a simulated
lesion (Solodkin et al., 2010). All parcellations
were visually assessed against a published atlas
(Duvernoy, 1999) to ensure anatomical accuracy.

Cortical and cerebellar parcellation. We chose to examine the inter-
hemispheric functional connectivity of seven anatomically defined cor-
tical ROIs: inferior frontal gyrus (IFG); pars triangularis (IFGTr), IFG
pars opercularis (IFGOp), supramarginal and angular gyri of the inferior
parietal lobule (SMG and AG, respectively), the posterior superior tem-
poral gyrus (STGp) and sulcus (STSp), the posterior middle temporal
gyrus (MTGp), and one cerebellar cortical ROI, per hemisphere (i.e., 16
regions total). The anatomical characteristics of these regions are ex-
plained in Table 2). The neocortical regions were chosen based on the
results of functional imaging findings examining discourse comprehen-
sion in adults (Skipper et al., 2005; Hasson et al., 2007) and in children
(Karunanayaka et al., 2007; Schmithorst et al., 2007), including a func-
tional imaging study of adults completing the precise audiovisual story

comprehension task used in the present study (Dick et al., 2009). Lesion
analysis of brain regions involved in language comprehension addition-
ally informed our selection of the posterior temporal ROIs (Dronkers et
al., 2004; Turken and Dronkers, 2011). The cerebellar ROI was included
as a “control” region, because there is no direct interhemispheric cere-
bellar anatomical connectivity (Rosina and Provini, 1984; Naidich et al.,
2008; Glickstein et al., 2011), we expected no relationship between cere-
bellar interhemispheric functional connectivity and behavioral outcome.
ROIs were defined on each individual surface representation using an
automated parcellation procedure in FreeSurfer (Fischl et al., 2004;
Desikan et al., 2006), incorporating the neuroanatomical conventions of
Duvernoy (1999). We manually edited the default parcellation to delin-
eate anterior and posterior portions of the predefined STG and STS
regions (see Table 2 for details). Surface interpolation of functional data
inherently results in spatial smoothing across contiguous ROIs. To avoid

Figure 3. The corpus callosum displays segment-specific atrophy consistent with the site of injury. Parcellation of the corpus
callosum is shown for a representative typical control participant (Fig. 3, top) and for each member of the early injury group (Figs.
3–5). T1-weighted (for 103 and 104) and T2-weighted FLAIR (for remaining participants) axial magnetic resonance scans are
shown for each person with injury. Black arrows show the primary site of the lesion. In the accompanying graphs, diamonds show
the average volume for the typical control group for each segment, for the sum of all segments, for the anterior segments, and for
the posterior segments. Bars represent these volumes for each person with early injury. Error bars indicate SEM for the typical
control group.
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this, we instead projected the ROIs defined on the cortical and cerebellar
surface to the native MRI space, and we did not spatially smooth the time
series. To facilitate further analysis, for each participant, the time series of
each active voxel ( p � 0.05, FDR corrected) within each ROI was ex-
ported to a MySQL database (Hasson et al., 2008).

Corpus callosum parcellation. Although other schemes have been pro-
posed (Witelson, 1989; Hofer and Frahm, 2006), we used the method of
de Lacoste et al. (1985) to subdivide the corpus callosum into five parts.
Moses et al. (2000) followed an identical scheme and we chose this
procedure to facilitate comparison with their findings. To achieve the par-
cellation, we manually verified the subcortical corpus callosum segmenta-
tion from the FreeSurfer reconstruction against the scheme in de Lacoste et
al. (1985), and modified it manually in cases where parcellation errors oc-
curred. The volume of each segment was recorded for each participant. A
representative parcellation for typical controls, and the parcellation of each
participant with early injury, is provided in the figures.

