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Abstract
This paper presents a unified treatment of Gaussian process models that extends to data from the
exponential dispersion family and to survival data. Our specific interest is in the analysis of data sets
with predictors that have an a priori unknown form of possibly nonlinear associations to the response.
The modeling approach we describe incorporates Gaussian processes in a generalized linear model
framework to obtain a class of nonparametric regression models where the covariance matrix depends
on the predictors. We consider, in particular, continuous, categorical and count responses. We also
look into models that account for survival outcomes. We explore alternative covariance formulations
for the Gaussian process prior and demonstrate the flexibility of the construction. Next, we focus on
the important problem of selecting variables from the set of possible predictors and describe a general
framework that employs mixture priors. We compare alternative MCMC strategies for posterior
inference and achieve a computationally efficient and practical approach. We demonstrate
performances on simulated and benchmark data sets.
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1. INTRODUCTION
In this paper we present a unified modeling approach to Gaussian processes (GP) that extends
to data from the exponential dispersion family and to survival data. With the advent of kernel-
based methods, models utilizing Gaussian processes have become very common in machine
learning approaches to regression and classification problems; see Rasmussen and Williams
(2006). In the statistical literature GP regression models have been used as a nonparametric
approach to model the nonlinear relationship between a response variable and a set of
predictors; see, for example, O’Hagan (1978). Sacks, Schiller and Welch (1989) employed a
stationary GP function of spatial locations in a regression model to account for residual spatial
variation. Diggle, Tawn and Moyeed (1998) extended this construction to model the link
function of the generalized linear model (GLM) construction of McCullagh and Nelder
(1989). Neal (1999) considered linear regression and logit models.
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We follow up on the literature cited above and introduce Gaussian process models as a class
that broadens the generalized linear construction by incorporating fairly complex continuous
response surfaces. The key idea of the construction is to introduce latent variables on which a
Gaussian process prior is imposed. In the general case the GP construction replaces the linear
relationship in the link function of a GLM. This results in a class of nonparametric regression
models that can accommodate linear and nonlinear terms, as well as noise terms that account
for unexplained sources of variation in the data. The approach extends to latent regression
models used for continuous, categorical and count data. Here we also consider a class of models
that account for survival outcomes. We explore alternative covariance formulations for the GP
prior and demonstrate the flexibility of the construction. In addition, we address practical
computational issues that arise in the application of Gaussian processes due to numerical
instability in the calculation of the covariance matrix.

Next, we look at the important problem of selecting variables from a set of possible predictors
and describe a general framework that employs mixture priors. Bayesian variable selection has
been a topic of much attention among researchers over the last few years. When a large number
of predictors is available the inclusion of noninformative variables in the analysis may degrade
the prediction results. Bayesian variable selection methods that use mixture priors were
investigated for the linear regression model by George and McCulloch (1993, 1997), with
contributions by various other authors on special features of the selection priors and on
computational aspects of the method; see Chipman, George and McCulloch (2001) for a nice
review. Extensions to linear regression models with multivariate responses were put forward
by Brown, Vannucci and Fearn (1998b) and to multinomial probit by Sha et al. (2004). Early
approaches to Bayesian variable selection for generalized linear models can be found in Chen,
Ibrahim and Yiannoutsos (1999) and Raftery, Madigan and Volinsky (1996). Survival models
were considered by Volinsky et al. (1997) and, more recently, by Lee and Mallick (2004) and
Sha, Tadesse and Vannucci (2006). As for Gaussian process models, Linkletter et al. (2006)
investigated Bayesian variable selection methods in the linear regression framework by
employing mixture priors with a spike at zero on the parameters of the covariance matrix of
the Guassian process prior.

Our unified treatment of Gaussian process models extends the line of work of Linkletter et al.
(2006) to more complex data structures and models. We transform the covariance parameters
and explore designs and MCMC strategies that aim at producing a minimally correlated
parameter space and efficiently convergent sampling schemes. In particular, we find that
Metropolis-within-Gibbs schemes achieve a substantial improvement in computational
efficiency. Our results on simulated data and benchmark data sets show that GP models can
lead to improved predictions without the requirement of pre-specifying higher order and
nonlinear additive functions of the predictors. We show, in particular, that a Gaussian process
covariance matrix with a single exponential term is able to map a mixture of linear and nonlinear
associations with excellent prediction performance.

