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Abstract
Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue
engineering because it provides spatial-temporal assessment (e.g., changes of gel area and
diameter during the contraction process) reflecting the cell behaviors and tissue material
properties. So far the assessment of collagen gels relies on manual segmentation, which is time-
consuming and suffers from serious intra- and inter-observer variability. In this study, we propose
an automatic method combining various image processing techniques to resolve these problems.
The proposed method first detects the maximal feasible contraction range of circular references
(e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a
three-step color conversion strategy is applied to normalize and enhance the contrast between the
gel and background. We subsequently introduce a deformable circular model (DCM) which
utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An
adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed
system can overcome variations of gel boundary appearances at different contraction stages. Two
measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the
segmentation results. Experimental results, including 120 gel images for accuracy validation,
showed high agreement between the proposed method and manual segmentation with an average
dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in
gel contours obtained by the proposed method over two popular, generic segmentation methods.
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1. Introduction
Fibroblast-mediated collagen gels have been widely utilized to develop artificial tissues such
as skin, blood vessel, and tendon, as well as to evaluate cell growth and tissue repair
potential. Moreover, tracking the contraction process of collagen gels in controlled imaging
conditions is important for deriving cell contractility (e.g., mechanical force) and
investigating biological mechanisms of wound healing. How to efficiently and accurately
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quantify the gel contraction to facilitate understanding of cell properties and tissue wound
healing has become a critical issue in the biomaterials and tissue engineering fields [1-8].
The aim of this paper is to design an efficient image analysis method for automatic
segmentation of collagen gel boundaries and quantitative measurement of gel contraction
from digital images.

To achieve this goal, three major difficulties in automatic segmentation and measurement of
collagen gel must be properly resolved. It can be seen from figures 1(a)-1(c), illustrating
three different contraction stages, the gel first contacts the dish perimeter (DP) and then
gradually contracts radially inward toward the cloning ring perimeter (CRP). Gel boundaries
at different contraction stages present a variety of intensities and shapes, which complicates
automatic boundary detection. Moreover, the collagen gel boundaries are often fuzzy
(indicated by yellow arrows in figure 1(b)), which makes accurately locating gel borders a
challenge. Pixel coloration of the gel regions among images is inconsistent due to variations
of imaging conditions and gel contraction properties. For example, the average color value
of the gel in figure 1(a) is (R: 146, G: 132, B: 57) while that of the gel in figure 1(b) is (R:
148, G: 142, B: 104). Such differences usually lead to unreliable characterization of collagen
gel colors and makes detection of the gel pixels by color values difficult.

Image segmentation methods addressing issues associated with quantitative measurements
of both biomedical and industrial applications have been actively investigated [9-12].
Although the importance of quantitative measurement of collagen gel contraction has been
discussed in the aforementioned literature, to the best of our knowledge, little or no research
has been performed addressing automatic analysis techniques applied to collagen gel
images. Potential segmentation methods that may be applied to this problem fall into three
categories: pixel classification-based, region-based, and deformable model-based methods.
Each technique has merits and drawbacks when applied to this specific application. In
general, pixel classification-based (e.g., Otsu’s thresholding [13]) and region-based (e.g.,
watershed [14]) methods mainly consider the intensity homogeneity in the segmentation
process and, therefore, often suffer from the edge-leaking problem in the presence of fuzzy
boundaries (i.e. difficulty II). Moreover, these same method categories are sensitive to the
intensity/color inconsistency appearing in the images (i.e. difficulty III). Methods which are
purely based on pixel classification or regions are likely to generate unsatisfactory
segmentation results for gel image analysis.

As to the deformable model-based methods, the active contour model [15] and active shape
model [16] are two typical approaches. The two methods achieve segmentation by
deforming the model toward the accentuated edges of target objects. The model deformation
not only utilizes the image-based features (e.g., intensity, gradient, or entropy), but also
takes the model’s shape properties into account. Deformable model-based methods can
avoid severe segmentation errors resulting from fuzzy boundaries. However, variations in
gel intensities and shapes among the images (i.e. difficulties I and III) certainly complicate
definition of a specific measure for attracting the model to fit the images with stability.
Additionally, the initial position and shape of the deformable model are major concerns in
this method category. Convergence to the true solution is very likely to fail if the distance
between the target contours and the model is too large. In other words, there is no
deformable model-based solution currently available to segment and measure gel
contraction images.

