
Genetics in Population Health Science: Strategies and Opportunities
Daniel W. Belsky, PhD, Terrie E. Moffitt, PhD, and Avshalom Caspi, PhD

Translational research is needed to leverage discoveries from the frontiers of

genome science to improve public health. So far, public health researchers have

largely ignored genetic discoveries, and geneticists have ignored important

aspects of population health science. This mutual neglect should end. In this

article, we discuss 3 areas where public health researchers can help to advance

translation: (1) risk assessment: investigate genetic profiles as components in

composite risk assessments; (2) targeted intervention: conduct life-course longi-

tudinal studies to understand when genetic risks manifest in development and

whether intervention during sensitive periods can have lasting effects; and (3)

improved understanding of environmental causation: collaborate with geneticists

on gene–environment interaction research. We illustrate with examples from our

own research on obesity and smoking. (Am J Public Health. 2013;103:S73–S83.

doi:10.2105/AJPH.2012.301139)

With the completion of the Human Genome
Project, discoveries linking variations in the
DNA sequence with common health conditions
have come thick and fast. Translational science
that applies these discoveries to reveal novel
drug targets, refine treatments, or prospectively
identify individuals at risk has progressed at
a slower pace.1,2 This slow progress reflects
appropriately high standards for the clinical
application of genetic discoveries.3 It also re-
flects the fact that a large portion of the trans-
lational research community has remained on
the sidelines of genome science. In the early
days of genetic discovery research, it was
appropriate for social, behavioral, and health
scientists doing public health research to take a
“wait and see” approach to genetic discoveries.
That time is now past. Personalized medicine
is bringing the genome into the clinic, and
direct-to-consumer genetic testing is bringing it
into the community.4,5 Biologists are working
hard to elucidate molecular pathways that
link genetic discoveries with disease. Parallel
efforts are needed in the fields of life-course
epidemiology, health behavior and health ed-
ucation, and health services research to un-
derstand the developmental and behavioral
pathways from genetic discoveries to disease
and to identify opportunities for cost-effective
intervention.

Public health research is uniquely positioned
to contribute to the translation of genetic dis-
coveries because of its population approach
to health science. Population-representative

samples, prospective longitudinal designs, and
measurements of environmental context are
critical to understanding how genetic risks
manifest across time (e.g., development and
aging) and space (e.g., policy and environmen-
tal risk strata). In turn, this population health
science understanding of genetic risk can in-
form disease etiology and help to refine both
individual- and population-level intervention
strategies.

In this article, we address 3 areas where
public health researchers can help to advance
translation: (1) risk assessment, (2) targeted
intervention, and (3) improved understanding
of environmental causes of disease. We discuss
the progress of discovery science as it relates
to each of these applications, and we explain
how public health research can contribute to
translation. We also present example cases
from own work on obesity and smoking, and
we outline new research directions.

RISK ASSESSMENT

The most immediate translational applica-
tion of genome science to improve public
health is likely to come in population screening
for rare, genetically determined diseases that
can be prevented or mitigated with timely
intervention.6 A promising example case is
Lynch syndrome, in which a mutation in
a single gene confers a greater than 80% risk
of colon cancer, and for which treatments
are available that can drastically reduce

morbidity.7 Health services research is needed
to determine how genetic screening for these
types of diseases can be best deployed to meet
ethical and cost-effectiveness criteria. For
common diseases, however, this type of
screening is less feasible.8

Etiological theory and empirical evidence
indicate that large numbers of environmental
and genetic factors contribute to common
diseases. Given such complexity, diagnosis by
genetic testing is an unrealistic prospect, even
under the condition that all disease causing
genetic variation is known.9,10 Nevertheless,
genetics can provide probabilistic information
about risk. Current genetic discoveries may
already furnish enough information to make
incremental improvements in clinical risk as-
sessments of adults. For example, in the cases of
heart disease and type 2 diabetes, panels of
genetic risk markers may improve risk classifi-
cation over and above existing risk indexes,
although not all studies show this.11---16 More
uncertain is whether these incremental im-
provements in risk assessment can change
medical decision-making in ways that improve
patient outcomes.17

