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Introduction
In 30 years, the HIV-1/AIDS pandemic has evolved into an increasingly complex disease
composed of multiple epidemics, each influenced by a complex array of biological,
behavioural and cultural factors [1–4]. The concentrated subtype B epidemics in Western
world settings have been largely restricted to MSM and IDU populations [3]. The
generalized heterosexual (HET) epidemics in Africa and Asia have expanded and diversified
to include nine major HIV-1 subtypes (A–D, F–H, Jand K) and mosaic circulating
recombinant forms (e.g. CRF01_AE and CRF02_AG) [1,5,6]. Migration and globalization
has contributed to the spread of non-B subtypes contributing to 20–60% of new infections in
Europe, Asia and America [1,2,7].

Highly active antiretroviral therapy (HAART) remains the key to the management of
epidemics, reducing mortality, opportunistic diseases and HIV-1 transmission [8–17].
Global health initiatives to scale up antiretroviral therapy (ART) in Africa and Asia have led
to population-level reductions in HIV-1 transmission despite weak healthcare systems
[8,10,18,19]. The HIV Prevention Trials Network (HPTN) 052, CAPRISA 004, Preexposure
Prophylaxis Initiative (iPREX) and Botswana Preprophylaxis Trial (TDF2) randomized
clinical trials have shown the potential benefit of early ART initiation, microbicides and
prexposure prophylaxis (PrEP) in averting HIV-1 transmission [10,13–16,20,21]. This has
led to revisions in treatment guidelines recommending early initiation of ART to all HIV-
infected persons and PrEP for high-risk HIV-seronegative populations [15,16]. The failure
of the Female Preprophylaxis Trial (FEM-PrEP) underscores the importance of ART
adherence and retention [13,14,21,22]. The resurgence of MSM epidemics in the post-
HAARTera emphasizes the importance of linking ART with other prevention control
modalities [23,24].

The development, implementation and maintenance of effective prevention and treatment
interventions will require a thorough understanding of the driving forces of individual
epidemics [25,26]. Phylogenetics is a molecular epidemiological strategy that characterizes
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epidemics on the basis of the genetic interrelatedness of HIV-1 viral sequences, capturing
the underlying structure of transmission networks or ‘clusters’ within a given population
[27–32]. Molecular phylogenetic analysis can be combined with epidemiological,
demographical and behavioural data to describe the spatial, temporal and biological
dynamics of individual epidemics [7,27–34]. Phylogenetics provides an important
dimension in HIV-1 surveillance by delineating:

1. The introduction and dissemination of HIV-1 viral subtypes in different regional
settings;

2. The range of transmission patterns fuelling HET, MSM and IDU epidemics;

3. The interrelationships of biological, demographical and social determinants on viral
‘cluster’ networks;

4. The role of disease stage in transmission dynamics; and

5. Underlying trends in regional epidemics, important in the selection of control
interventions to limit HIV transmission [26,35,36].

Biological basis of phylogenetic ‘clustering’
High genetic diversity within and across HIV-1 viruses and subtypes can be ascribed to
rapid rates of viral replication and turnover with an error-prone reverse transcriptase having
high recombination potential [37–41]. Viral evolution within and across HIV-1 subtypes
occurs under host, immunological and antiretroviral drug selection pressures, contributing to
up to 40, 20 and 10% variations in HIV-1 envelope (env), gag and pol domains, respectively
[37,41,42]. Open access websites, such as the Los Alamos (http://www.hiv-lanl.gov),
Stanford (http://hivdb.stan-ford.edu) and REGAdb (http://jose.med.kuleuven.be/subtypetool/
html/) databases, have sequence datasets and computer tools for classification of viral
subtypes, immune epitopes and antiretroviral drug resistance pathways [5,7,43].