In this paper, we propose a new computerized image analysis system guided by a
deformable circular model (DCM) to automatically segment collagen gels and quantitatively
measure gel contraction parameters from digital images. Major features of the proposed
system are described below. We present a three-step strategy combining gel color transfer,
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intensity adjustment and contrast stretch to convert the collagen gel images from RGB to
grayscale domain. Using the proposed strategy, the difficulty of color distribution
inconsistency (difficulty III) can be successfully resolved. Moreover, the proposed
deformation method, which not only utilizes the regional intensity contrast to attract the
DCM but also adopts the circular shape constraint to avoid excessive distortion, can achieve
accurate segmentation of collagen gels. Furthermore, a contraction stage-adaptive weighting
scheme is designed to control the behavior of the DCM, so that our method can
accommodate the variations of gel boundary appearances (difficulties I and II).
Experimental results showed that using the proposed system can obtain accurate
segmentation and measurement results in a fully-automated process.

2. Collagen gel fabrication and image acquisition
Cell-seeded gel lattices, which can be used to approximate biological structures of real
tissues, are usually measured during the contraction process (e.g., tracking the rate of area
change) to assess material properties [2, 4]. In this study Vitrogen sterile type I bovine
dermal collagen (Cohesion Technologies, Palo Alto, CA) was prepared for investigating
subsynovial connective tissue characteristics and its potential role in carpal tunnel
syndrome. Briefly, the collagen solution was made from 10 ml of sterile, chilled Vitrogen
collagen mixed with 3 ml of sterile 5X minimal essential medium (MEM), 1.05 ml of sterile
0.167 M NaOH, and 0.95 ml distilled water, to make 15 ml of temporary collagen/MEM
solution on ice. The resulting concentrations of collagen and fetal bovine serum were 2.0
mg/ml and 10%, respectively, at a pH of 7.4 ± 0.2. The target cell-populated collagen gel
solution (0.5 x 106 cells/ml cell suspension in 1.0 mg/ml collagen/MEM solution) was
prepared by mixing one volume of 2.0 mg/ml collagen solution with one volume of 1.0 x
106 cells/ml 1X MEM suspension. Then, 2 ml aliquots of the cell-seeded collagen solution
were added to each well of the six-well plates, wherein each well/dish has a cloning ring at
its center with both a diameter and height of 8 mm. More details of the cell-seeded gel
fabrication can be found in the work of Chen et al. (2007) [17].

Progression of gel contraction was captured at specific time points using a digital camera
(Sony DSC-TX9) mounted at a consistent height of 55 mm above the plate. The imaging
conditions were manually adjusted to assure the quality of acquired gel images (lighting
sensitivity: ISO 125; shutter speed: 1/500 sec; aperture value: f/4.5; exposure value: 0). The
surface images of the prepared gels were captured every 8 hours on days 1-6, 8, 10, 12, and
14. Rulers were included in photographs to scale measurements, and a transilluminator was
used to stabilize lighting conditions (figure 2). At the end of the contraction period (the 14th

day), all collagen gels had tightly contracted around the cloning rings. The acquired images
recording the gel contraction process were stored for offline analysis.

3. Segmentation and measurement of gel contraction images
In order to accurately segment the collagen gel in each image, the proposed method
incorporated a model-guided framework with image processing techniques addressing the
aforementioned difficulties. As there are several irrelevant objects in each image which
interfere with the segmentation, the first step of the proposed method was to find the
maximal feasible contraction range via detection of circular references. Then, a three-step
color conversion strategy was designed to convert the collagen gel images from RGB-
channel to grey-level domain. We subsequently adapted the DCM based on the contraction
stage-adaptive weighting scheme in order to segment the collagen gels. Lastly, quantitative
measurements of collagen gels were then readily obtained based on the segmented results.
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3.1. Detection of maximal feasible contraction region
To prevent interference from irrelevant objects during the segmentation process, the method
first detected circular references (i.e., DP and CRP) which bounded the feasible region of gel
contraction. The circular references in the proposed method were represented by the
parametric curve C in a polar coordinate system (see figure 3(a)):

(1)

where (cx, cy) represents the coordinate of center, r is the radius, and θ is an angle from a
fixed direction of the circular reference.