GP models can be considered part of the broad class of nonparametric regression models of
the type y = f (x) + error, with y an observed (or latent) response, f an unknown function and
x a p-dimensional vector of covariates, and where the objective is to estimate the function f for
prediction of future responses. Among possible alternative choices to GP models, one famous
class is that of kernel regression models, where the estimate of f is selected from the set of
functions contained in the reproducing kernel Hilbert space (RKHS) induced by a chosen
kernel. Kernel models have a long and successful history in statistics and machine learning
[see Parzen (1963), Wahba (1990) and Shawe-Taylor and Cristianini (2004)] and include many
of the most widely used statistical methods for nonparametric estimation, including spline
models and methods that use regularized techniques. Gaussian processes can be constructed
with kernel convolutions and, therefore, GP models can be seen as contained in the class of
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nonparametric kernel regression with exponential family observations. Rasmussen and
Williams (2006), in particular, note that the GP construction is equivalent to a linear basis
regression employing an infinite set of Gaussian basis functions and results in a response
surface that lies within the space of all mathematically smooth, that is, infinitely mean square
differentiable, functions spanning the RKHS. Constructions of Bayesian kernel methods in the
context of GP models can be found in Bishop (2006) and Rasmussen and Williams (2006).

Another popular class of nonparametric spline regression models is the generalized additive
models (GAM) of Ruppert, Wand and Carroll (2003), that employ linear projections of the
unknown function f onto a set of basis functions, typically cubic splines or B-splines, and
related extensions, such as the structured additive regression (STAR) models of Fahrmeir,
Kneib and Lang (2004) that, in addition, include interaction surfaces, spatial effects and random
effects. Generally speaking, these regression models impose additional structure on the
predictors and are therefore better suited for the purpose of interpretability, while Gaussian
process models are better suited for prediction. Extensions of STAR models also enable
variable selection based on spike and slab type priors; see, for example, Panagiotelis and Smith
(2008).

Ensamble learning models, such as bagging, boosting and random forest models, utilize
decision trees as basis functions; see Hastie, Tibshirani and Friedman (2001). Trees readily
model interactions and nonlinearity subject to a maximum tree depth constraint to prevent
overfitting. Generalized boosting models (GBMs), as an example, such as the AdaBoost of
Freund and Schapire (1997), represent a nonlinear function of the covariates by simpler basis
functions typically estimated in a stage-wise, iterative fashion that successively adds the basis
functions to fit generalized or pseudo residuals obtained by minimizing a chosen loss function.
GBMs accommodate dichotomous, continuous, event time and count responses. These models
would be expected to produce similar prediction results to GP regression and classification
models. We explore their behavior on one of the benchmark data sets in the application section
of this paper. Notice that GBMs do not incorporate an explicit variable selection mechanism
that allows to exclude nuisance covariates, as we do with GP models, although they do provide
a relative measure of variable importance, averaged over all trees.

Regression trees partition the predictor space and fit independent models in different parts of
the input space, therefore facilitating nonstationarity and leading to smaller local covariance
matrices. “Treed GP” models are constructed by Gramacy and Lee (2008) and extend the
constant and linear construction of Chipman, George and McCulloch (2002). A prior is
specified over the tree process, and posterior inference is performed on the joint tree and leaf
models. The effect of this formulation is to allow the correlation structure to vary over the input
space. Since each tree region is composed of a portion of the observations, there is a
computational savings to generate the GP covariance matrix from mr < n observations for
region r. The authors note that treed GP models are best suited “…towards problems with a
smaller number of distinct partitions….” So, while it is theoretically possible to perform
variable selection in a forward selection manner, in applications these models are often used
with single covariates.