Thus, a fair criticism of translational research
investigating genetics for risk assessment is that
known genetic risks for common health con-
ditions offer too little information to be in-
teresting to the clinician. An equally fair re-
joinder is that known genetic risks furnish
about as much information as many other risk
factors currently considered in the clinic (e.g.,
C-reactive protein in heart disease).11,18 Faced
with these options, the translational genetics
researcher must make a choice: to be on the
side of the angels, promoting a cost-effective
medical practice that considers only as much
information as needed for sound decision-
making; or to lean on a tradition of a cost
insensitive but intellectually curious medical
practice interested in any and all information
that can bring prognosis incrementally closer to
truth. Quite responsibly, leaders in genetics
have argued forcefully for the first option.17 But
the choice is a false one. Risk assessment
comprises a broad array of applications. Too
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little translational research has been conducted
to dismiss the value of genetics for any or all
of them. In the following section, we outline
2 possibilities for the application of genetics
in risk assessment that have yet to be vetted
through translational research.

1. Genetics may provide a window into clinical
heterogeneity: genetic information may be
useful in understanding differences in the
timing of onset, rate of progression, persis-
tence, comorbidity, and response to treat-
ment. The last of these has received the most
attention, with a recent example of success
coming from the Genome-Wide Association
Study (GWAS) of the treatment response to
carbamazepine, a drug used in the manage-
ment of epilepsy, trigeminal neuralgia, and
bipolar disorder. GWAS uncovered a novel
marker of risk for carbamazepine-induced
hypersensitivity reactions among individuals
of Northern European ancestry (the
HLA-A*3101 allele).19 Consequences of
these hypersensitivity reactions range from
a painful rash to death. Personalization of
treatment via genetic testing could reduce
adverse events and possibly save lives.20

Further research is needed in this area, and
progress depends on the construction of
large-scale databases that link genomic data
with detailed longitudinal data on the course
and treatment of illness. Such efforts are
ongoing,21,22 and aggressive analysis of
these databases should be a priority for
decision science and cost-effectiveness re-
search into where and how integration of
genetic information can improve the quality
of health care.

2. Genetics can contribute to composite risk
assessments that identify high- and low-risk
segments of the population. In the near term,
applications of genetics in individual-level
risk assessment may be limited. At the
population level, genetics can help to iden-
tify groups susceptible to developing a par-
ticular health problem. Genetics are well
suited to providing this kind of background
information because the DNA sequence is
fixed at conception and can be reliably and
noninvasively assayed at any point in the
life course. Background genetic risk infor-
mation can, in turn, inform investigations
of other risk factors or of prevention

approaches. A critical first question to ask
in this application is whether genetic dis-
coveries actually provide new information.

Example Cases From Our Research on

Obesity and Smoking

In our own work on obesity and smoking, we
sought to address the question of whether
genetic discoveries could provide new infor-
mation about risk by looking at genetic risk
profiles in comparison with family history risk
profiles. Family histories are measures of
inherited risks that are considered to have
clinical value.23,24 Like the DNA sequence,
family histories can be easily and noninvasively
assessed before risk exposures accrue or
symptoms manifest. These parallels make
family history a useful benchmark for evaluat-
ing the potential utility of genetic information.
Therefore, we asked the following questions.
(1) How do the magnitudes of risks predicted
using genetic information compare with the
magnitudes of risks predicted using family
history? (2) Do genetics provide new informa-
tion about risk beyond what can be gleaned
from a family history?
Measuring genetic risk: from genetic

