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Abstract
Vitamin D deficiency has been shown to be associated with multiple clinical outcomes, including
osteoporosis, multiple sclerosis and colorectal cancer. In studies of vitamin D effect on disease
outcome, vitamin D status is usually measured by a serum biomarker, namely 25-hydroxy vitamin
D [25(OH)D]. Since the circulating 25(OH)D concentration varies from season to season and not
all blood samples are collected at the same time, the disease-vitamin D relationship can be
obscured if the seasonal variation is not adjusted properly. In the literature, a two-step procedure is
usually adopted, with the vitamin D level adjusted for the seasonal variation being obtained in the
first step, and the effect of vitamin D being assessed based on the adjusted vitamin D level at the
second step. This two-step method can generate misleading results as the estimation variance
arising from the first step is not taken into account in the second step analysis. We consider three
alternative procedures that unify the two steps into a single model. We conduct an extensive
simulation study to evaluate the performance of these methods and demonstrate their applications
in a study of 25(OH)D effect on prostate cancer risk.
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1. Introduction
Low levels of vitamin D have been associated with multiple clinical outcomes, including
osteoporosis, multiple sclerosis, and assorted malignancies, such as colorectal cancer [12].
Among various vitamin D metabolites, 25-hydroxy vitamin D (25(OH)D) [10] is a major
circulating form and is commonly considered to be the best indicator of vitamin D status,
reflecting vitamin D intake and sunlight exposure, two major sources of vitamin D. A major
challenge in studying the relationship between 25(OH)D levels and disease is how to
quantify vitamin D levels appropriately in the human body because the circulating 25(OH)D
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level varies over the year; it tends to be higher in summer than in winter, due to the
difference in sun exposure and sun intensity. Because the vitamin D level for each subject is
usually measured only at one specific time point, it is important to adjust for the seasonal
fluctuation in the measurement of the vitamin D level; otherwise, it would be difficult to
assess the impact of vitamin D status on the disease risk. In fact, we will show that the
seasonal variation can diminish the power to detect a vitamin D effect if it is ignored, even
when the cases and the controls are well matched in their blood collection time.

In practice, a two-step method is commonly adopted for the adjustment of seasonal variation
in a case-control study of disease-vitamin D association. In the first step, the seasonal
pattern (i.e., the expected vitamin D level for the study population at observed time points)
is estimated based on control samples. Then the disease-vitamin D relationship is assessed
based on the residual vitamin D level, which is the difference between the original measure
and the expected one at the blood collection time. Because of the periodic nature of the
seasonal variation pattern, the ordinary linear model that treats the time of blood collection
as a linear predictor is not suitable for modeling it. Instead, locally weighted polynomial
regression, a semiparametric regression, has been used in the first step for the estimation of a
seasonal pattern [3]. However, the variance of the seasonal pattern estimated in the first
stage is not taken into account in the second stage and could result in inflated type I error in
detecting the disease-vitamin D association.

In this paper, we propose a one-stage approach to model the relationship between the disease
and vitamin D level with seasonal pattern being taken into account. To model the seasonal
pattern function, we consider a parametric method and two semi-parametric methods. After
making an appropriate transformation of the time of blood collection, it is possible to use
ordinary linear regression to model the seasonal pattern as a linear function of the
transformed blood collection time. Motivated by this observation, we consider a sine curve
method in the context of a linear regression model for the adjustment of the seasonal
variation in the study of vitamin D effect. The sine curve method models the seasonal
pattern as a sine function of the blood collection time with only three parameters: angular
frequency, amplitude, and phase. As suggested by [11], the sine curve can fit the seasonal
variation pattern in 25(OH)D quite well. We also consider two semiparametric methods to
model the variation pattern, namely the locally weighted polynomial regression and the
penalized regression splines. We evaluate the relative performance of these methods under
various scenarios and provide some guidance for future applications.