It was observed that both the two circular references are located at the transition from bright
to dark regions in a given image I. Therefore, we detected the two references by the
argument of the minimum of the directed intensity gradient:

(2)

where IL is the illumination/intensity channel obtained by the average of red (IR), green (IG)
and blue (IB) channels from the image I; Δθ is the angle offset determining the sampling
density and N = 360 / Δθ is the number of sampled contour points on the curve C; n(C(θ))
which is the outer-pointing normal at C(θ) is defined as the vector from the center to C(θ). In
our implementation, was assigned a value of 10, an initial guess for (cx, cy) was set as the
center of the image, and the radii of DP and CRP were assigned as 91 and 25 pixels,
respectively. The DP and CRP were detected via optimization of equation (2) from the two
initial conditions, respectively. The detected DP and CRP are denoted as CDP and CCRP

respectively, and the feasible region of gel contraction can be specified as the region
enclosed by CDP and excluded from CCRP (see figure 3(b)).

3.2. Three-step strategy for image color conversion
Due to changes in imaging conditions throughout gel contraction stages, the images usually
present inconsistent color distributions and low contrast, prone to making the segmentation
process unstable. Therefore, we proposed a three-step color conversion strategy from RGB
to grayscale images to address this issue. The proposed strategy consisted of gel color
transfer, intensity adjustment, and contrast stretch steps. First, the color transfer was
performed to cope with the color distribution inconsistency among the gel images [18]. A set
of reference images presenting typical color distributions of collagen gels was selected by
the scientist conducting the experiment (Tai-Hua Yang). The average means (μ) and
standard deviations (σ) of color values for each axis in the lαβ color space were then

computed from the reference images and denoted as  respectively,
to characterize the desired color distribution. The calculation for the reference distribution
was performed only once for the method. Afterwards, for each individual image the means
and standard deviations of pixel colors in the lαβ space were similarly calculated and

denoted as . The reference color distribution was then transferred to
each image by applying the following shifting and scaling operations to the l, α, and β
values of each pixel:
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(3)

where l’, α’, and β’ are the resulting color values of the pixel in the lαβ space. By mapping
them back to the RGB space, we generated a color-transferred gel image and updated its
intensity channel IL for segmentation purposes.

In the intensity adjustment step, we observed that the intensity-channel image provided the
luminance information from the colored gel image, while the local contrast between the dish
and gel regions mainly originated from the yellow color component (gel pixels contain
heavier yellow). We hence adjusted the intensity appearance of the gel image via the yellow
content weighting process:

(4)

After the adjustment we decreased the intensity of gel pixels while relatively enhancing that
of dish pixels. The last step of intensity contrast stretching, which is adaptive to the average

intensity  of the input image, was carried out via the following equation:

(5)

The entire color conversion process was performed only for the cropped, rectangular image
that completely encloses the detected DP to reduce computational cost. Figure 4
demonstrates two examples which originally show different colors (e.g., the top image has
lower illumination and heavier yellow). It can be observed that the color distributions of
both images become quite similar after the color transfer process, and the boundaries
enclosing the gels are consistently enhanced after the color conversion.

3.3. Gel segmentation using deformable circular model (DCM)
3.3.1. Model initialization—The DCM which is used to approximate the collagen gel
contour was specified by the parametric curve D:

(6)

where dx and dy are the global position parameters, and s is the local shape parameter of the
DCM. In figure 5, the contour of the DCM was sampled in the angle offset Δθ, and it thus
contains N=360 / Δθ contour points. Its position was determined by dx and dy, and the shape
was controlled by a set of shape parameters S = (s1, s2, …, si,…, sN-1, sN). If all the shape
parameters are given the same value, the DCM forms a circle; otherwise, it constitutes an
arbitrary shape via the change of shape parameters. With the two circular references (i.e.,
DP and CRP) delineating the feasible region of gel contraction, we could reasonably assign
the detected DP as the initial contour of the DCM. The values of dx and dy were set as the
coordinate of DP’s center, and each element of the shape vector S was assigned to the DP’s
radius.