The rest of the paper is organized as follows: In Section 2 we formally introduce the class of
GP models by broadening the generalized linear construction. We also extend this class to
include models for survival data. Possible constructions of the GP covariance matrix are
enumerated in Section 3. Prior distributions for variable selection are discussed in Section 4
and posterior inference, including MCMC algorithms and prediction strategies, in Section 5.
We include simulated data illustrations for continuous, count and survival data regression in
Section 6, followed by benchmark applications in Section 7. Concluding remarks and
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suggestions for future research are in Section 8. Some details on computational issues and
related pseudo-code are given in the Appendix.

2. GAUSSIAN PROCESS MODELS
We introduce Gaussian process models via a unified modeling approach that extends to data
from the exponential dispersion family and to survival data.

2.1 Generalized Models
In a generalized linear model the monotone link function g(·) relates the linear predictors to

the canonical parameter as , with ηi the canonical parameter for the ith observation,
xi = (x1, …, xp)′ a p × 1 column vector of predictors for the ith subject and β the coefficient
vector β = (β1, …, βp)′. A broader class of models that incorporate fairly complex continuous
response surfaces is obtained by introducing latent variables on which a Gaussian process prior
is imposed. More specifically, the latent variables z(xi) define the values of the link function
as

(1)

and a Gaussian process (GP) prior on the n × 1 latent vector is specified as

(2)

with the n × n covariance matrix C a fairly complex function of the predictors. This class of
models can be cast within the model-based geostatistics framework of Diggle, Tawn and
Moyeed (1998), with the dimension of the space being equal to the number of covariates.

The class of models introduced above extends to latent regression models used for continuous,
categorical and count data. We provide some details on models for continuous and binary
responses and for count data, since we will be using these cases in our simulation studies
presented below. GP regression models are obtained by choosing the link function in (1) as the
identity function, that is,

(3)

with y the n × 1 observed response vector, z(X) an n-dimensional realization from a GP as in

(2), and  with r a precision parameter. A Gamma prior can be imposed on r, that
is, r ~ (ar, br). Linear models of type (3) were studied by Neal (1999) and Linkletter et al.
(2006). One notices that, by integrating z(X) out, the marginalized likelihood is

(4)

that is, a regression model with the covariance matrix of the response depending on the
predictors. Nonlinear response surfaces can be generated as a function of those covariates for
suitable choices of the covariance matrix. We discuss some of the most popular in Section 3.

In the case of a binary response, class labels ti ∈ {0, 1} for i = 1, …, n are observed. We assume
ti ~ Binomial(1; pi) and define pi = P (ti = 1|z(xi)) with z(X) as in (2). For logit models, for
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example, we have pi = F(z(xi)) = 1/[1 + exp(−z(xi))]. Similarly, for binary probit we can directly
define the inverse link function as pi = Φ(z(xi)), with Φ(·) the cdf of standard normal
distribution. However, a more common approach to inference in probit models uses data
augmentation; see Albert and Chib (1993). This approach defines latent values yi which are
related to the response via a regression model, that is, in our latent GP framework, yi = z(xi) +
εi, with εi ~ (0, 1), and associated to the observed classes, ti, via the rule ti = 1 if yi > 0 and
ti = 0 if yi < 0. Notice that the latent variable approach results in a GP on y with a covariance
function obtained by adding a “jitter” of variance one to C, with a similar effect of the noise
component in the regression models (3) and (4). Neal (1999) argues that an effect close to a
probit model can be produced by a logit model by introducing a large amount of jitter in its
covariance matrix. Extensions to multivariate models for continuous and categorical responses
are quite straightforward.

As another example, count data models can be obtained by choosing the canonical link function
for the Poisson distribution as log(λ) = z(X) with z(X) as in (2). Over-dispersion, possibly
caused from lack of inclusion of all possible predictors, is taken into account by modeling the
extra variability via random effects, ui, that is, λ̃i = exp(z(xi) + ui) = exp(z(xi)) exp(ui) = λi δi.
For identifiability, one can impose (δi) = 1 and marginalize over δi using a conjugate prior,
δi ~ (τ, τ), to achieve the negative binomial likelihood as in Long (1997),

(5)

for si ∈ ℕ ∪ {0}, with the same mean as the Poisson regression model, that is, (si) = λi, and

, with the added parameter τ capturing the variance inflation associated with
over-dispersion.