2. Method
2.1 Notation

Consider a case-control study with n1 case patients and n0 control subjects; the total number
of sampled individuals is n = n1 + n0. Without loss of generality, we assume individuals 1,
…, n1 are cases and individuals n1 + 1, …, n are controls. Suppose the ith individual's blood
is collected at time ti, with the measured vitamin D level being . Here  can be thought as
a surrogate measure for the underlying vitamin D exposure level xi, which is season
independent but not observable. We assume the following model

(1)

where τ(·) is the unknown seasonal pattern function, ui is a covariate vector accounting for
other factors influencing vitamin D level (race, geographic latitude, and so on) and γ is the
corresponding regression coefficient vector, and ei is a random error term. Throughout this
paper, we assume that {x1, …, xn1} are independent and identically distributed (i.i.d.) with

Zhang et al. Page 2

Stat Interface. Author manuscript; available in PMC 2013 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mean μ1 and variance σ2, that {xn1 + 1, …, xn} are i.i.d. with mean μ0 and variance σ2, that
e1, …, en are i.i.d. random variables with expectation 0 and finite variance, and that the
vectors (xi, ti, ui, ei), i = 1, …, n, are independent. Notice that we neither assume the
distributions of (ti, ui) are the same for cases and controls nor assume any parametric form of
the distribution of (xi, ti, ui, ei), which makes the methods considered later (SINE, LOESS,
and PRS) applicable to a broad range of situations in practice.

In this paper, we are interested in detecting the difference in underlying vitamin D levels μ =
μ1 − μ0 between cases and controls; the corresponding null hypothesis is H0 : μ = 0. In this
section, we do not consider disease-related risk factors other than vitamin D. Notice that the
disease-related risk factors could be different from vitamin D-related factors. Instead, we
will consider a more complicated model involving other disease risk factors in the
Discussion section.

2.2 Naïve method
A naïve method ignores the seasonal pattern. The mean difference is simply estimated by

, and the standard error of  is estimated by , where

 is the estimated common variance,  and 

are the sample mean and sample variance of x1, …, xn1, respectively, and  and  are the
sample mean and sample variance of xn1+1, …, xn, respectively. The two-sample t-test

statistic for detecting the mean difference is . We refer to this
method as NAÏVE hereafter. In the following we derive the bias of the estimator 
and the power function for NAÏVE.

First, we assume that (ti, ui, ei), i = 1, …, n, are i.i.d., and that x1, …, xn1 are i.i.d., and xn1+1,
…, xn are i.i.d. These assumptions together with model (1) imply that the expectation of

 is the same as that of x¯1 − x¯0, the sample mean difference of underlying vitamin D

levels. That is, NAÏVE does not produce bias in this situation. Let  denote the variance of
τ(ti) + γ′ui + ei. With the assumption of independence between xi and (ti, ui, ei), the variance

of  is equal to , which is larger than σ2(1/n1 + 1/n0), the
variance of x¯1 − x¯0. Therefore, the onesided tests (for the alternative hypothesis H1 : μ < 0)
based on underlying and measured vitamin D levels have asymptotic power functions

 and , respectively,
where zα is the upper α-quantile of the standard normal distribution, and the power

reduction depends on , α, μ/σ, n1 and n0. In particular, the power loss is increasing in

.

When (ti, ui, ei), i = 1, …, n, are not i.i.d., the expectation of  could be different from
that of x¯1 − x¯0, and the corresponding test could result in substantially inflated type I error,
as will be shown in our simulation study.

2.3 Proposed model
Under the assumptions given in Subsection 2.2, the random variables {ε1 = x1 − μ1 + e1, …,
εn1 = xn1 − μ1 + en1, εn1+1 = xn1+1 − μ0 + en1+1, …, εn = xn − μ0 + en} are i.i.d. with
expectation 0, we can rewrite  in the following form:
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(2)

The right hand side of the above model includes three terms: linear term μ0 + μdi + γ′ui,
nonparametric term τ(ti), and error term εi. In the subsequent two subsections, we consider
three methods with various modeling of the seasonal pattern function τ(ti).