Antithetically, despite the amazing potential of HIV to diversify, surprisingly few viral
variants and subtypes have contributed to individual infections and regional epidemics
[27,44,45]. Severe bottlenecks in HIV transmission lead to a single transmitted/founder (T/
F) virus seeding and dominating the virus population (quasispe-cies) [46–54]. Single-
genome amplification and next-generation sequencing technologies have shown that 80% of
MSM and HET infections may be attributed to a single virus [48,49,55–59]. An
understanding of the genotypic and phenotypic signatures of these ancestral strains will be
important in understanding critical events contributing to their preferential establishment of
infection and evolution in the earliest stages of infection [50,52,56,60–62].

The critical determinant of HIV-1 transmission is viral burden in blood, genital fluid and
semen [46,63,64]. Acute/primary stage infection has been postulated to disproportionately
contribute to onward transmission related in part to high viraemia (>4.5 log copies/ml) and
homogeneity of T/F variants [11,46,57,65,66]. ART limits transmission of chronic stage
infection by reducing viral load at an individual and population level [11]. Geospatial
bottlenecks add a further constraint, limiting the range of viral subtypes in different risk
populations and demographic groups [67–71].

Taken together, high genetic diversity coupled with stringent transmission bottlenecks
contribute a single ancestral species seeding infections. Phylogenetic ‘clustering’ elucidates
transmission dynamics of individual epidemics and the geospatial expansion of viral
subtypes in different regional settings.
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Geospatial expansion of HIV-1 subtypes
Molecular phylogeny approaches were first used to classify HIV-1 subtypes and circulating
recombinant forms (CRFs) [1,2,5,6,72]. In Western world settings, subtype B epidemics
have predominated; in Africa, non-B subtypes have expanded and diversified. Phylogenetic
analysis can follow the introduction and spread of specific subtypes and CRFs into local
MSM, IDU and HET epidemics [2,71,73–80].

The subtype diversity of the global pandemic is reflected in the distribution of non-B
subtypes in Quebec originating from francophone countries in West and Central Africa (Fig.
1) [1,2,6]. Subtype C infections account for half of infections worldwide, whereas subtypes
A (12%), CRF01_AE (5%), CRF02_AG (8%) and G (5%) collectively contribute to 30% of
the global pandemic [1,2,6]. The remainder of the non-B pandemic is composed of subtype
D (Uganda), subtype F (Angola, Romania and South America) and CRFs [1,6]. Subtypes B
MSM epidemics dominate in Europe and America, accounting for 9% of global infections.
The intermixing of viral subtypes leads to the expansion of novel recombinant mosaics in
different regions.

The fastest growing epidemics worldwide are the IDU epidemics in Eastern Europe where
subtypes A1 and CRF03_AB are most prevalent [81]. In heavily populated regions,
including India, China and Southeast Asia, epidemics have rapidly shifted from predominant
IDU to HET epidemics with selective expansion of subtype C, CRF07_BC, CRF08_BC and
CRF01_AE subtypes [82,83].

Non-B subtype epidemics comprise 20–60% of new infections in Europe, Asia and America
[71,73–78,84]. Crossover of non-B subtype epidemics into domestic MSM, IDU and/or
HETepidemics has been observed in the United Kingdom, France, Germany, Spain, Israel,
Greece, the Balkans and Asia [74,84–90]. Domestic spread of non-B subtype infections was
rarer in Holland, Switzerland and Quebec [91,92]. As illustrated in Fig. 2, secondary spread
of non-B subtypes into Quebec has been limited to one founderCRF_AB(n=33)MSM
clusterand one subtype D (n=9) HET cluster. This highlights the importance of providing
healthcare to migrant populations.

Transmission dynamics of MSM epidemics
Phylogenetic analysis has provided a framework for an in-depth evaluation of transmission
dynamics of MSM epidemics. Drug-resistance programmes, introduced in the 2000s, have
provided large pol (RT/protease) sequence datasets for analysis of transmission trends of
regional epidemics [27–29,31,90,93–96]. Molecular phylogeny approaches using neighbour-
joining, maximum-likelihood and/or Bayesian (BEAST) methodologies have retraced
transmission ‘clusters’ or networks that could not be otherwise identified [28,32].

Systematic surveillance has enhanced our understanding of MSM transmission dynamics by
highlighting the role of primary/recent stage infection in onward spread of regional
epidemics (Table 1) [27,29,90,93,94,97–101]. The temporal spread of clustered
transmissions has been evaluated on the basis of chronological and stage of infection time
scales.