2.2 Survival Data
The modeling approach via Gaussian processes exploited above extends to other classes of
models, for example, those for survival data. In survival studies the task is typically to measure
the effect of a set of variables on the survival time, that is, the time to a particular event or
“failure” of interest, such as death or occurrence of a disease. The Cox proportional hazard
model of Cox (1972) is an extremely popular choice. The model is defined through the hazard

rate function , where h0(·) is the baseline hazard function, t is the failure
time and β the p-dimensional regression coefficient vector. The cumulative baseline hazard

function is denoted as  and the survivor function becomes

, where S0(t) = exp{−H0(t)} is the baseline survivor function.

Let us indicate the data as (t1, x1, d1), …, (tn, xn, dn) with censoring index di = 0 if the observation
is right censored and di = 1 if the failure time ti is observed. A GP model for survival data is
defined as

(6)

with z(X) as in (2). In this general setting, defining a probability model for Bayesian analysis
requires the identification of a prior formulation for the cumulative baseline hazard function.
One strategy often adopted in the literature on survival models is to utilize the partial likelihood
of Cox (1972) that avoids prior specification and estimation of the baseline hazard, achieving
a parsimonious representation of the model. Alternatively, Kalbfleisch (1978) employs a
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nonparametric gamma process prior on H0(ti) and then calculates a marginalized likelihood.
This “full” likelihood formulation tends to behave similarly to the partial likelihood one when
the concentration parameter of the gamma process prior tends to 0, placing no confidence in
the initial parametric guess. Sinha, Ibrahim and Chen (2003) extend this theoretical justification
to time-dependent covariates and time-varying regression parameters, as well as to grouped
survival data.

3. CHOICE OF THE GP COVARIANCE MATRIX
We explore alternative covariance formulations for the Gaussian process prior (2) and
demonstrate the flexibility of the construction. In general, any plausible relationship between
the covariates and the response can be represented through the choice of C, as long as the
condition of positive definiteness of the matrix is satisfied; see Thrun, Saul and Scholkopf
(2004). In the Appendix we further address practical computational issues that arise in the
application of Gaussian processes due to numerical instability in the construction of the
covariance matrix and the calculation of its inverse.

3.1 1-term vs. 2-term Exponential Forms
We consider covariance functions that include a constant term and a nonlinear, exponential
term as

(7)

with Jn an n× n matrix of 1’s and exp(G) a matrix with elements exp(gij), where gij = (xi − xj)
′P(xi − xj) and P = diag(−log(ρ1, …, ρp)), with ρk ∈ [0, 1] associated to xk, k = 1, …, p. In the
literature on Gaussian processes a noise component, called “jitter,” is sometimes added to the
covariance matrix C, in addition to the term (1/λ)J, in order to make the matrix computations
better conditioned; see Neal (1999). This is consistent with the belief that there may be
unexplained sources of variation in the data, perhaps due to explanatory variables that were
not recorded in the original study. The parametrization of G we adopt allows simpler prior
specifications (see below), and it is also used by Linkletter et al. (2006) as a transformation of
the exponential term used by Neal (1999) and Sacks, Schiller and Welch (1989) in their
formulations. Neal (1999) notices that introducing an intercept in model (3), with precision
parameter λa, placing a Gaussian prior on it and then marginalizing over the intercept produces
the additive covariance structure (7). The parameter for the exponential term, λz, serves as a
scaling factor for this term. In our empirical investigations we found that construction (7) is
sensitive to scaling and that best results can be obtained by normalizing X to lie in the unit
cube, [0, 1]p, though standardizing the columns to mean 0 and variance 1 produces similar
results.

The single-term exponential covariance provides a parsimonious representation that enables a
broad class of linear and nonlinear response surfaces. Plots (a)–(c) of Figure 1 show response
curves produced by utilizing a GP with the exponential covariance matrix (7) and three different
values of ρ. One readily notes how higher order polynomial-type response surfaces can be
generated by choosing relatively lower values for ρ, whereas the assignment of higher values
provides lower order polynomial-type that can also include roughly linear response surfaces
[plot (c)].