Wallerian degeneration of the
corticospinal tract
To quantify the degree of Wallerian degenera-
tion in the corticospinal tract within the injury
group, we followed the procedure outlined by
Staudt et al. (2000), modified from Bouza et al.
(1994). We first aligned the T1-weighted ana-
tomical images along the mid-sagittal plane
and along a plane defined by the anterior and
posterior commissures (the bicommissural
plane). Next, we made two transverse cuts par-
allel to the bicommissural plane: the superior cut
at the level of the inferior colliculus (and through
the cerebral peduncles), and the inferior cut at the
border of the pons and medulla oblongata. ROIs
of both sides of the midbrain and medulla were
drawn manually, and asymmetry ratios were cal-
culated at these two cuts by taking the volume of
the ROI of the injured hemisphere divided by the
volume of the intact hemisphere. Thus, two
asymmetry ratios were calculated, one indexing
Wallerian degeneration of the cerebral peduncle,
and the second degeneration at the level of the
medulla.

Lesion size
It is possible that the results we report could
be explained simply by the amount of injury
and its effect on subsequent development,
rather than the other variables of interest.
Various methods are used to quantify the
size of injury (Vargha-Khadem et al., 1985;
Moses et al., 2000; Bava et al., 2007). We
chose an assessment of injury magnitude
based on fractional volume loss (FVL) of the
injured hemisphere because it provides a
reasonably good measure of the extent of the
lesion, and as a continuous measure, it is par-
ticularly suitable for statistical inference.
Hemispheric volume was obtained by man-
ually outlining the margin of each hemi-
sphere on the T1-weighted image. In
addition, the ventricles and areas of poren-
cephaly were subtracted from the hemi-
spheric volumes. The FVL was then
calculated as follows: FVL � (VN �VL)/VN,
where VN is the volume of the intact hemi-
spheric, and VL is the volume of the hemi-
sphere containing the lesion. In this sample,
FVL values ranged from 0.0005 to 0.42 (M �

0.12; SD � 0.13). To facilitate comparison with Moses et al. (2000),
we also calculated, as they did, a fractional hemispheric volume
(FHV), which is a ratio of the volume of the injured hemibrain to that
of the intact hemibrain.

Relating brain and behavioral measures: robust
statistical procedures
The investigation of developmental outcomes following early brain in-
jury is often hampered by small samples and by heterogeneity of the
brains and their injuries. To alleviate these concerns and to engender
confidence in our reported results, we examined the statistical relations
between our brain measures and the behavioral measures using robust
statistical procedures and bootstrapping approaches. Our statistical ap-
proach derives from the recommendations of the APA Task Force on
Statistical Inference (Wilkinson, 1999).

Specifically, we calculated robust estimates of correlation (rrob) and of
regression. Robust procedures are less influenced by outliers and increase
the precision of parameter estimates when there are outliers (Wilkinson,
1999; Wilcox, 2005; Wright and London, 2009). We calculated 95% con-
fidence intervals (CIs) and SEs to gauge the reliability of effects (Cohen,

Figure 4. The corpus callosum displays segment-specific atrophy consistent with the site of injury. Parcellation of the corpus
callosum is shown for each member of the early group, including 117, 119, 130, 132, and 134, and T2-weighted FLAIR axial
magnetic resonance scans are shown for each person with injury. Black arrows show the primary site of the lesion. In the accom-
panying graphs, diamonds show the average volume for the typical group for each segment, for the sum of all segments, for the
anterior segments, and for the posterior segments. Bars represent these volumes for each person with early injury. Error bars
represent the SEM for the typical control group.
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1994) using bootstrap methods for estimating
parameters within our relatively small sample
(Efron, 1981, 1987; Hinneburg et al., 2007;
Manly, 2007). We used the R statistical package
(v. 2.13.1; http://www.R-project.org/; R Devel-
opment Core Team, 2011) to conduct these
analyses.

Two robust procedures were used. In the
first, for the analysis of the relation between
callosum size and measures of lesion size and
Wallerian degeneration, we conducted a ro-
bust alternative to the Pearson product–mo-
ment correlation and generated robust
elliptical plots (relplots). This analysis followed
the procedures outlined in Wilcox (2005) (R
function relplot) and Goldberg and Iglewicz
(1992), and used the bivariate biweight M esti-
mator. SEs and CIs were constructed using the
bootstrap procedure on the sample data (5000
iterations; Wagstaff et al., 2009). The interpre-
tation of the summary statistic for correlation
(rrob) is the same as that of the Pearson r, but
the added robust elliptical plot provides a
graphical description of the bivariate correla-
tion of the majority of the data (summarized
within the inner ellipse) without being unduly
influenced by outliers.