2.4 Sine curve method
Let I denote the period of the vitamin D variation pattern, for example, I = 365 in days, 52 in
weeks, and 12 in months, respectively. We assume a sine curve τ(t) = β sin(ρt + θ), where ρ
= 2π/I, β, and θ are the angular frequency, amplitude, and phase of the sine curve. It is clear
that τ(t) is linear in sin(ρt) and cos(ρt):

(3)

where β1 = β cos(θ) and β2 = β sin(θ). This model has been applied by [2] to determine the
effects of the seasonal variation of 25(OH)D on a previously selected minimum
concentration for vitamin D sufficiency (50 nmol/L) and to evaluate whether fat mass
modifies these effects.

From (2) and (3), we have the following linear model:

(4)

We can estimate the unknown parameters (μ0, μ, γ, β1, β2) using the ordinary least squares
principle. The null hypothesis H0 : μ = 0 can be tested using the conventional Wald test.
Hereafter, we refer to this method as SINE.

2.5 Semiparametric methods
Instead of modeling the seasonal pattern function τ(·) in a parametric form, one can also fit
τ(·) by more flexible methods such as the locally weighted polynomial regression (LOESS)
and penalized regression splines (PRS). The generalized additive model [9] given in (2) can
then be fit by the backfitting algorithm described in [4].

LOESS was originally proposed by Cleveland [5] and further developed by Cleveland and
Devlin [6]. The basic idea of LOESS is to fit a low-degree polynomial at each point using a
subset of the data, using a weighted least squares method. The biggest advantage of LOESS
is that it does not require the specification of a functional form of the regression model. With
PRS, the problem is turned into a penalized generalized linear model fitting problem. Instead
of fitting a low-degree polynomial at each time point, as in LOESS, one constructs a
penalized regression spline [14] between any two adjacent knots, with the knots being
placed evenly throughout the covariate values. For details of application of these two
semiparametric methods to fitting generalized additive model, refer to [7] and [8],
respectively.

The function “gam” in the R package “gam” [13] implements both LOESS and PRS, and it
can be used to obtain the unknown parameter estimates and their standard errors. Again, the
null hypothesis can be tested using the Wald test. Because our interest is μ and the seasonal
pattern function is nuisance, we expect that the estimation/test is robust to the choice of the
parameter setting for LOESS and PRS. Actually, our preliminary simulation results show
that the argument options for “gam” do not produce substantial differences in the estimation/
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test results for μ, so we will adopt default arguments when applying “gam”. The major
default settings are: all tuning parameters including the degree of freedom of polynomial in
LOESS are determined by generalized cross validation, and the base for PRS is cubic
smooth spline.

3. Simulation Study
To compare the performance of the aforementioned estimation/test methods, we conducted a
simulation study. In the simulations, the uderlying vitamin D level x was assumed to follow
the standard normal in the general population, and the measured vitamin D level was
assumed to be

(5)

where u was a Bernoulli random variate with sucessful probability 0.5 and the random error
e was standard normally distributed. For simplification of the notation, the blood collection
times (radians) for both cases and controls were assumed to be distributed uniformaly in the
time interval [−π, π), though the interval can be of any form, such as [0, 52) for weekly
measurements. For the seasonal pattern function τ(·), we considered three symmetric
functions as displayed in Figure 1. The first is a sine function, the second is a quadratic
function, and the third is a trapezoid-shaped function. To relate the underlying vitamin D
level with the disease status, we assumed a logistic regression model:

(6)

where logit(t) = log{t/(1 − t)} and d is the disease status, taking a value of 1 if affected and 0
otherwise.