3.3.2. Energy functions—The energy functions were defined in terms of deformation
degrees of deformable model, and image evidences for specifying target boundaries. The
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energy value increases as the model deforms away from the target object. In the proposed
method, the model deformation process was achieved by solving the shape parameters S that
minimized the energy function EDCM:

(7)

where Econtrast is the contrast energy and Eshape is the shape energy to be defined in the next
paragraph; α is a weight value determining the relative importance of the two energies.
Generally, the gel boundary can be defined as the transition from dark to bright regions in

the image  However, the gel boundary usually presents a low-sloped intensity profile like
a halo as shown in figure 6(a), creating uncertainty in defining the border of the collagen
gel. Moreover, the gel image usually contains disordered edge information as indicated by
the gray curve segments in the Sobel gradient image (see figure 6(b)). Use of a conventional
intensity gradient as the boundary evidence for attracting the DCM is very likely to locate
undesirable strong edges.

In order to attract the DCM to the true gel boundary, we designed the contrast energy based
on the regional intensity gradient:

(8)

(9)

where n(D(θ, s)) represents the outer-pointing normal (radial direction) of the DCM contour
at D(θ, s); Imax is a normalization constant and L is used to define the neighborhood around
the contour of DCM. If the model is trapped by the confusing edges, the value of λ will be
smaller, making the contrast energy value larger. The proposed contrast energy can attract
the model to the position with strong regional intensity gradient and high intensities outside
the DCM contour. Thus, the model is able to be properly located at the transition from the
gel to dish regions.

The shape energy indicating the local shape curvature of the deformable model was defined
as follows:

(10)

While the DCM contour is attracted by image noises with large gradient magnitudes, it
probably results in a rather irregular shape. The shape energy EShape hence gives a large
value and the energy function EDCM will be penalized. Overall, the contrast energy can
accurately capture the desired gel boundary, while the shape energy properly constrains the
degree of contour deformation to maintain smoothness and avoid excessive distortions.

During the implementation, equation (7) was minimized by iteratively adjusting the
positions of the points on the DCM contour (i.e., updating the shape parameters) to fit the
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gel boundary along the radial directions of the contour. The iteration converges and stops
when the sum of the displacements of points between the previous and current iterations is
less than 5, or when the number of iterations reaches 15. The value of L defining the size of
the neighborhood was set as 5, and Imax was assigned the value of 255.

3.3.3. Contraction stage-adaptive weighting scheme—The behavior of the DCM is
controlled by the weighting factor α. As shown in figure 1, the gel intensity and shape
appearances vary as the contraction progresses. Use of a single-valued weighting factor is
inadequate to make the model accommodate these variations (i.e. difficulty I). We hence
designed the contraction stage-adaptive weighting scheme to cope with this difficulty. In the
proposed system, the gel contraction was divided into three stages based on the spatial
configuration between the gel boundary and DP. The first stage covered the “no contraction”
state (i.e., the entire gel stays on the DP). The second stage represented “intermediate
contraction” (i.e., partial gel boundary movement and partial attachment to the DP). The
third stage was “obvious contraction” (i.e., the entire gel boundary moves away from the DP
toward the CRP). The proposed weighting scheme refers to the gel edge saliency within the
feasible contraction region to automatically discriminate the contraction stages, and assign
respective weighting values to the DCM.