The second robust procedure examined the
differences between performance on behav-
ioral outcome measures across groups, and the
relation between brain measures and behav-
ioral outcome measures. For these analyses we
conducted robust regressions using a Huber
loss function (Fox, 2002; Wilcox, 2005; Wright
and London, 2009). In cases where there are no
outliers, robust regression provides similar or
identical results to ordinary least-squares re-
gression, but performs better when there are
outliers (Wilcox, 2005; Wright and London,
2009). To conduct the bootstrap we adapted
the procedure from Venables and Ripley
(2010)) to the robust regression model and resa-
mpled the residuals. In this procedure the linear
model is fit to the data, the residuals are resa-
mpled with replacement, and new model coeffi-
cients are estimated. This process is iterated
10,000 times to define the SEs of each parameter
estimate. The bootstrap SEs are used to calculate
the 95% CIs of the parameter estimates.

To analyze the relation between corpus cal-
losum volume and behavioral measures (cor-
pus callosum volume3 behavioral outcome),
we extracted the volume of each of the five cor-
pus callosum segments for each individual. We entered these values as
predictors in the robust regressions. For both groups, we calculated in-
tracranial volume (ICV) using the approach outlined by Buckner et al.
(2004). Inclusion of this measure has been shown to account for some
noise in the data (Sullivan et al., 2001; Whitwell et al., 2001). We followed
the recommendation of Sanfilipo et al. (2004) and entered ICV in the
regression as a covariate. For the injury group, we used FVL as an addi-
tional predictor to control for the influence of the size of the lesion. The
dependent measures for these analyses were the behavioral measures
listed in Table 3.

To analyze the relation between interhemispheric functional con-
nectivity and behavioral outcome (interhemispheric connectivity3
behavioral outcome), for each individual we extracted the postpro-
cessed time series in active voxels ( p � 0.05 FDR corrected) for eight
anatomically defined ROIs (cerebellar cortex, IFGTr, IFGOp, SMG,
AG, MTGp, STGp, STSp) across the two hemispheres. Within each

individual, we calculated the Pearson product–moment correlation
of the time series across hemispheres for each region (within each
participant, we calculated the correlation of the time series across,
e.g., the left and right IFGTr, and repeated this for every other region).
Across all 39 subjects and eight regions, in eight cases we were unable
to compute a correlation due to lack of reliable activity in one of the
regions (i.e., 2.5% of possible correlations). Following calculation of
the correlation, we normalized each of the available Pearson r values
using Fisher’s z transformation (Fisher, 1921). These values, repre-
senting the standardized correlation of the time series for each region
across hemispheres, were entered as predictors in robust regressions.
For the injury group, to control for the influence of the size of the
lesion, we entered FVL as an additional predictor. The dependent
measures for these analyses were those behavioral measures listed in
Table 3.

Figure 5. The corpus callosum displays segment-specific atrophy consistent with the site of injury. Parcellation of the corpus
callosum is shown for each member of the early group, including 135, 137, 147, 152, and 157, and T2-weighted FLAIR axial
magnetic resonance scans are shown for each person with injury. Black arrows show the primary site of the lesion. In the accom-
panying graphs, diamonds show the average volume for the typical group for each segment, for the sum of all segments, for the
anterior segments, and for the posterior segments. Bars represent these volumes for each person with early injury. Error bars
represent the SEM for the typical control group.
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Results
Group performance on behavioral measures of receptive
language and nonverbal IQ
As Table 3 shows, people with injury were considerably worse
than typical controls at Listening to Paragraphs and in Perfor-
mance IQ, but were close to the normal range on some of the
receptive language and grammaticality measures. This is consis-
tent with previous reports of recovery of language to normal or
near-normal ranges in children with early brain injury (for re-
view, see Woods and Teuber, 1978; Woods and Carey, 1979;
Reilly et al., 1998; Bates et al., 2001, 1997; Anderson et al., 2011 for
recent review).