Comparative analysis of MSM transmission dynamics has been confounded by the use of
different selection criteria and methodology. Molecular phylogeny studies have been
performed on different groups: acute/primary HIV infection (PHI), PHI (<6 months), recent
infection (<12–18 months) and combined PHI and chronic cohorts. Statistical criteria have
varied combining high bootstrap values (>95–98%) and low genetic distance (<0.015–
0.045) for the designation of ‘clusters’ [28,29,93,101]. Correction for drug resistance is
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necessary when using chronic treatment experienced populations. Robust criteria delineate
‘transmission clusters’ with internal controls for repeat sampling and include known source-
index partnerships [28,29,93,101]. Clustering can be cross-validated by analysis of sequence
congruency in natural polymorphisms and reproduction of pol gene clustering in gag, env
and integrase domains [28,29,93,101].

The expansion of the MSM epidemic in Montreal evaluated clustering of primary infections
(PHI < 6 months) over the last decade. Three patterns of onward spread of MSM epidemics
were observed: unique transmissions, small clusters (2–4 PHI) and large clusters (5–60 PHI)
(Fig. 2a, b) [27,29]. Large clusters were the driving force sustaining the MSM epidemic,
increasing from 25% of primary infections in 2005 to 51% of infections by the end of 2011.
The high rates of PHI-related clustering may be related to suppressed viraemia at a
population level wherein 85% of diagnosed MSM are receiving HAART. Episodic
expansion of large clusters (7–60, median 14 PHI) has arisen through the stepwise formation
of new clusters unrelated to prior clusters, as well as secondary outbreaks of older clusters
(Fig. 3) [27,29]. Whereas small clusters expanded over 4.75-month intervals (1–11.5
interquartiles), large clusters expanded over 11-month intervals (3.5–25.5 interquar-tiles).

Phylodynamic features of other regional MSM epidemics were consistent with that observed
in Montreal (Table 1) [27,29,31,93,94,102–104]. Cluster membership (17– 70%) and size of
clusters showed regional variation based, in part, on the depth of population sampling and
incidence rates (Table 1) [27,31,93,101,102,105–110]. Transmission clustering was highest
in concentrated urban settings and lowest in diffuse nationwide epidemics.

Time-resolved phylogenies on date-stamped sequences in the United Kingdom, Netherlands,
France and Montreal cohorts indicated that 25–30% of clustering arose over 6-month time
spans with median cluster intervals occurring over 14–17 month time spans (Table 1)
[27,29,31,93,94,102]. Phylogenetic clustering in other studies was also related to acute/PHI/
recent infection status and high CD4 cell count [29,101,103,111].

Temporal dynamics of MSM transmissions
Phylogenetic inferences project a role of primary infection (<6 months) and recent stage
infection (<14–18 months) in sustaining MSM epidemics (Table 1, Fig. 4). This time span
goes well beyond empirical and mathematical models that emphasize a disproportionate
contribution role of the 3-week infectious period of ‘acute’ infection in onward transmission
[46,112,113]. Newly infected persons in primary and recent stage infection may harbour
homogeneous pools of ancestral founder viruses that may have a higher transmissible ‘dose’
of virus for an extended period of time. These early disease stages are distinct from
chronically infected source partners that harbour a vast array of quasispecies, including
variants having impaired replicative competence and/or fitness [54,114].

Accurate dating remains a serious caveat in time-resolved phylogenies and modelling of
transmission dynamics. Acute infection is rarely detected in real time, as newly infected
persons are often symptom-free and unaware of their status [115,116]. Those unaware of
their status frequently engage in higher risk behaviour associated with a 3.5-fold increased
risk for HIV transmission [117–120].