discoveries to genetic risk scores. To answer
these questions, we began by developing
polygenic risk profiles for obesity and smoking.
Obesity and smoking are complex conditions;
they are influenced by large numbers of genetic
variants. Rather than being present or absent,
genetic risks for obesity and for smoking are
distributed along a continuum. Some people
carry more risk variants in their genomes and
others fewer. One way to summarize this
continuum of genetic risk is to build a multi-
locus profile of genetic risk, a “genetic risk
score” (GRS).25,26 GRSs summarize risk infor-
mation from variants across the genome. The
hypothesis in a GRS analysis is that individuals
with higher GRSs will be more likely to develop
disease. Whole-genome methods of deriving
GRSs are under development.27 In our own
work, we used a more conservative approach;
we built our GRSs from variants with replicated
evidence of association in GWAS.28 This ap-
proach has been used extensively in GRS
research on heart disease and type 2 diabe-
tes.11,12,16,29 These more conservative GRSs
may measure only the tip of the genetic
iceberg.30 Therefore, we view the predictive

power of our scores as representing a lower
bound for what may be possible with genomic
information.
Genetic risk scores versus family history

scores. We then turned to the Dunedin
Multidisciplinary Health and Development
Study (hereafter the “Dunedin Study”),
a 4-decade longitudinal study of a represen-
tative 1972---1973 birth cohort (n = 1037)
that included a DNA databank and detailed
information about cohort members’ family
histories. We used the DNA bank to create
GRSs for obesity and smoking, and then
constructed family history scores against
which to compare them.

Our results revealed that, surprisingly, the
GRSs were not strongly related to the corre-
sponding family histories (see the box on the
next page). In addition, effect sizes for genetic-
and family history---based risk assessments were
similar, although family history tended to pro-
vide somewhat more information (Figure 1).
The GRSs provided information about risk that
was independent of and additive to information
that could be obtained from a family his-
tory.28,36 This same pattern of findings—that
GWAS-discovered genetic risks are about as
informative as family history and contain in-
formation not available in a family history—has
also been reported for heart disease and type 2
diabetes.11,12 Thus, GWAS-discovered genetic
risks appear to capture substantive and novel
risk information.

Questions for Future Research

Discovery research has identified genetic
risk factors. It is already clear that these risk
factors are not powerful enough on their own
to provide clinically actionable information.
The next steps are to determine if genetics can
be combined with other risk information to
improve risk assessment. Research is needed to
answer 2 questions:

1. Do genetic risks measured by whole-genome
GRSs overlap with family history? Whole-
genome scores designed to capture additive
“infinitesimal” genetic influences show some
promise as a risk assessment technology.37

Establishing whether such genome-wide
scores provide different information from
family history will be important to gauging
their clinical value. A rigorous way to
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address this question is through the use of
registry data from Northern European coun-
tries. Many individuals in these registries have
been genotyped for GWAS. Therefore, it is
possible to calculate whole-genome scores.
Similarly, linkages with data from national
health systems make it possible to generate
family histories. If these 2 sources of risk
information were correlated, doing so could
provide information about the degree to
which whole-genome and family history risk
scores provide independent or overlapping
information about risk.

2. Should we conduct genetic risk assessments
of individuals who do not have a family
history of disease? Currently, governments
and health care organizations are using
family history information to determine
whether genetic testing for certain diseases
is warranted. Our results suggest that genetic
information is equally informative regard-
less of family history. Therefore, research is
needed to determine under what conditions
and for which diseases a positive family
history is an appropriate criterion for genetic
testing. Further research can also help to
clarify how genetic screening compares with
family history to inform its use by individ-
uals who cannot access their family’s history
of disease.

Ultimately, to evaluate the application of a
GRS in a clinical risk assessment, the risk
information captured by genetics must be
operationalized at the individual level.
Population-based measures of relative risk
can be misleading as to clinical signifi-
cance.38---40 Many approaches to measuring
the individual-level predictiveness of a risk
factor have been proposed in the biostatis-
tics literature,41,42 several of which are
well-suited to evaluating a GRS.43 As clinical
databases begin to incorporate genetic in-
formation, these methods can be applied to
determine how genetics compares with other
sources of risk information and whether it
may be cost effective to include genetics in
composite risk assessments applied in clinical
settings.