Measures of lesion size related to corpus callosum size
Figure 1 shows the replication of the analysis from Moses et al.
(2000). They showed (Fig. 1, left) that corpus callosum size is
positively correlated with the size of injury in the focal lesion
group. We replicated this analysis in our sample (Fig. 1, right).
Overall callosum size in the injury group was related to lesion size
with a moderate effect size (rrob � 0.50; 95% CI 0.002 to 1.00).
However, the CI was quite wide, indicating other sources of vari-
ance in the volume of the corpus callosum. To verify that this
relation reflected a reduction in interhemispheric connectivity
and not a systemic reduction in white matter in response to in-
jury, we showed that callosum size was not strongly related to
measures of Wallerian degeneration in the corticospinal tracts
(Fig. 2, top and bottom; rrob � �0.02, 95% CI �0.51 to 0.47 for
the cerebral peduncle cross section; rrob � 0.30, 95% CI �0.19 to
0.80 for the medulla cross section).

Segment-specific atrophy of the
corpus callosum
Examination of the site of injury and rela-
tion to atrophy of specific segments of the
corpus callosum showed that posterior le-
sions predominately resulted in atrophy
in posterior segments 4 and 5. This repli-
cates the general finding from Moses et al.
(2000) that callosal thinning bears a topo-
graphical relationship to the site of the le-
sion. Figures 3–5 show the average
volumes of each of the five segments, the
sum of the volumes of all segments, and
the sum of the volumes of the anterior
(1–3) and posterior (4 –5) segments. The
typical control averages are shown in the
top left, with the mid-sagittal image of a
representative control participant. Mid-
sagittal images of each participant with in-
jury are included, and graphs of the
segment volumes are compared with the

typical group for each participant. Examination of Figures 3–5
shows that the pattern was most prominent for larger injuries
(e.g., participants 103, 104, 134, and 137), but even those with
smaller injuries showed atrophy of posterior sites (e.g., partici-
pants 114 and 119). However, some injuries did not result in a
noticeable difference in specific segment volumes compared with
the typical group. For example, participant 103’s large injury im-
pacted the frontal lobe, but did not result in noticeable atrophy in
the anterior segments. Similarly, some smaller injuries did not
result in prominent callosal atrophy (e.g., participants 135, 152,
and 157).

Corpus callosum segment volume and receptive language
Table 4 and Figure 6 show the results of robust regressions relat-
ing corpus callosum segment volume to receptive language. We
report only results in which the CIs for the regression coefficients
did not cover zero. For typicals, the volume of the posterior seg-
ments (4 and 5) predicted all four receptive language measures
and the nonverbal measure. In addition, the volume of the ante-
rior segment 1 predicted the Listening to Paragraphs measure.
For people with early injury (Table 5), after additionally control-
ling for the size of the injury (FVL), more anterior segments 2, 3,
and posterior segment 5, predicted Listening to Paragraphs,
CELF Receptive, Verbal Comprehension, and the nonverbal con-
trol task. These results provide evidence that the number of axons
connecting the two hemispheres is positively related to improved
performance on some receptive language measures, but it is not
specific to people with early injury, and it also predicts nonverbal
performance.

Figure 6. Results of robust regressions predicting nonverbal and receptive language outcome measures from corpus callosum
segment volume. ICV and, for the injury group, the FVL measure of lesion size, were included in the model (see Tables 4 and 5). Error
bars indicate 95% CIs of the unstandardized b coefficient. Data are reported for CIs that did not cover zero.

Table 4. Corpus callosum segment volume predicts receptive language, typical controls