We considered the null hypothesis with β = 0 and alternative hypotheses under which the
two-sample t-test based on the underlying vitamin D levels x has its powers around 0.8. For
each combination of parameter β and seasonal pattern function τ(·), we generated a
population of size 10 million, from which we independently drew 100,000 samples, with
each sample consisting of n1 cases and n0 controls. We considered n1 = n0 = 50, 100, 200, or
500. To estimate/test μ in model (2), we applied NAÏVE, LOESS, PRS, and SINE to these
100,000 samples and calculated the bias of the resulting estimates (Bias), the standard error
of the estimates (SE), the mean estimated standard errors (SEE), the 95% coverage
probability (CP), and the type I error rate (Size) or power (Power) at a 0.05 nominal level.
For comparison purposes, we also applied the conventional two-sample t-test and
corresponding estimation method to the underlying vitamin D levels. We will refer to this
method as TRUE hereafter, which has power close to 0.8 under the alternative hypothesis.
The simulation results for sample sizes n1 = n0 = 50, 100, 200, and 500 are reported in
Tables 1-4, respectively.

The third column of Tables 1-4 contains the results under the null hypothesis (H0 : μ = 0).
All the methods have very minor biases in the mean difference estimates, which vary from
−0.003 to 0.002. Overall, SINE has virtually unbiased estimates of standard errors (SEE is
very close to SE) and good control of coverage probabilities and type I error rates. When the
sample size is small, LOESS and PRS have slightly conservative standard deviation
estimates, and this results in slightly anti-conservative coverage probabilities and inflated
type I error rates. For example, with sample sizes n1 = n0 = 50 and a trapezoidal seasonal
pattern function, the type I error rate of LOESS and PRS are 0.053 and 0.054. As the sample
size increases, the anti-conservativeness of LOESS and PRS become minor. For example,
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when the sample size is 500, the type I error rates of LOESS and PRS are controlled
between 0.049 and 0.051.

The forth column of Tables 1-4 contains the results under the alternative hypothesis. Among
all tests, NAÏVE is uniformly least powerful. When the seasonal pattern function is sine or
trapezoid, LOESS, PRS, and SINE have comparable powers. When the seasonal pattern
function is quadratic which is quite different from the sine function, SINE is less powerful
than LOESS and PRS.

An important finding is that SINE is very robust to the misspecification of the seasonal
pattern function. That is, when the underlying seasonal pattern function is quadratic or
trapezoid but it is misspecified as sine, SINE maintains good control of coverage
probabilities and type I error rates.

The above simulations assumed symmetric seasonal pattern functions. We also generated an
asymmetric seasonal pattern function, which is a triangle function taking the minimal value
−1 at −π and π and the maximal value 1 at −π/2. The function is displayed in Figure 1. The
other settings are the same as those for Tables 1-4. The simulation results are reported in
Table 5. Compared with LOESS and PRS, SINE has better control of type I error rates and
coverage probabilities but is less powerful, when the sample size is small.

The blood collection times of cases and controls should be matched in a well designed case-
control study of vitamin D-disease association. In practice, the matching might not be
perfect. We conducted additional simulations to study the impact of unbalanced sampling.
We generated the blood collection time of controls from the uniform distribution over the
interval (−3π/4, 3π/4) and cases from the uniform distribution over the interval (−π, −3π/4)
∪ (−π/4, π). The seasonal pattern function is quadratic as displayed in Figure 1, and other
settings are the same as those for Table 5. The simulation results are presented in Table 6.
NAÏVE has very inflated type I error rates and non-ignorable biases in estimates, this is
because the conditions for the validity of NAÏVE were not met. With unbalanced sampling,
even when the sample size is large, LOESS and PRS can have minor inflated type I error
rate and anticonservative coverage probabilities, while SINE has slightly deflated type I
error rates and anticonservative coverage probabilities.