Control interventions to limit HIV transmission will be predicated on early diagnosis
[46,113,121–126]. Serological incidence and p24 assays remain imprecise measures of
recency of infection and are limited to those persons recruited into PHI cohorts [68,127–
131]. Viral sequence-based assays may assist in estimating recency of infection by
monitoring time-dependent evolution from a ‘clonal’ founder event [128,129,132,133]. The
frequency of ambiguous calls in bulk sequencing can serve as a surrogate marker that
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distinguishes recent infection (<0.44% ambiguity in first year) from chronic infection
(predictive value 98.7%) [129,133]. Next generation sequencing and high-resolution melting
assays may be applied in dating archived specimens [128,134,135].

There remain caveats in Bayesian analysis, time-resolved phylogenies and sequence
diversity assays. Issues pertinent to phylogenetic metrics include sequence quality; interval
between seroconversion and first genotyping, especially for chronic populations; and effects
of ART on quasispecies dynamics. ART suppresses viral replication and quasispecies
evolution; treatment failure leads to limited expansion of drug-resistant variants; treatment
cessation leads to rebound of previously transmitted ancestral variants [114,136].

Universal genotyping at presentation will become increasingly more important, particularly
with the introduction of test–treat paradigms. Genotyping is relatively inexpensive (～$125,
homebrew assays), the frequency of transmitted drug resistance is high (10–20%) and
subtype diversity is common.

Transmission patterns of IDU and heterosexual epidemics
Despite the overall decline in IDU epidemics associated with harm reduction and needle-
exchange programmes and antiviral therapy ART, IDU epidemics continue to emerge in
North America, Eastern Europe and Asia [85,110,137–141]. Transmission clustering has
been implicated in the spread of IDU epidemics, including the spread of drug-resistant
subepidemics (Table 1) [110,142–144]. IDU epidemics may bridge the crossover of HET
and MSM epidemics, as well as contribute to the introduction and spread of non-B subtype
infections and HIV/hepatitis C coinfections [110,137,145–148].

Phylogenetic clustering has been frequently observed in IDU epidemics
[103,110,146,149,150] (Fig. 2c). Single-genome analysis has shown that 40–60% of IDU
transmissions are associated with a single T/F variant, with remaining infections harbouring
three to 16 closely related monophyletic strains [58]. Higher multiplicity of infection among
IDU populations may be associated with an absence of the mucosal barriers, prison settings
and poor general or mental health [58,149,151].

There is a paucity of data on the phylodynamics of HET non-B subtype epidemics,
particularly in endemic Third World settings (Table 1) [57,152,153]. Single T/F viruses
were observed in 68% of subtype C primary infections from Botswana, similar to that
observed for MSM cohorts [153]. The overall membership size of transmission clusters (two
to four infections/cluster) among HET cohorts has been far lower than that reported for
MSM populations (Table 1) [42,154]. The role of early stage infection may also be less
pronounced in HET partnerships (Table 1) [155,156]. Domestic spread of subtype A and C
HET infections (cluster size >10) in the United Kingdom occurred over cluster intervals of
27 months, with only 2% of transmissions occurring over 6-month periods [90].

Individuals with extended high viraemia have been observed to disproportionately
contribute to expansion of the subtype C epidemic in Botswana [9,154]. A substantial
fraction (34%) of newly infected persons maintain extended high viraemia (>100 000
copies/ml) for median periods of 318 (282–459) days [57]. This suggests that treatment as
prevention (TasP) initiatives may be selectively targeted to those persons showing extended
viraemia [9,154].

Phylogenetics were important in randomized control prevention trials, showing that 10–30%
of HIV-1 transmissions among serodiscordant partnerships were unlinked and likely
involved third partners [157–160]. Analysis of virus transmitted in serodiscordent
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partnerships in the Rakai cohort showed that there was a preferential transmission of the
ancestral founder strain from the source partner's quasispecies [114].

Transmitted drug resistance
Genotypic drug resistance testing programmes have been instrumental in identifying
mutations conferring resistance to nucleoside and nonnucleoside reverse transcriptase
(NRTIs and NNRTIs), protease inhibitors and integrase inhibitors (INIs) [5]. Transmitted
drug resistance (TDR) remains a serious public health concern, representing 10–20% of new
infections among treatment-naive populations in different regional settings [161–164].