Typical controls

CC segment ICV

Predictor3 outcome B (SE) � 95% CI B (SE) � 95% CI R 2
adj

CC Seg 1 � ICV3 Listening to Paragraphs 0.01 (0.004) 0.4 0.0002 to 0.02 �0.10 (0.21) �0.1 �0.51 to 0.30 0.09
CC Seg 4 � ICV3 CELF Receptive 0.10 (0.04) 0.3 0.01 to 0.18 �1.38 (1.12) �0.2 �3.56 to 0.84 0.10
CC Seg 5 � ICV3 Listening to Paragraphs 0.01 (0.003) 0.4 0.001 to 0.01 �0.12 (0.22) �0.1 �0.54 to 0.30 0.06
CC Seg 5 � ICV3 Verbal Comprehension 0.03 (0.02) 0.4 0.004 to 0.07 1.87 (1.18) 0.3 �0.44 to 4.20 0.19
CC Seg 5 � ICV3 J-N Grammaticality 0.02 (0.01) 0.4 0.004 to 0.03 �0.41 (0.49) �0.1 �1.36 to 0.56 0.05
CC Seg 5 � ICV3 Perceptual Organization Index 0.03 (0.01) 0.5 0.01 to 0.05 �2.35 (0.82) �0.5 �3.98 to �0.75 0.14

CC Seg, Corpus callosum segment; ICV, intracranial volume; J-N, Johnson–Newport. ICV unstandardized regression coefficients were multiplied by a constant.
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Interhemispheric functional connectivity and
receptive language
Table 6 and Figure 7 show the results of robust regressions relat-
ing interhemispheric functional connectivity of the cortical and
cerebellar ROIs to receptive language. We report only results in
which the CIs for the regression coefficients did not cover zero.
For typicals, increased functional connectivity between the right
and left AG, and right and left STGp, predicted poorer perfor-
mance on the Verbal Comprehension
measure. For people with injury (Table 7),
after controlling for the size of injury
(FVL), increased AG connectivity also
predicted poorer performance, in this
case on Listening to Paragraphs. How-
ever, in contrast to typicals, stronger
STGp connectivity actually predicted bet-
ter performance on all of the receptive
language measures. Further, cross-
hemispheric functional connectivity dur-
ing story comprehension failed to predict
nonverbal performance IQ measure in
any of the examined ROIs in either typi-
cals or people with injury (the most reli-
able coefficient was 11.06 (6.69), p � 0.11
for typicals, and �18.99 (16.91), p � 0.29
for people with injury). Functional con-
nectivity of the left and right cerebellar
cortices also failed to predict behavioral
measures for typicals or people with in-
jury (the most reliable coefficient was
18.45 (9.72), p � 0.07 for typicals, and
3.15 (1.53), p � 0.07 for people with injury). In summary, in-
creased cross-hemispheric functional connectivity of the STGp
was a strong predictor on all of the examined receptive language
measures for people with injury, but not people without injury.
However, increased connectivity of the right and left AG was a
poor predictor of performance in both groups. Finally, as ex-
pected the effect was specific to receptive language measures; i.e.,
interhemispheric functional connectivity during story comprehen-
sion did not predict nonverbal ability. Moreover, cerebellar inter-
hemispheric connectivity did not predict behavioral performance
on any measure.

Discussion
Many children who sustain early brain injury during the prenatal
or perinatal period show remarkable recovery of language func-
tion, but there are individual differences in the degree of recovery
(for review, see Woods and Teuber, 1978; Bates et al., 2001; Stiles
et al., 2005; Anderson et al., 2011). Because of this, determination
of mechanisms of recovery from early insult could have a sub-

stantial impact on therapeutic interventions for these children. In
this paper, we studied 14 people with injury and 25 age-matched
typical controls, examining both functional and structural corre-
lates of language outcome following early brain injury, with a
focus on interhemispheric connectivity. With respect to struc-
tural connectivity, we found that increased corpus callosum vol-
ume predicted receptive language and nonverbal performance, in
both groups. However, when we examined interhemispheric
functional connectivity, left–right STGp connectivity during
story comprehension predicted better receptive language perfor-
mance in people with injury, but worse performance in controls.
This suggests that increased interhemispheric functional connec-
tivity is a potential compensatory mechanism following early in-
jury. Further, this pattern of results suggests refinement to the
prevailing notion that better language outcomes rely exclusively on
the compensatory activity of the contralesional hemisphere
(Rasmussen and Milner, 1977; Lidzba and Staudt, 2008; i.e., the
“right-hemisphere-take-over” theory). The pattern was also region-
ally specific; increased interhemispheric AG functional connectivity

Figure 7. Results of robust regressions predicting nonverbal and receptive language outcome measures from interhemispheric
functional connectivity of each cortical and cerebellar ROI. For the injury group, the fractional volume loss measure of lesion size
was included in the model (see Tables 5 and 6). Error bars indicate 95% confidence intervals of the unstandardized b coefficient.
Data are reported for CIs that did not cover zero.