TARGETED INTERVENTION

Genetic discoveries could help to target
interventions by answering 3 questions. (1)
With whom should we intervene? Genetic
discoveries could identify individuals who
will develop disease or respond to treatment.
(2) When should we intervene? Genetic
discoveries could identify sensitive or
critical periods in pathogenesis when inter-
vention could be most effective. (3) How

should we intervene? Genetic discoveries
can inform the selection of intervention
targets.

The capacity of genetic discoveries to help
to answer the “who” question remains un-
certain (see the Risk Assessment section).
However, there is clear opportunity for ge-
netics to help answer questions of “when”
and “how.” Theory-free discovery studies (e.
g., GWAS and newer next generation se-
quencing approaches) survey the full spec-
trum of variation in the genome to identify
variants that stand out as characteristic of
patients with disease. This approach can
leapfrog current biology to make discoveries
that provide insight into new mechanisms
of disease pathogenesis and refine under-
standing of known mechanisms.44 A
prominent example is the discovery of
variants in the gene FTO that predispose to
obesity.45

Bottom-Up and Top-Down Approaches

to Translational Research

One way to move from discovering a variant
to understanding when and how it manifests to
cause disease is to work from the bottom up,
by tracing the path from variation in the DNA
sequence to differences in RNA transcription,
subsequent protein production, and onwards

Genetic Risk Scores and Family History Scores for Obesity and Smoking Capture Different Information:
3 explanations

The genetic risks scores (GRSs) and family history scores for obesity and smoking explained only small fractions of the population variance in the traits studied (1%–4%). Family studies suggest

that 50% or more of population variation in body mass index and smoking may be attributed to genetic factors.31,32 Therefore, the lack of overlap in the few percentages of variance explained by

each of the genetic risk and family history scores is not implausible. Nevertheless, it was somewhat unexpected that genetic discoveries would be only weakly related to family histories (the

Pearson correlations were r = 0.12 for the obesity GRS and family history score and r < 0.01 for the smoking GRS and family history score). There are 3 reasons that GRSs and family history

scores might show so little overlap, and these reasons relate to differences in the types of information captured by the scores.

1. GWAS-derived GRSs capture common genetic risks, whereas family history scores capture rare genetic risks or environmental risks shared by family members. GWAS measures only common

genetic variation (most GWASs examine only variants with a frequency of 5% or more in the general population). However, most genetic variation is “rare” (occurring in < 1% of individuals).33

Family histories include all genetic variation in addition to environments that may be shared by family members.

2. GRSs capture the additive effects of common variants, whereas family history scores capture risks arising from interactions among genetic variants (epistasis) or interactions between genetic

variants and environments shared by family members. Because family members share large portions of their genomes along with many environmental exposures, family histories can capture

a wide array of complex interactions among and between genes and environments.

3. GRSs capture only those common variants with the largest effects, whereas family history scores capture the influence of very large numbers of variants with very small individual effects. The

“infinitesimal model”34 of trait heritability posits that very large numbers of common genetic variants, each with very small effects, contribute to common diseases.35 Under this infinitesimal

model, many causal common variants will escape detection in GWAS unless discovery samples grow into the millions and beyond. To the extent that family history scores reflect the combined

influence of many thousands of common variants with infinitesimal effect sizes, they may not overlap with GRSs composed of a handful of common variants with effect sizes large enough

to be detected in GWAS.

Note. GRS = genetic risk score; GWAS = Genome-Wide Associated Study.
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up through disease pathogenesis to identify
a process or a molecule that can be targeted for
intervention.46 The bottom-up model has re-
ceived most of the attention in efforts to de-
velop genomic medicine. In an early example of
success through this approach, a research team
at Stanford applied multiple “omics” analyses
to repeated blood draws from a single individ-
ual, and among other discoveries, were able
to detect the onset of diabetes in an individual
who standard medical approaches classified
as healthy.47 Less attention has been paid to
complementary research that works from the
top down, by relating genetic discoveries to
individual differences in behavior and health
states and then working backward to devise
interventions that can mitigate genetic risk for
disease.48 In this article, we focus on the top-
down approach because it is where we think
the social, behavioral, and health scientists
currently sitting on the sidelines of translational
genome science research can make the largest
contribution.