4. Application to a Study of Prostate Cancer
Ahn et al. [1] investigated the association between vitamin D status, as determined by
25(OH)D concentrations (nmol/L), and the risk of prostate cancer in a nested case-control
study within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO).
This study included 749 case patients and 781 control subjects who were frequency-matchcd
by cohort entry, time since initial screening, and calendar year of cohort entry. The scatter
plot of the 25(OH)D concentrations is displayed in Figure 2. The mean vitamin D levels of
cases and controls are 58.98 (SE: 19.12) and 57.68 (SE: 18.89), respectively. We applied
NAÏVE, LOESS, PRS, and SINE to this data set, with further adjustment for study center.
Presented in Table 7 are the resulting estimated vitamin D level differences (i.e., μ defined
in (2)) between cases and controls and their estimated standard errors, and the p-values for
one-sided tests. NAÏVE does not detect statistically significant difference between cases and
controls at 0.05 level. The other three methods give similar significant results (p-values
ranging from 0.041 to 0.043), indicating that the increased 25(OH)D concentration might be
associated with reduced prostate cancer risk. The estimates of μ are also similar, with their
absolute magnitudes (ranging from 1.58 to 1.60) being larger than that by NAÏVE (1.30).
Figure 2 shows the predicted 25(OH)D concentrations for controls, from which we see that
predicted seasonal patterns by three methods are very close to each other.
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This example illustrates the importance of the adjustment of seasonal variation. Without the
proper account for the seasonal variation, the NAÏVE method fails to detect any difference
in 25(OH)D level between cases and controls. Given the relatively large sample size, the
well matched blood collection time, and the sine shaped seasonal variation pattern in
25(OH)D concentration, it is not surprising that the three considered tests with the
adjustment of seasonal variation give similar results. This is consistent with what we have
observed in the simulation study.

5. Discussion
The seasonal pattern for vitamin D has a substantial impact on power for testing its effect on
the disease of interest. Using contaminated data without removing seasonal pattern can lead
to substantial efficiency loss, and can result in serious false positive finding when the blood
collection time for cases and controls are mismatched. We study three alternative
approaches to model the vitamin D difference between cases and controls by taking into
account the seasonal pattern. The seasonal pattern can be estimated using either a parametric
sine form or a semiparametric form (LOESS and PRS). SINE has computational advantage
over the semiparametric counterparts and it has better small sample behavior when the
seasonal pattern resembles the sine curve. On the other hand, the semiparametric methods
LOESS and PRS are comparable with SINE when the sample size is moderate or large even
when seasonal pattern is sine, and they are more powerful when the seasonal patter departs
from sine considerably. The matching of blood collection time for cases and controls are
important. When the mismatching is serious, the parametric and semiparametric methods
can be either anconservative or conservative. Based on the simulation results, we suggest
SINE when the seasonal pattern function does not depart from a sine function too much;
otherwise we recommend LOESS and PRS.

We model the vitamin D measure as the outcome and the disease status as a predictor in
methods considered in this paper. Another commonly used two-step method is based on the
following logistic regression model, in which the disease status is the response variable and
the season adjusted vitamin D level x and some relevant covariate vector z are explanatory
variables:

(7)

Here α is an intercept and H is a function of x and z known up to a parameter vector η of
finite dimension. For example, H(x, z; η) takes the form η1x + η2z + η3xz with η = (η1, η2,
η3) when both main effects and interaction are considered. The first step is to remove the
seasonal pattern using methods such as LOESS, PRS, or SINE and get an estimate of x, the
season adjusted vitamin D level. The second step is to estimate/test η using the standard
logistic regression model, with x being replaced by its estimate from the first step and
treated as if it were observed. However, the variance estimated by this two-step method is
not appropriate as it does not account for the uncertainty in the estimate of x. A bootstrap
method can be used to estimate the variance appropriately, although it can be time-
consuming. It would be of great interest to derive analytic asymptotic results for the
inference of η under model (7).
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Figure 1. Seasonal pattern functions used in simulations
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Figure 2. Scatter plot of 25(OH)D concentrations for cases and controls and predicted seasonal
pattern functions for controls
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Table 7
Analysis results for an association study of 25(OH)D concentrations and prostate cancer

Method Est1 SE2 P-value3

NAÏVE −1.30 0.972 0.091

LOESS −1.58 0.920 0.043

PRS −1.60 0.919 0.041

SINE −1.60 0.921 0.041

1
The estimate of the mean difference of 25(OH)D concentrations (defined in (2)) between cases and controls;

2
The estimated standard error of the vitamin D difference;

3
The p-value of the one-sided test for the vitamin D difference.
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