Table 5. Corpus callosum segment volume predicts receptive language, people with injury

People with injury

CC segment FVL ICV

B (SE) � 95% CI B (SE) � 95% CI B (SE) � 95% CI R 2
adj

CC Seg 2 � ICV � FVL3 Listening to Paragraphs 0.01 (0.006) 0.52 0.001 to 0.03 �3.84 (5.04) �0.20 �14.0 to 5.7 �0.25 (0.18) �0.31 �0.60 to 0.11 0.14
CC Seg 2 � ICV � FVL3 Verbal Comprehension 0.09 (0.04) 0.44 0.01 to 0.18 �72.76 (33.63) �0.46 �137.68 to �5.85 �0.33 (1.21) �0.05 �2.70 to 2.03 0.16
CC Seg 2 � ICV � FVL3 CELF Receptive 0.09 (0.04) 0.42 0.01 to 0.18 �89.97 (34.44) �0.54 �157.81 to �22.83 �2.04 (1.24) �0.30 �4.47 to 0.38 0.14
CC Seg 3 � ICV � FVL3 Listening to Paragraphs 0.02 (0.01) 0.55 0.004 to 0.03 �7.75 (4.18) �0.40 �16.14 to 0.25 �0.40 (0.18) �0.50 �0.75 to �0.05 0.11
CC Seg 3 � ICV � FVL3 Verbal Comprehension 0.12 (0.05) 0.47 0.02 to 0.22 �99.50 (29.25) �0.63 �155.60 to �40.95 �1.44 (1.29) �0.22 �3.98 to 1.08 0.07
CC Seg 3 � ICV � FVL3 PO Index 0.15 (0.04) 0.57 0.07 to 0.23 �113.11 (23.27) �0.72 �157.96 to 66.75 �4.42 (1.0) �0.69 �6.40 to �2.49 0.16
CC Seg 5 � ICV � FVL3 Verbal Comprehension 0.04 (0.02) 0.53 0.01 to 0.07 �70.59 (33.64) �0.45 �136.92 to �5.04 �0.55 (1.24) �0.09 �2.98 to 1.89 0.21
CC Seg 5 � ICV � FVL3 PO Index 0.03 (0.01) 0.41 0.01 to 0.06 �90.81 (27.04) �0.58 �144.19 to �38.21 �3.25 (0.99) �0.50 �5.19 to �1.30 0.17

Note. CC Seg, Corpus callosum segment; FVL, fractional volume loss; PO, Perceptual Organization. ICV, intracranial volume. ICV unstandardized regression coefficients were multiplied by a constant.

Table 6. Interhemispheric functional connectivity predicts receptive language,
typical controls

Typical controls

Predictor3 outcome B (SE) � 95% CI R 2
adj

AG3 Verbal Comprehension �24.3 (10.0) �0.4 �44.0 to �5.1 0.1
STGp3 Verbal Comprehension �27.6 (12.3) �0.4 �53.4 to �4.0 0.1
STSp3 Verbal Comprehension �32.2 (14.4) �0.4 �60.5 to �4.0 0.1
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actually predicted poorer performance. This presents a complex pic-
ture of recovery from early injury, one that suggests mechanisms for
recovery show regional specificity, and in some cases rely on the
continued cooperation of an injured hemisphere with homologous
regions in the uninjured hemisphere.

Relation of interhemispheric connectivity to recovery from
early brain injury: structural connectivity
In a study of 10 children with perinatal injury, Moses et al. (2000)
reported persistent hypoplasia of the corpus callosum that was
consistent with the site of injury. We replicated these findings,
showing that (1) corpus callosum size is positively correlated with
the size of injury, and this is not explained by general white matter
atrophy and (2) callosal thinning is consistent with the site of
injury, with our sample of posterior lesions showing most pro-
nounced thinning in the posterior segments. We extended these
findings by showing that (3) increased volume of mid-anterior
and posterior corpus callosum segments is associated with better
performance on language and nonverbal measures, both in peo-
ple with injury and healthy siblings.