Given two corresponding points of the detected circular references, the edge saliency ES on
the line between the two points was calculated via the argument of maximization:

(11)

where  represent the coordinates of corresponding contour points on

the DP and CRP, respectively; Q is the distance between ;t(θ) is the

unit vector from  In general, a larger value of ES(θ) indicates a more
obvious gel contraction in the radial direction indexed by θ. We subsequently calculated the
total of edge saliency within the feasible contraction region:

(12)

(13)

where N = 360 / Δθ is the number of contour points on the circular references; U is the
shifted unit step function and η is its shift value. Having the total saliency value, the gel
contraction stage of the given image was estimated based on the following criterion:

(14)

where T1 and T2 are the thresholds differentiating the three contraction stages.
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In estimating the contraction stage, the shift value η was given by 40, and T1 and T2 were
empirically assigned as 20% and 90%, respectively. For stages I and III, the values of the
weighting factor α were set to 1.0 and 0.1, respectively. Regarding stage II, we view the
intermediate contraction as a fuzzy stage between stages I and III (i.e., partial gel attachment
and partial obvious contraction). To properly segment the gel image in stage II, we
partitioned the DCM contour into several connected segments based on the values of
U(ES(θ) – η, as shown in figure 7. For each negative segment, its deformation degree was
limited by setting the weighting factor α to 1.0. For positive segments, the weight was
assigned as 0.1 to allow a more flexible deformation to capture obvious gel contraction.

3.4. Quantitative measurements of collagen gel contraction
Two measurements of gel contraction, the area and diameter, are of interest in tissue
engineering applications because they are frequently used to infer the tissue material
properties. In general, the rate of area contraction reflects chemical and mechanical intra-
and inter-reaction between the entire seeded cell and microenvironment [19]. The area is
defined as the number of pixels enclosed by the gel contour and excluded from the CCRP. On
the other hand, the diameter change of the collagen gel can also be used to indicate the
degree of collagen contraction [20]. Different from the area, it allows further evaluation of
the local contraction at specific cross-sections for testing tissue mechanical forces [20].
Since the shape of the gel is not perfectly circular due to variations of material tension, its
diameter cannot simply be represented by a single radius value. To address this issue,
existing studies of gel contraction analysis used methods that required users to manually
select a number of different cross-sections and then calculate the mean diameter from these
selections. A cross-section can be determined along the radial direction of a collagen gel.
Since each cross-section specifies the diameter of a local gel region, the resulting mean
diameter is representative of the diameter of the entire gel. In general, if the gel cross-
sections are sampled more densely, the manual selection bias of cross-section could be
reduced, and the average diameter will be more representative. However, in a practical
applied measuring process, users are often limited to selecting a small sample of cross-
sections because of time and resource constraints. For example, Linge et al. (2005) [21]
measured the diameter by averaging five random diameters of a gel. In addition to efficiency
concerns, manual selection of cross-sections is likely to suffer from intra- and inter-operator
variability, making the measurement experiments unrepeatable. In contrast, the proposed
system can uniformly and densely sample points on the segmented gel boundary (the
sampling density is determined by Δθ), such that more accurate and objective measurements
can be achieved in a fully-automated process. The diameter in the proposed system was

defined as  which is the average length of the
section lines between segmented gel contour and CCRP. The two measurements can be
efficiently obtained based on the gel segmentation results.

4. Experimental results
The experiments included an evaluation of accuracy of collagen gel segmentation, statistical
analysis of gel contraction measurements, and a comparison study. In this study, we
collected and cultured 10 subsynovial connective tissues from 5 rabbits (retired breeder
female New Zealand white rabbits) and made them into 3 cell-seeded collagen gels. In total,
1800 gel contraction images were recorded; 360 out of them were excluded because of the
artifacts of gel break occurring at days 10th, 12th and 14th, and the other 1440 images served
as the validation image set for measuring the contraction parameters of collagen gels. Since
manual segmentation of the whole data set would have been tedious and impractical, we
randomly selected 120 images for the three experiments, and the numbers of gel images for
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the contraction stages I, II and III were equal. For each image in the experiments, we applied
the proposed method to automatically segment the collagen gel and measure the contraction
parameters. The proposed method consisted of the three-step color conversion strategy
which effectively reduced the effects of color and contrast variations among different
images. Thus, the system parameters in the DCM were able to be empirically determined via
observing the contrast values of gel regions on color-converted images. The same
parameters were utilized throughout the entire experiment.

4.1. Accuracy evaluation of gel segmentation
A qualitative evaluation was performed by visually inspecting the quality of fit of the
automatic results to the true boundaries of collagen gels. Figure 8 includes the stage I image
(figure 8(a)), the stage II images (figures 8(b)-8(f)), and the stage III images (figures
8(g)-8(i)). The segmentation results of the collagen gels were superimposed onto the original
images, accompanied with arrows accentuating difficulties cause by the fuzzy boundaries.