TDR is particularly noteworthy for NNRTIs wherein single point mutations (K103N,
G190A, Y181C and E138K) confer high level resistance with a little impact on viral
replicative fitness [5,162,163,165]. There is innate resistance to NNRTIs in subtype O and
HIV-2, as well as a signature V106M pathway for subtype C [5,166,167]. The use of
nevirapine to prevent vertical transmission may lead to NNRTI resistance in infants
[168,169]. Another concern is the facilitated development of K65R in subtype C, in
association with stavudine (d4T), didanosine (ddI) and/or nevirapine (NVP)-based regimens
[170,171]. TDR may emerge more rapidly in Third World settings due to drugs having poor
pharmacodynamic properties (d4T and ddI) [5].

High rates of TDR among drug-naive MSM and IDU populations have been related to
clustering [5,162,163,172,173]. TDR to NNRTIs (17%) in Montreal can be ascribed to six
MSM clusters harbouring K103N, V108I or G190A (n=9–60) (Figs. 1a and 2) [162].
Prospective monitoring of the expansion of drug-resistant subepidemics may help guide
local treatment policies. Other frequently transmitted species include the L90M protease
mutation and thymidine analogue mutations (e.g. M41L, D67N, T215 revertants and
K219Q) [109,162,163,174–177].

Phylogenetic insights on future possibilities in HIV prevention
The HPTN 052 and PreP randomized control trials have advanced the vision that TasP
paradigms may dramatically reduce HIV incidence and prevalence at a population level
[10,13–16,20,21]. The development of prevention interventions will require metrics that
characterize the drivers of individual epidemics [86,91]. Realistic models on how control
interventions will impact on local networks will require a comprehensive understanding of
transmission patterns of MSM, IDU and HETepidemics in different regional settings [27–
29,31,90,93–96].

The cornerstone to HIV prevention is timely diagnosis of HIV in high-risk populations
[15,16]. Acute infection is rarely detected in real-time, and half of newly diagnosed
individuals are ‘late presenters’ (>1 year postseroconversion) [178–180]. Phylogenetic
inferences project a median duration of 6 and 11–15 months of small and large clusters,
respectively (Table 1, Fig. 4) [27,29,90,93,94,97–100]. This period substantiated a plausible
benefit of early ART initiation to avert HIV clustering [46]. Seek–test–counsel paradigms
are needed to address issues of poor testing habits and late presentation (Fig. 4).

The efficacy of ART requires adherence and retention, as viral rebound will occur on
treatment cessation that may contribute to episodic bursts in transmission [136]. The
observation of secondary outbreaks in the Montreal and Swiss epidemics has been linked to
time frames when treatment interruption trials (e.g. SMART) were in place (Fig. 4) [136].
Individuals receiving PreP and early ART must be counselled on adherence and treatment
continuity.
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There have been few studies characterizing endemic non-B HETepidemics. In contrast to
that observed for MSM and IDU epidemics, studies on HET populations show infrequent
clustering and low cluster size. This would suggest that TasP would not have as dramatic an
impact on reducing transmission. The Botswana study suggests a potential benefit of TasP
for extended high viraemics [57].

It is important to recognize that phylogenetics define viral networks that are not necessarily
synonymous to sex networks and individual-level risk. There is mixing of high and low-risk
populations having high and low awareness of status [112,181]. Data from the Montreal
SPOT rapid testing site show that although seropositivity was related to casual partnerships,
cluster membership and size of cluster was related to poor testing habits. It has been
estimated that 7–20% of MSM infections may be acquired abroad, contributing in part to
unique transmissions [24,182].

Testing, treatment and other prevention interventions require major public health
commitments. The integration of phylogenetic, epidemiological clinical and demographic
data will be important in delineating the role of linkage to care, behaviour, socioeconomic
factors and migration on transmission dynamics [96]. Universal genotyping of all newly
infected persons could provide critical information needed to reconstruct underlying
structures of local epidemics necessary for the design and evaluation of control
interventions. Baseline resistance profiles could assess transmitted resistance and guide
HIV-1 management. Molecular phylogeny strategies could help elucidate the role of disease
stage and virus-specific determinants in transmission dynamics [128,129,132,133]. This
analysis is particularly important for the design of cost-effective treatment and prevention
combinations in resource-poor settings.