Increased callosal volume is associated with better perfor-
mance in both groups, which could be interpreted as suggesting
that recovery depends on retaining the normal structural integ-
rity of the corpus callosum. Further, the segments implicated in
better performance support the known role of inferior frontal,
inferior parietal, and posterior temporal regions in narrative-
level comprehension (Ferstl et al., 2008), which are thought to
project through the rostrum (for inferior frontal gyrus) and sp-
lenium (de Lacoste et al., 1985; Pollmann et al., 2002; Carreiras et
al., 2009; for inferior parietal and posterior temporal cortex). Our
data are consistent with previous findings relating splenium vol-
ume to language comprehension in both adults (Friederici et al.,
2007) and adolescents (Fryer et al., 2008), and to both language
and nonverbal IQ in children born preterm (Northam et al.,
2012), which we replicate. This suggests that our anatomical find-
ings have some functional relevance to language recovery.

At the same time, there are a number of caveats. First, the
anatomical result applied to both groups, and it was not specific
to language. This could simply suggest that integrity of the callo-
sum is itself a predictor of outcome (Schulte et al., 2004). Second,
we cannot make a direct claim about the number of fibers because
callosal size is not necessarily a predictor of interhemispheric
fiber density (Aboitiz et al., 1992), and could reflect reduced my-
elination, or axonal packing density. Third, lesion size explained
only �25% of the variability in callosal size. This could relate to
differences in the developmental timing of the examined lesions;
our sample included both vascular ischemic and hemorrhagic
periventricular lesions, which have different etiologies and time
of occurrence during the perinatal period (deVeber, 2002; Volpe,
2008). The variability could also be associated with experiential
effects on axonal pruning and myelination (Innocenti and Frost,
1979; Berrebi et al., 1988; Juraska and Kopcik, 1988; Zalc and

Fields, 2000; Innocenti and Bressoud, 2003; Teicher et al., 2004).
For example, reduced callosal area is associated with impover-
ished rearing environments, which is correlated with cognitive
impairment (Sánchez et al., 1998). This suggests that increased
access to early therapeutic intervention could influence the de-
gree to which certain interhemispheric connections are retained
and others are pruned.

Relation of interhemispheric connectivity to recovery from
early brain injury: functional connectivity
We found that (1) after early brain injury, increased STGp inter-
hemispheric connectivity during story comprehension predicted
better performance on all receptive language measures, but (2) in
typical controls, it was unrelated or negatively predicted receptive
language; (3) AG interhemispheric connectivity predicted poor
performance in both groups; (4) interhemispheric cerebellar
connectivity was not a strong predictor; and (5) connectivity did
not predict nonverbal ability. Taken as a whole, the pattern of
results suggests that increased interhemispheric functional con-
nectivity is one mechanism of recovery from early brain injury,
one that is specific to the task and to the region under investigation.

The possibility that involvement of the injured hemisphere is
integral to recovery suggests refinement of the prevailing notion
that good recovery depends on “take-over” of the contralesional
hemisphere (Lidzba and Staudt, 2008). The strong notion of
take-over is that language develops in the right hemisphere in
people with early injury (Staudt et al., 2002; Staudt, 2010). How-
ever, another possibility reconciles that hypothesis with the cur-
rent data, i.e., that recovery involves recruitment of right
hemisphere structures via increased functional connectivity, with
continued involvement of the injured hemisphere. This postulate
is consistent with our previous findings (in a superset of the
individuals reported here), in which there was increased activa-
tion in the right hemisphere, but that this was actually a poor
predictor of recovery (Raja Beharelle et al., 2010). Thus, for some
injuries, persistent right hemispheric activity may indicate a dis-
ruption of typical interhemispheric interactions necessary for
language (Rosen et al., 2000; Anderson et al., 2002; Naeser et al.,
2005; Price and Crinion, 2005). In the present study, increased
interhemispheric connectivity of STGp, a region implicated in
narrative comprehension (Déjèrine, 1901; Wernicke, 1908;
Geschwind, 1970; Ferstl et al., 2008; Dick et al., 2009), predicted
better outcome on all measures for people with injury. Notably,
though, this was a poor predictor in typical controls. In the typ-
ically developing brain, interhemispheric connectivity of the pos-
terior temporal cortex decreases with age (Brauer et al., 2011;
Friederici et al., 2011). Maintenance of temporal lobe interhemi-
spheric connectivity characteristic of children might reflect a
poorer functioning network in typical individuals, which is cor-
related with poorer receptive language. In contrast, for people
with early injury, the typical progression of increased intrahemi-
spheric connectivity in the left hemisphere is compromised, and