Top-Down Research Can Support

Translation of Genetic Discoveries

Currently, the dominant approaches to ge-
netic discovery utilize theory-free data mining
research designs (e.g., GWAS).49---51 These dis-
covery approaches have been extraordinarily
productive,52 but are highly data intensive. As
a result, most discovery samples consist of
adults drawn from a mix of cohort and case-
control studies, and include only a single
cross-sectional measurement of a health out-
come. The goal of these studies is to identify
unambiguous “signals” that a genetic variant is
associated with a health outcome. Further
research is then required to understand what
these signals mean. Top-down research is
needed to validate genetic risk effects in
population-representative cohorts and locate
when in the life course genetic risks manifest.
Going one step further, top-down research can
build on existing knowledge of etiology to test
theory-driven hypotheses about how genetic
risks give rise to disease.53

Example Cases From Our Research on

Obesity and Smoking

Life-course epidemiology has shown that the
roots of many common chronic health condi-
tions lie in the earliest stages of life.54,55 And
there is growing evidence that even the
best-replicated genetic associations with dis-
ease are developmentally dynamic, meaning
they change as individuals age.56---58 Yet life-
course epidemiology has, for the most part,
ignored genetics and genetics has ignored the
life course. A life-course approach can help
to map the pathway from discovery to trans-
lation by identifying when in development
genetic risks manifest. The goal of this ap-
proach is to identify windows in development
when it may be possible to intervene to
mitigate genetic risks by disrupting the pro-
gression from early developmental phenotypes
to mature disease.

For obesity, rapid growth during gestation,
infancy, and early childhood are well-
documented developmental risk factors.59,60

We asked (1) whether genetic risks discov-
ered in studies of adults were also related to
these developmental phenotypes, and (2)
whether these early developmental pheno-
types served as critical mediators of genetic
risk. This second question sought to address
whether intervention to disrupt or mitigate
early manifestations of genetic risk might
serve to prevent disease later in life. In the
Dunedin cohort, genetic risks for obesity
predicted rapid growth in early life, beginning
after birth (genetic risk did not predict birth
weight, but did predict weight gain in the first
3 years of life and earlier adiposity rebound).
In turn, these developmental phenotypes of
rapid early growth accounted for genetic risk
for adult obesity.28

For smoking, initiation early in life and
rapid progression from initiation to heavy use
during adolescence are well-documented de-
velopmental risk factors.61,62 We therefore
used a parallel approach to our obesity re-
search to investigate genetic influences on the
development of smoking problems across
the life course. In the Dunedin cohort, genetic
risks accelerated individuals’ progress from
smoking initiation to heavy smoking (genetic
risks did not predict the initiation of smoking,
but did predict the likelihood of converting
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FIGURE 1—Risks for obesity and smoking associated with genetic and family history-based

risk scores: Dunedin Multidisciplinary Health and Development Study, 1972–2013.
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to daily smoking and progressing to smoking
20 or more cigarettes per day during adoles-
cence). In turn, these developmental pheno-
types of rapid progression from initiation to
heavy use accounted for genetic risk for adult
smoking problems, including persistent heavy
smoking, nicotine dependence, and cessation
failure.36

Collectively, these findings suggest that
intervention to regulate growth in early life
and to prevent teenagers from progressing
to regular, heavy smoking may mitigate
genetic risks and ultimately prevent mature
disease.