We also consider a two-term covariance obtained by adding a second exponential term to (7),
that is,
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(8)

where G1 and G2 are parameterized as P1 = diag(−log(ρ1,1, …, ρ1,p)) and P2 = diag(−log
(ρ2,1,…, ρ2,p)), respectively. As noted in Neal (2000), adding multiple terms results in rougher,
more complex, surfaces while retaining the relative computational efficiency of the exponential
formulation. For example, plot (d) of Figure 1 shows examples of surfaces that can be generated
by employing the 2-term covariance formulation with (ρ1, ρ2) = (0.5, 0.05) and (λ1,z = 1, λ2,z
= 8).

3.2 The Matern Construction
An alternative choice to the exponential covariance term is the Matern formulation. This
introduces an explicit smoothing parameter, ν, such that the resulting Gaussian process is k
times differentiable for k ≤ ν,

(9)

with d(xi, xj) = (xi −xj)′P(xi −xj), Kν(·) the Bessel function and P parameterized as in (7).
Banerjee et al. (2008) employ such a construction with ν fixed to 0.5 for modeling a spacial
random effects process characterized by roughness. One recovers the exponential covariance
term from the Matern construction in the limit as ν → ∞. However, Rasmussen and Williams

(2006) point out that two formulations are essentially the same for , as confirmed by our
own simulations.

4. PRIOR MODEL FOR BAYESIAN VARIABLE SELECTION
The unified modeling approach we have described allows us to put forward a general
framework for variable selection that employs Bayesian methods and mixture priors for the
selection of the predictors. In particular, variable selection can be achieved within the GP
modeling framework by imposing “spike-and-slab” mixture priors on the covariance
parameters in (7), that is,

(10)

for k = 1, …, p, with δ1(·) a point mass distribution at one. Clearly, ρk = 1 causes the predictor
xk to have no effect on the computation for the GP covariance matrix. This formulation is
similar in spirit to the use of selection priors for linear regression models and is employed by
Linkletter et al. (2006) in the univariate GP regression framework (3). Further Bernoulli priors
are imposed on the selection parameters, that is, γk ~ Bernoulli(αk) and Gamma priors are
specified on the precision terms (λa, λz).

Variable selection with a covariance matrix that employs two exponential terms as in (8) is
more complex. In particular, one can select covariates separately for each exponential term by
assigning a specific set of variable selection parameters to each term, that is, (γ1, γ2) associated
to (ρ1, ρ2), and simply extending the single term formulation via independent spike-and-slab
priors of the form
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(11)

(12)

with k = 1, …, p. Assuming a priori independence of the two model spaces, Bernoulli priors
can be imposed on the selection parameters, that is, γi,k ~ Bernoulli(αi,k), i = 1, 2. This variable
selection framework identifies the association of each covariate, xk, to one or both terms. Final
selection can then be accomplished by choosing the covariates in the union of those selected
by either of the two terms. An alternative strategy for variable selection may employ a common
set of variable selection parameters, γ = (γ1, …, γp) for both ρ1 and ρ2, in a joint spike-and-
slab (product) prior formulation,

(13)

where we assume a priori independence of the parameter spaces, ρ1 and ρ2. This prior choice
focuses more on overall covariate selection, rather than simultaneous selection and assignment
to each term in (8). While we lose the ability to align the ρi,k to each covariance function term,
we expect to improve computational efficiency by jointly sampling (γ, ρ1, ρ2) at each iteration
of the MCMC scheme as compared to a separate joint sampling on (γ1, ρ1) and (γ2, ρ2). Some
investigation is done in Savitsky (2010).