Beyond the qualitative evaluation, the segmentation results by the proposed automatic
method were compared against the average of manual results of three study participants,
which constituted the ground truth to validate accuracy of the proposed method. In practice,
the three participants were allowed to manually identify the gel boundaries with joint
reference to both the original and color-converted images (obtained using the proposed color
conversion strategy in section 3.2). Since the two images provide the original gel color
information as well as the contrast-enhanced gel region, the three participants can determine
the gel boundaries confidently. The comparison for each image was then achieved based on
three metrics, including the mean error (ME), the root mean square error (RMSE), and the
dice similarity coefficient (DSC) [22]:

(15)

(16)

(17)

where ai is the i-th contour point of the automatic result; bj is the j-th contour point of the
ground truth that is the closest to ai; N is the number of contour points of the automatic
result; A and G are the sets of pixels classified as the collagen gels in the automatic result
and the ground truth, respectively. The ME and RMSE represent the contour distance
deviations between the automatic result and the ground truth. The DSC measures the spatial
dependency between two segmented gel regions, and its value ranges from zero, indicating
no overlap, to one, indicating complete overlap. The evaluation results were listed in table 1.
The average ME was 0.612±0.488 pixel, the average RMSE was 1.034±0.645 pixel, and the
average DSC was 98.113±1.124 %.

4.2. Statistical analysis on the measurement of collagen gel contraction
In addition to the validation of collagen gel segmentation, a statistical analysis for the results
of the two gel contraction parameters (area and diameter) were performed. The ground truth
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in this experiment was given by the average manual measurement results, which were
obtained by the original three participants. A Bland–Altman plot and linear regression
analysis were generated to quantify agreement between the average measured parameters
and the ground truth for the validation images, as shown in figure 9. The solid and dashed
lines in the Bland-Altman plot indicate the mean bias and the limits of agreement,
respectively. Regarding the regression analysis, the regression line is shown as a solid line,
accompanied with the 95% confidence interval and the 95% prediction interval (the dashed
orange curves). Note that the confidence interval is quite tight, practically overlapping the
regression line.

4.3. Comparison study
Image segmentation, which can provide spatial details of objects of interest, is a critical step
for quantitative measurement/analysis. Although there have been a number of studies
dedicated to development of image segmentation algorithms, they do not present solutions
for handling the aforementioned difficulties of collagen gel segmentation. Adapting these
methods to accommodate challenges presented by gel images would require significant
modification of the original segmentation algorithms. However, two popular, generic
methods which are potentially suitable for collagen gel image segmentation, including
Otsu’s thresholding (OT) [13] and Chan-Vese level set evolution (CVLSE) [23], were
selected for comparison with the proposed method in this experiment. To carry out an
objective comparison, the OT and CVLSE methods were performed within the feasible
range of gel contraction obtained in section 3.1, so that there were no falsely detected
background objects disturbing the comparison. The comparison was first achieved by
visually evaluating the segmentation results obtained by both the proposed method and the
other two methods. Four examples are demonstrated in figure 10, wherein the 1st column
shows four gel images in the validation experiments, and the 2nd through 4th columns
demonstrate the segmentation results using OT, CVLSE, and the proposed method,
respectively.

In addition to the visual comparison, a quantitative evaluation was conducted on the four
examples to achieve a more objective comparison. The quantitative evaluation was
performed using the measure of spatial dependency, i.e., the DSC in equation (17). The
evaluation results for the four examples obtained using the proposed method and the two
existing methods are specified on each subfigure. It can be clearly observed from this
quantitative evaluation that the accuracy of the proposed method is much better than either
the OT or CVLSE methods.

5. Discussions
5.1. Accuracy evaluation

The proposed method utilized the circular shape constraint to adequately place the model at
the positions of fuzzy boundaries (difficulty II), indicated by the arrows in figure 8.
Moreover, it was found that the variations of gel boundary appearances (difficulty I) among
different contraction stages can be successfully handled based on the proposed adaptive
weighting scheme. Regarding the quantitative evaluation in table 1, the average MEs and
RMSEs were less than 1.5 pixels (most are in sub-pixel segmentation error) and the average
DSCs were above 0.95, indicating a good overlap between the automatic results and the
ground truth [22].