Questions for Future Research

The approach we took in our research on
obesity and smoking could be replicated for
many other health problems (e.g., cardiometa-
bolic diseases), which are also known to have
their origins in early life. In addition to locating
the influences of genetic risk in early develop-
ment, it is also important to follow-up genetic
influences later in the life course. Two priority
research questions are:

1. Do interventions that target early develop-
mental manifestations of genetic risk have
enduring effects across the life course? To
answer this question, genetics must be in-
tegrated into follow-up studies of early in-
tervention trials. Adult follow-up of early
educational interventions, such as the Abe-
cedarian63,64 and Perry-Preschool65,66 pro-
jects, illustrate the value of this approach. To
return to genetics and health, our research
suggests that too rapid growth in early
childhood is critical in linking genetic risk
with adult obesity. Therefore, we would
hypothesize that genetic risks for obesity will
have weaker effects in children who re-
ceived interventions to promote healthy
eating and exercise early in life. In parallel,
our research suggests that rapid acceleration
of cigarette consumption during the teenage
years is critical in linking genetic risk with
adult smoking problems. Therefore, we
would hypothesize that genetic risks for
smoking should have weaker effects in in-
dividuals who, as teens, were exposed to
environments that limited their cigarette
consumption (e.g., strict monitoring or pro-
hibitively high tobacco taxes).

2. Can mitigating genetic risks reduce morbid-
ity and early mortality? A first step in
answering this question is to ask whether
genetic risks relate to clinical endpoints. For
example, recent research points to the exis-
tence of a “benign” subtype of obesity that
is uncoupled from risk for heart disease and
type 2 diabetes.67,68 Important next steps
are to test whether and how genetic risks are
related to early mortality. Ideal settings for
investigations of genetic associations with
mortality include longitudinal cohort studies
such as the Atherosclerosis Risk in Com-
munities Study and the Health and Retire-
ment Study. Regarding how genetic risks
contribute to early mortality, several ap-
proaches can be taken. One approach is to
analyze cause of death data to identify which
specific causes account for earlier mortality
in individuals at higher genetic risk. Another
approach is to examine how genetic risks
relate to health behavior and health behav-
ior change.69,70 Important questions include
whether individuals at higher genetic risk
have more difficulty adopting healthier life-
style practices following health shocks,
whether they respond differently to health
behavior change interventions, and whether
they respond differently to policy changes
(e.g., increases in tobacco taxes)?

UNDERSTANDING ENVIRONMENTAL
CAUSATION

Environmental risks affect individuals dif-
ferently. Genetics offers an opportunity to un-
derstand this heterogeneity. Interaction be-
tween genes and environments (G·E) is one
of the more contentious areas of genetics re-
search, but also the most important for public
health translation of genome science.71 There
are 2 reasons G·E is critical to public health
translation of genome science. First, G·E is the
guiding principal of personalized medicine
(in which treatment is the “E”). Second, G·E
may hold a key to understanding the etiology
of conditions like asthma and obesity, which,
although highly heritable, have dramatically
increased in prevalence in recent years. In
addition, G·E is an area where many public
health researchers currently sitting out the
genomics revolution have much to contribute—
as experts in the environment. Although G·E

is relevant to virtually every public health
research topic, we focus our attention in this
section on the issue of health inequalities.

Health inequalities have received little atten-
tion in genetics, probably attributable in part to
the lingering stain of the eugenics movement.
Correspondingly, genetic discoveries have
been largely ignored in health inequalities
research. There is reason to end this mutual
neglect. Health inequalities have not been
adequately explained by differences in discrete
environmental or behavioral risks.72 Nor is
there strong evidence that programmatic in-
terventions to address “root causes,” such
as access to health services or financial re-
sources, or the quality of the built environment
adequately ameliorate health inequalities.73

This raises questions about existing models
of causation in which environmental risks are
presumed to contribute additively to disease
in more or less the same way across the
population.

Genetic Discoveries and Socioeconomic

Gradients in Health

It is clear that ill health and poverty are
correlated.74 It also clear that causality flows in
both directions75; ill health is impoverishing,
and poverty is unhealthy. Thus, there are 3
models76,77 that describe how genetic risks
might contribute to socioeconomic gradients
in health (Figure 2).

1. No contribution: genetic and environmental
risks are additive. Genetic risks are equally
distributed across the social gradient. Social
gradients in health are entirely caused by
environmental factors (Figure 2, left col-
umn). We view this as the null hypothesis.