5. POSTERIOR INFERENCE
The methods for posterior inference we are going to describe apply to all GP formulations,
even though we focus our simulation work on the continuous and count data models. We
therefore express the posterior formulation employing a generalized notation. First, we collect
all parameters of the GP covariance matrix in Θ and write C = C(Θ). For example, for
covariance matrix of type (7) we have Θ = (ρ, λa, λz). Next, we extend our notation to include
the selection parameter γ by using Θγ = (ργ, λa, λz) to indicate that ρk = 1 when γk = 0, for k =
1, …, p. For covariance of type (8) we write Θγ = {Θγ1, Θγ2, λa}, where γ =(γ1, γ2)′ and
Θγi= (ρiγi, λi,z), i ∈{1, 2} for prior of type (11)–(12) and Θγ = (ρ1γ, ρ2γ, λa, λ1,z, λ2,z) for prior
of type (13), and similarly for the Matern construction. Next, we define Di ∈ {yi, {si, z(xi)}}
and D := {D1, …, Dn} to capture the observed data augmented by the unobserved GP variate,
z(X), for the latent response models [such as model (5) for count data]. Finally, we set h :=
{r, τ} to group unique parameters ∉ Θγ and we collect hyperparameters in m := {a, b}, with
a = {aλa, aλz, ar, aτ} and similarly for b, where a and b include the shape and rate
hyperparameters of the Gamma priors on the associated parameters. With this notation we can
finally outline a generalized expression for the full conditional of (γ, ργ) as

(14)

with La the augmented likelihood. Notice that the term π(ργ|γ) does not appear in (14) since π
(ρk|γk) = 1, for k = 1, …, p.

5.1 Markov Chain Monte Carlo—Scheme 1
We first describe a Metropolis–Hastings scheme within Gibbs sampling to jointly sample (γ,
ργ), which is an adaptation of the MCMC model comparison (MC3) algorithm originally
outlined in Madigan and York (1995) and extensively used in the variable selection literature.
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As we are unable to marginalize over the parameter space, we need to modify the algorithm
in a hierarchical fashion, using the move types outlined below. Additionally, we need to sample
all the other nuisance parameters.

A generic iteration of this MCMC procedure comprises the following steps:

1. Update (γ, ργ): Randomly choose among three between-models transition moves:

i. Add: set  and sample  from a (0, 1) proposal. Position k is randomly
chosen from the set of k’s where γk = 0 at the previous iteration.

ii. Delete: set ( ). This results in covariate xk being excluded in the
current iteration. Position k is randomly chosen from among those included
in the model at the previous iteration.

iii. Swap: perform both an Add and Delete move. This move type helps to more
quickly traverse a large covariate space.

The proposed value (γ′, ) is accepted with probability,

where the ratio of the proposals  drops out of the computation since we
employ a (0, 1) proposal.

2. Execute a Gibbs-type move, Keep, by sampling from a (0, 1) all  ’s such that

. This move is not required for ergodicity, but it allows to perform a refinement
of the parameter space within the existing model, for faster convergence.

3. Update {λa, λz}: These are updated using Metropolis–Hastings moves with Gamma
proposals centered on the previously sampled values.

4. Update h: Individual model parameters in h are updated using Metropolis–Hastings
moves with proposals centered on the previously sampled values.

5. Update z: Jointly sample z for latent response models using the approach enumerated
in Neal (1999) with proposal z′ = (1 − ε2)1/2z + εLu, where u is a vector of i.i.d.
standard Gaussian values and L is the Cholesky decomposition of the GP covariance
matrix. For faster convergence R consecutive updates are performed at each iteration.

Green (1995) introduced a Markov chain Monte Carlo method for Bayesian model
determination for the situation where the dimensionality of the parameter vector varies iteration
by iteration. Recently, Gottardo and Raftery (2008) have shown that the reversible jump can
be formulated in terms of a mixture of singular distributions. Following the results given in
their examples, it is possible to show that the acceptance probability of the reversible jump
formulation is the same as in the Metropolis–Hastings algorithm described above, and therefore
that the two algorithms are equivalent; see Savitsky (2010).