Table 7. Interhemispheric functional connectivity predicts receptive language, people with injury

People with injury

Connectivity FVL

B (SE) ß 95% CI B (SE) ß 95% CI R 2
adj

AG � FVL3 Listening to Paragraphs �6.0 (2.2) �0.5 �10.4 to �1.62 �13.8 (3.8) �0.7 �21.2 to �6.22 0.4
STGp � FVL3 Listening to Paragraphs 5.0 (2.4) 0.4 0.5 to 9.6 �11.3 (4.7) �0.6 �20.8 to �2.21 0.3
STGp � FVL3 Verbal Comprehension 43.3 (17.9) 0.5 8.2 to 78.0 �96.4 (33.5) �0.6 �162.1 to �30.6 0.6
STGp � FVL3 J-N Grammaticality 26.6 (12.0) 0.3 2.9 to 50.1 �75.4 (27.2) �0.6 �126.4 to �20.0 0.5
STGp � FVL3 CELF Receptive 44.4 (16.2) 0.4 12.9 to 76.3 �114.2 (33.5) �0.7 �180.2 to �48.7 0.6

Note. FVL, fractional volume loss; J-N, Johnson–Newport.
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these individuals may rely on enhanced connectivity to the con-
tralesional hemisphere.

Increased functional connectivity between angular gyri was
negatively associated with language outcome in both groups. The
left AG may to play a role in semantic processing during language
comprehension (Binder et al., 2009; Price, 2010; Seghier et al.,
2010; Binder and Desai, 2011), particularly task-dependent se-
mantic memory retrieval (Cabeza et al., 2008; Obleser and Kotz,
2010). The right AG is also implicated in lexical-semantic pro-
cessing (Démonet et al., 1994; Binder et al., 1997), especially dur-
ing reading, which is associated with increased interhemispheric
AG connectivity (Carreiras et al., 2009). It is possible that inter-
hemispheric AG connectivity is a signature of efficient semantic
retrieval, such that recruitment of the right AG occurs in cases of
high demand on semantic retrieval (e.g., during language com-
prehension or reading), or reduced efficiency of semantic pro-
cessing. Recruitment of these resources during comprehension
may not be a signature of successful retrieval, but of unsuccessful
processing in regions to which the AG connects (Cabeza et al.,
2008). If this is the case, increased AG connectivity would predict
poorer comprehension, but resolution of these issues awaits ad-
ditional research.

In summary, the findings with respect to interhemispheric
functional connectivity suggest that notions about the benefits of
cross-hemispheric integration to recovery should take into ac-
count the specific nature of the networks recruited by the task and
regional differences in the functional contribution to these net-
works. Mechanistically, if interhemispheric connections have an
excitatory influence on target neurons in contralateral cortical
regions, integration between the two hemispheres may increase
the number of regions contributing to a particular task (Yazgan et
al., 1995), which could be beneficial during demanding tasks like
narrative-level language comprehension. Alternatively, changes
to interhemispheric connectivity could affect the inhibitory in-
fluence of left hemisphere regions on right hemisphere homo-
logues (Saur et al., 2006; Nowak et al., 2008). In fact, simulation
studies suggest both mechanisms could be involved, as lesions to
different regions have differential effects on the pattern of endog-
enous functional connectivity within the remaining parts of the
network (Honey and Sporns, 2008; Alstott et al., 2009). This
process of reorganization appears to be at play during recovery
from early brain injury.
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(2001) Early left periventricular brain lesions induce right hemispheric
organization of speech. Neurology 57:122–125. CrossRef Medline

Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krägeloh-Mann I
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