2. Gene-environment correlation (rGE): ge-
netic risks are not equally distributed across
the social gradient. Differences in health
outcomes arise from the higher burden of
genetic risk at the lower end of the social
gradient (Figure 2, middle column).

3. Gene-environment interaction (G·E): ge-
netic risks are equally distributed across the
social gradient. Differences in health out-
comes arise from exacerbating effects of
environmental risks concentrated at the
lower end of the social gradient and also
from mitigating or protective effects of
environmental assets concentrated at the
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FIGURE 2—Models of genetic contribution to social gradients in health.
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upper end of the social gradient (Figure 2,
right column).

Example Cases From Our Research on

Obesity and Smoking

As a preliminary attempt to provide some
data on this question and to illustrate how this
question might be studied, we asked whether
genetic risks measured by our GRSs were
correlated with social class. Obesity and smok-
ing showed strong social gradients in the
Dunedin cohort, consistent with previous re-
search.78,79 rGE would predict that children
born into lower social class households would
have a higher burden of genetic risk for obesity
and for smoking. We found no evidence to
support this rGE model. Children’s genetic risks

for obesity and for smoking were unrelated to
their social class (Pearson correlation r < 0.01
for both GRSs; Figure 3). We replicated this
result in the ARIC cohort by comparing obesity
GRSs across strata of education (average obe-
sity GRSs for the different educational strata
were all within one 20th of 1 standard de-
viation of the cohort-wide means; P> .2 for all
comparisons). Thus, to the extent that genetic
risks contribute to socioeconomic gradients
in obesity or smoking, they must do so in
interaction with genetic risks.

G·E predicts that genetic risk effects will be
stronger in lower socioeconomic strata because
protective environments that mitigate genetic
risks are less prevalent, and risk environments
that exacerbate genetic risks are more

prevalent. To test this hypothesis, it is first
necessary to identify specific environmental
exposures that show social gradients and that
moderate genetic risks. A number of candidate
environments showing social gradients are
already under investigation for interaction with
genetic risks for obesity and smoking. For
example, in the case of obesity, there is evi-
dence that genetic risks can be mitigated by
physical activity and exacerbated by con-
sumption of sugary beverages.81,82 In the case
of smoking, there is evidence that genetic risks
can be exacerbated by peer smoking behavior83

and also by a childhood history of maltreat-
ment.84 In the Dunedin Study, the best
characterized of these exposures is childhood
maltreatment,85 which shows a strong
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Under the gene-environment correlation (rGE) model of genetic contribution to social gradients in health, genetic risk should be higher for children of lower social class (dots would trend downwards

from left to right). The data in this figure show that Dunedin cohort members’ genetic risks for obesity and smoking were not associated with their parents’ occupational attainment, i.e. there was no

evidence of gene-environment correlation (Pearson correlations r < 0.01 for both).

FIGURE 3—Genetic risk by social class in the Dunedin Cohort for (a) obesity and (b) smoking: Dunedin Multidisciplinary Health and Development

Study, 1972–2013.
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socioeconomic gradient. Therefore, we tested
whether children who were maltreated showed
a heightened genetic risk for smoking. Consis-
tent with our hypothesis and in replication of
a previous finding,84 children with a history of
maltreatment were much more vulnerable to
genetic risk for smoking; for maltreated chil-
dren, the correlation between the smoking
GRS and lifetime cigarette consumption was
nearly 3 times as strong as for children with
no history of maltreatment (r = 0.32, P = .006
for maltreated children compared with r =
0.11, P = .052 for non-maltreated children, P
for difference = 0.008; Figure 4). Thus, there
is initial evidence to support the hypothesis
that G·E contributes to social gradients in
health.

Questions for Future Research

Replication of our preliminary findings using
larger datasets and more comprehensive

genome-wide risk scores27 would bolster the
conclusion that rGE does not contribute to
social gradients in obesity and smoking,
whereas G·E does. There are at least 2 other
ways in which public health researchers can
lead the way in investigating how genetics can
improve our understanding of environmental
causes of disease.