On the other hand, observer variability which may potentially affect the reliability of the
ground truth, is a concern when evaluating the accuracy of an image segmentation method.
In order to assure this study of a reliable ground truth, an additional experiment, the details
of which are not included this paper, was carried out to evaluate the observer variability. We
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calculated the ME, RMSE and DSC for each manual segmentation with respect to the
average of the three manual results (i.e., the ground truth). Small inter-observer variability
with small standard deviations of ME, RMSE and DSC (0.320, 0.391, and 0.654) were
obtained in this experiment. Therefore, the reliability of the ground truth is confirmed in
some sense in this case of collagen gel segmentation.

5.2. Statistical Analysis
Beyond the assessment of gel segmentation results, we further performed a statistical
analysis for the collagen gel contraction measurements (including the area and diameter)
using the Bland-Altman plot and linear regression in figure 9. The Bland-Altman plots
revealed no obvious systematic biases of contraction parameter estimation and demonstrated
a satisfactory degree of agreement (95% limits of agreement: -7.6 to 6.3 and -5.6 to 4.5 for
the area and diameter measurements, respectively). The regression analysis of contraction
parameters demonstrated significant correlation between the automatic and manual
measurements (P-value < 0.001) and a coefficient value, R2 greater than 0.9. Moreover,
most estimates fell within the 95% prediction interval, indicating good reliability of the
proposed automatic method.

5.3. Comparison study
Figure 10 illustrates the comparison results of the three segmentation methods including the
OT, CVLSE, and the proposed method. The OT method is based on the optimal binarization
of the image intensity histogram, so it is sensitive to variations of color distribution within
the gel region, as indicated by the dashed arrows in figure 10. For such cases (the 3rd and 4th

examples of figure 10), the OT method obtained unsatisfactory segmentation results with
only partial gel regions. On the other hand, the CVLSE method identifies regions by
evolving the level set curve based on the color homogeneity, so it is weak in differentiating
regions with similar colors and is hard to cope with fuzzy boundaries (indicated by the solid
arrows). Moreover, neither the OT nor CVLSE method incorporates prior shape knowledge
of collagen gel during the segmentation process. They are thus likely to yield a large number
of fragmental regions, as shown in the 2nd and 3rd examples of figure 10.

Compared to the two conventional methods, the proposed method yielded much more
desirable segmentation results (see the 4th column of figure 10), which were very close to
the true gel boundaries and presented higher values of DSC. The proposed method utilizes
the information of regional intensity gradient and circular shape constraint in the
segmentation process, while its behavior is properly coordinated by the contraction stage-
adaptive weighting scheme. Therefore, it can overcome the aforementioned difficulties of
gel segmentation as well as achieve better segmentation results for the collagen gels.

5.4. System Performance
When evaluating an automatic segmentation method, its computational efficiency should be
a major concern because processing time is an indicator of the practicality of the method in
real applications. We assessed the computational time needed for segmenting a gel image
using the proposed automatic measurement method on a computer with an Intel® Core™
i3-2310M processor (2.10 GHz) and 4.0 GB of memory. The average time costs for the
color conversion, detection of maximal feasible contraction region, and DCM deformation
were 94 ms, 137.2 ms, and 156.2 ms, respectively. A total average time required to
completely automatically segment a gel image is 387.4 ms. Overall, the proposed system is
able to obtain the two contraction measurements in less than half a second through a fully-
automated process for a single gel image, while the resulting measurements are consistent
with those achieved manually by trained researchers. Compared to the manual segmentation,
which takes around one minutes to obtain precise gel segmentation and contraction
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measurements, the proposed system substantially reduces analysis time and demonstrates
satisfactory computational performance for tissue contraction monitoring and material
property estimation.