Whereas early stage infection may dominate in regional settings having universal access to
healthcare and ART coverage, significant contributions of chronic stage infections may be
related to socioeconomic factors, including lower awareness of status and poor linkage to
care and treatment [115,116,183–186]. Phylodemo-graphics can be of importance in
surveillance of the rise MSM epidemics among young adults (13–29 years) and racial/ethic
minorities [109,184,187]. Phylogenetic inferences of local epidemics may assist in the
design of targeted educational campaigns and prevention policies for distinct HIV-infected
populations.

Future research may broaden our knowledge of underlying mechanisms leading to the
preferential selection and expansion of transmitted ancestral strains. Phylodynamic
inferences will be important in the design, implementation and assessment of candidate
public health, therapeutic and behavioural interventions and the ultimate pursuit of HIV
vaccines.
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Fig. 1. Phylogenetic analysis of the Quebec non-B subtype epidemic (n=858) originating from
West and Central Africa
Clustering (27%) was limited to conjugal families (n=2–4infections/cluster). Domestic
spread of a subtype D (n=13) heterosexual cluster and a CRF_AB (n=30) MSM
transmission clusters have been circled.
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Fig. 2. Phylogenetic clustering of MSM and IDU epidemics in Montreal
(a) Phylogenetic tree of MSM infections (n=1359) with large clusters [6–30primary HIV
infection (PHI)/cluster, n=553] and small clusters (2–4 PHI, n=272) denoted in blue and
orange, respectively. (b) Section of MSM tree (arrowed) showing three unique
transmissions, three small clusters and one large cluster harbouring the K103N resistance
mutations. (c) Phylogenetic tree of IDU infections (n=244) with small (n=90) and large
(n=77) clusters denoted in blue and orange, respectively. One mixed cluster (n=17) is
arrowed.
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Fig. 3. Temporal expansion of 29 large MSM clusters (7+ primary infections) over the last
decade
Box and whiskers plots represent the episodic transmission intervals of each cluster, with
Tukey whiskers showing 1.5 time interquartile intervals and severe outliers (●). Four
transmission clusters showed biphasic expansion with initial (light grey) and secondary
outbreaks (dark grey). Clusters harbouring resistance to nonnucleoside reverse transcriptase
inhibitors have been dashed. The sizes of each transmission cluster are denoted in
parenthesis. Clusters 68, 50 and 99 harbouring transmitted resistance to NNRTIs are dashed.
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Fig. 4. Phylogenetic insights on future possibilities in HIV prevention
Temporal expansion of small (2–4 PHI) and large (5–60) clusters are denoted by solid and
dashed lines, respectively. Testing must be frequent to capture individuals in a timely
fashion for ‘Treatment for as Prevention’ (TasP) paradigms. Antiretroviral drug (ART)
pharmacokinetics and patient adherence to ART is necessary to prevent viral bound and
chronic stage transmissions.

Brenner et al. Page 22

AIDS. Author manuscript; available in PMC 2013 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Brenner et al. Page 23

Ta
bl

e 
1

C
om

pa
ri

so
n 

of
 t

he
 p

hy
lo

dy
na

m
ic

 p
at

te
rn

s 
of

 M
SM

, I
D

U
 a

nd
 n

on
-B

 h
et

er
os

ex
ua

l e
pi

de
m

ic
s

F
re

qu
en

cy
 o

f 
in

fe
ct

io
ns

 in
 c

lu
st

er
 g

ro
up

s 
(%

 c
as

es
)

C
lu

st
er

 in
te

rv
al

R
is

k 
gr

ou
p

L
oc

at
io

n
In

cl
us

io
n 

cr
it

er
ia

U
ni

qu
e

Sm
al

l 2
–1

0
L

ar
ge

 +
10

M
ed

ia
n 

(m
on

th
s)

<6
 m

on
th

s 
(%

 c
as

es
)