1. Public health researchers with expertise in
environmental risks can help design studies
to hunt for genes. Two G·E-informed gene-
hunting approaches seem promising. One
approach involves explicitly modeling G·E
in discovery analyses86---88 that use large,
nationally representative samples (e.g., Add
Health and the Health and Retirement
Survey). A second G·E-informed gene
hunting approach is to conduct discovery
analyses in samples selected for particular
environmental exposures.89

2. Public health researchers can incorporate
genetic information into intervention trials.
A key limitation to observational G·E re-
search is that the environmental exposure
studied may not be causal in the G·E
effect. Instead, the effect may be driven
by unmeasured environments correlated
with the exposure of interest. For example,
there is evidence that physical activity
attenuates the effect of variants in the gene
FTO on risk for obesity.90 However, ran-
domized trials are needed to establish
that the reduction in the genetic effect is
truly attributable to physical activity and
not to correlated behaviors or characteris-
tics. Randomized trials of interventions
to promote weight loss through physical
activity can be used to investigate this
G·E. In successful trials, in which the
treatment group becomes more active,
researchers can ask “Is the genetic effect
weaker in the treatment group as com-
pared to the control group?” and the re-
lated question “Is the treatment effect
larger in participants at higher genetic
risk?”

Incorporating genetic information may be
of value even when trials are unsuccessful
because genetic risks may influence response
to treatment.91 For example, sleep deprivation
is associated with the development of obe-
sity.92 A recent study of children found that
reduced sleep predicted obesity only among
those already at increased genetic risk.93 If
replicated, this result suggests that genetic risk
for obesity represents an important feature of
a population when considering the efficacy
of sleep-focused obesity interventions. In the
case of smoking, there is evidence that multiple
genetic variants associated with smoking also
influence the effectiveness of nicotine replace-
ment therapies.94---96 Re-analyses of failed trials
that incorporate genetic risk information may
provide insight into ways to “personalize”
treatment.

Ultimately, findings from such genetically
informed re-analyses would need to be repli-
cated in trials designed specifically to test the
effectiveness of “personalization” on the basis
of genetic profile. Nevertheless, data from
completed trials represent a promising re-
source for G·E studies.
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The scatter plots and regression lines show the association between genetic risk and lifetime cigarette consumption in pack-

years by age 38 years for cohort members with a history of child maltreatment (black line, diamond plot) and for cohort

members with no childhood maltreatment history (gray line, circle plot). These plots show that the association between

genetic risk and smoking is stronger in cohort members who were maltreated as children (i.e., there is gene-environment

interaction [G·E]). The kernel density plots in the background of the graph show the distribution of genetic risk in the 2

groups (dark gray for the maltreated cohort members, light gray for the non-maltreated cohort members). These plots show

that the distribution of genetic risk is similar regardless of maltreatment history (i.e., there is no rGE).

FIGURE 4—Associations between genetic risk and lifetime cigarette consumption in cohort

members with a history of childhood maltreatment and no history of childhood

maltreatment: Dunedin Multidisciplinary Health and Development Study, 1972–2013.
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CONCLUSIONS

The field of genetic epidemiology is fast
moving and contentious. Discovery methods
and the data they investigate are continuously
evolving. Despite tremendous progress over
the past decade, many observers are disap-
pointed with the yield of discovery research to
date.97,98 The genetics community’s response
has focused on the need for bigger samples
and improved technology for measuring ge-
nomes.1,99 For many in public health research,
this might seem like a good argument for
remaining on the sidelines. We would argue
that, by contrast, this is a time to ask fresh
questions. However genetic discoveries are
made and whatever the nature of their molec-
ular signatures may be, the fundamentals of
population health science—representative
samples, longitudinal measurements of health
states, and detailed information about envi-
ronmental context—are also fundamental to
understanding genetic influences on health,
and therefore, an opportunity for public health
researchers to get in the game. j
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