Due to the translucent characteristics of collagen gels and low-density cell aggregation
around the gel boundaries, collagen gels may not be well-stained in rare cases resulting in
low contrast levels between gel and dish regions, in which case the gel boundary is hard to
directly observe, even by human eyes. The proposed system is likely to yield a larger
segmentation error compared with the ground truth, which is a potential limitation. To make
the proposed system more practical and reliable in real applications, a user-friendly software
interface, not discussed in this paper, was designed for users to perform manual adjustments
to segmentation results generated by automatic segmentation.

6. Conclusions
This paper has presented a new image analysis system for automatic segmentation of the
collagen gels and quantitative measurement of the gel contraction. Major achievements of
this paper were summarized as follows. A three-step color conversion strategy was
developed to reduce the inconsistency of color distributions among gel images as well as to
enhance the gel boundary evidence. Moreover, the regional intensity contrast, circular shape
constraint, and prior knowledge of gel contraction stage changes were incorporated into the
DCM segmentation process, so that the proposed DCM can accommodate the variations in
intensities and shapes that develop during gel contraction. Both qualitative and quantitative
experiments showed that the proposed method was able to achieve accurate gel
segmentation and measurement results in a fully-automated process with 387 ms in average.

In the future, the system demonstrated in this work can be applied to improve repeatability
in experiments evaluating contractility and force in tissue-engineering matrices. Moreover,
the proposed DCM segmentation framework can be extended to automatically delineate the
geometric and morphologic information for other tissues of interest contained in a circular
reference (e.g. a culture dish). We believe that the proposed method has great potential to
aid researchers in more efficiently collecting and analyzing a large amount of reproducible
biological/biomaterial imaging data.
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Figure 1.
Illustrations of difficulties in automatic segmentation of collagen gels; (a)-(c) three examples
acquired by a digital camera at different contraction stages, each accompanied to the right by
a smaller image delineating the gel boundary. Rulers in the images are used scale the
measurement results. Difficulty I: variations of intensity and shape appearances; Difficulty
II: fuzzy boundaries; Difficulty III: color distribution inconsistency.
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Figure 2.
Configuration for imaging the collagen gel contraction.
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Figure 3.
Detection of maximal feasible region of gel contraction; (a) circular reference
parameterization; (b) detection results of the circular references.
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Figure 4.
Three-step strategy for color-intensity conversion; (a)-(d) and (e)-(h) display two examples
showing original image, gel color transfer, intensity adjustment, and contrast stretch results,
respectively.
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Figure 5.
Parameterization of the deformable circular model.
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Figure 6.

Boundary appearance of collagen gel; (a) converted image  and the horizontal intensity
profile of a collagen gel (yellow line); (b) Sobel gradient image of converted image for
better illustrating the confusing edge (dashed curve) and true gel boundary (solid curve), as
well as the disordered edge distribution.
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Figure 7.
Example of the stage-II gel image; (a) the DCM is partitioned into two parts to have a more
flexible behavior. Pink and yellow points are given weighting values of 1.0 and 0.1,
respectively; (b) final segmentation result of collagen gel.
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Figure 8.
Visual evaluation for the automatic segmentation results of collagen gel images.

Chen et al. Page 21

Meas Sci Technol. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Statistical analysis on the contraction measurements; (a)-(b) Bland–Altman analysis
comparing the proposed method to the ground truth for the gel area and diameter,
resepctively; (c)-(d) The linear regression between the estimated parameters and the ground
truth for the gel area and diameter, resepctively.
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Figure 10.
Comparison of the segmentation results for the collagen gel images; (1st column) original
images; (2nd through 4th columns) segmentation results using Otsu’s thresholding, Chan-
Vese level set evolution, and the proposed method, respectively.
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Table 1

Means and standard deviations of the accuracy measures of the DSC, ME and RMSE estimated from the 120
collagen gel images.

Image Stage ME (pixel) RMSE (pixel) DSC (%)

Stage I (40 images) 0.632±0.351 0.952±0.429 98.881±0.618

Stage II (40 images) 0.821±0.751 1.401±0.899 97.885±1.616

Stage III (40 images) 0.385±0.360 0.750±0.607 97.572±1.137

Mean ± Standard deviation 0.612±0.488 1.034±0.645 98.113±1.124
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