M
SM

M
on

tr
ea

l
A

cu
te

/P
H

Ia
30

42
28

15
27

M
SM

A
m

st
er

da
m

R
ec

en
t <

 1
8 

m
on

th
s

43
57

0
17

25

M
SM

U
K

/L
on

do
n

PH
I/

C
hr

on
ic

60
28

12
22

/1
4

16
/2

5

M
SM

Fr
an

ce
PH

I 
(C

oh
or

t)
83

17
0

15
30

M
SM

D
en

m
ar

k
PH

I/
C

hr
on

ic
51

18
31

M
SM

B
el

gi
um

R
ec

en
t <

1 
ye

ar
53

28
19

M
SM

Sw
itz

er
la

nd
A

cu
te

/P
H

I/
R

ec
en

t
64

0
36

M
ix

ed
N

or
th

 C
ar

ol
in

a
PH

I/
C

hr
on

ic
66

29
4

ID
U

/H
E

T
Sw

itz
er

la
nd

A
cu

te
/P

H
I/

R
ec

en
t

41
0

63

ID
U

/H
E

T
M

on
tr

ea
l

A
cu

te
/P

H
I/

R
ec

en
t

30
45

25

H
E

T
D

en
m

ar
k

PH
I/

C
hr

on
ic

85
9

6

N
on

-B
M

on
tr

ea
l

PH
I/

C
hr

on
ic

74
24

2

N
on

-B
U

K
PH

I/
C

hr
on

ic
75

20
5

N
on

-B
Sw

itz
er

la
nd

A
cu

te
/P

H
I/

R
ec

en
t

78
22

0

N
on

-B
B

el
gi

um
R

ec
en

t (
<

1 
ye

ar
)

87
12

0

D
at

a 
w

er
e 

ex
tr

ac
te

d 
fr

om
 s

tu
di

es
 p

er
fo

rm
ed

 in
 Q

ue
be

c 
[2

7,
29

],
 N

et
he

rl
an

ds
 [

94
,1

82
],

 U
ni

te
d 

K
in

gd
om

 [
31

,9
0,

93
],

 F
ra

nc
e 

[1
05

],
 D

en
m

ar
k 

[1
01

],
 B

el
gi

um
 [

11
1]

, S
w

itz
er

la
nd

 [
86

,1
03

] 
an

d 
N

or
th

 C
ar

ol
in

a
[1

06
] 

to
 e

la
bo

ra
te

 th
e 

re
la

tiv
e 

ro
le

 o
f 

no
nc

lu
st

er
ed

 (
un

iq
ue

),
 s

m
al

l c
lu

st
er

ed
 (

2–
10

) 
an

d 
la

rg
e 

cl
us

te
re

d 
(1

0+
) 

ne
tw

or
ks

 in
 d

if
fe

re
nt

 s
et

tin
gs

. T
he

 m
ed

ia
n 

cl
us

te
r 

in
te

rv
al

s 
an

d 
th

e 
pe

rc
en

ta
ge

 o
f 

lin
ke

d
in

fe
ct

io
ns

 o
cc

ur
ri

ng
 w

ith
in

 6
-m

on
th

 in
te

rv
al

s 
su

bs
ta

nt
ia

te
 th

e 
re

la
tiv

e 
ro

le
 o

f 
ea

rl
y 

in
fe

ct
io

n.
 H

E
T

, h
et

er
os

ex
ua

l; 
PH

I,
 p

ri
m

ar
y 

H
IV

 in
fe

ct
io

n.

a T
he

 M
on

tr
ea

l s
tu

dy
 in

cl
ud

ed
 d

ru
g-

na
iv

e 
an

d 
tr

ea
te

d 
ch

ro
ni

c 
po

pu
la

tio
ns

 to
 e

st
ab

lis
h 

cl
us

te
r 

si
ze

 b
ut

 e
xc

lu
de

d 
th

es
e 

sa
m

pl
es

 f
ro

m
 a

na
ly

si
s 

of
 c

lu
st

er
 in

te
rv

al
s.

AIDS. Author manuscript; available in PMC 2013 September 30.