For inference, estimates of the marginal posterior probabilities of γk = 1, for k = 1 …, p, can
be computed based on the MCMC output. A simple strategy is to compute Monte Carlo
estimates by counting the number of appearances of each covariate across the visited models.
Alternatively, Rao–Blackwellized estimates can be calculated by averaging the full conditional
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probabilities of γk = 1. Although computationally more expensive, the latter strategy may result
in estimates with better precision, as noted by Guan and Stephens (2011). In all simulations
and examples reported below we obtained satisfactory results by estimating the marginal
posterior probabilities by counts restricted to between-models moves, to avoid overestimation.

5.2 Markov Chain Monte Carlo—Scheme 2
Next we enumerate a Markov chain Monte Carlo algorithm to directly sample (γ, ργ) with a
Gibbs scan that employs a Metropolis acceptance step. We formulate a proposal distribution
of a similar mixture form as the joint posterior by extending a result from Gottardo and Raftery
(2008) to produce a move to (γk = 0, γk = 1), as well as to (γk = 1, ρk = [0, 1)).

A generic iteration of this MCMC procedure comprises the following steps:

1. For k = 1, …, p perform a joint update for (γk, ρk) with two moves, conducted in
succession:

i. Between-models: Jointly propose a new model such that if γk = 1, propose

 and set ; otherwise, propose  and draw . Accept

the proposal for ( ) with probability,

where now  and similarly for

. The joint proposal ratio for (γk, ρk), reduces to 1 since we
employ a (0, 1) proposal for ρk ∈ [0, 1] and a symmetric Dirac measure
proposal for γk.

ii. Within model: This move is performed only if we sample  from the

between-models move, in which case we propose  and, as before, draw

. Similar to the between-models move, accept the joint proposal

for ( ) with probability,

which further reduces to just the ratio of posteriors since we propose a move
within the current model and utilize a (0, 1) proposal for ρk.

2. Sample the parameters {λa, λz, h} and latent responses z as outlined in scheme 1.

In simulations we also investigate performances of an adaptive scheme that employs a proposal
with tuning parameters adapted based on “learning” from the data. In particular, we employ
the method of Haario, Saksman and Tamminen (2001) for our Bernoulli proposal for γ|α to
successively update the mean parameter, αk, k = 1, …, p, based on prior sampled values for
γk. The construction does not require additional likelihood computations and it is expected to
achieve more rapid convergence in the model space than the nonadaptive scheme. Roberts and
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Rosenthal (2007) and Ji and Schmidler (2009) note conditions under which adaptive schemes
achieve convergence to the target posterior distribution.

Schemes 1 and 2 we enumerated above may be easily modified when employing the 2-term
covariance formulation (8); see Savitsky (2010).

5.3 Prediction
Let zf = z(Xf) be an nf × 1 latent vector of future cases. We use the regression model (3) to
demonstrate prediction under the GP framework. The joint distribution over training and test

sets is defined to be  with covariance,

where C(X,X) := C(X,X)(Θ). The conditional joint predictive distribution over the test cases,

zf |z, is also multivariate normal distribution with expectation .
Estimation is based on the posterior MCMC samples. Here we take a computationally simple
approach by first estimating ẑ as the mean of all sampled values of z, defining

(15)

and then estimating the response value as

(16)

with K the number of MCMC iterations and where calculations of the covariance matrices in
(15) are restricted to the variables selected based on the marginal posterior probabilities of γk
= 1. A more coherent estimation procedure, that may return more precise estimates but that is
also computationally more expensive, would compute Rao–Blackwellized estimates by
averaging the predictive probabilities over all visited models; see Guan and Stephens (2011).
In the simulations and examples reported below we have calculated (16) using every 10th
MCMC sampled value, to provide a relatively less correlated sample and save on computational
time. In addition, when computing the variance product term in (15), we have employed the
Cholesky decomposition C = LL′, following Neal (1999), to avoid direct computation of the
inverse of C(X,X).

For categorical data models, we may predict the new class labels, tf, via the rule of largest
probability in the case of a binary logit model, with estimated latent realizations ẑf, and via
data augmentation based on the values of ŷf in the case of a binary probit model.

5.3.1 Survival Function Estimation—For survival data it is of interest to estimate the
survivor function for a new subject with unknown event time, Ti, and associated zf,i := zf,i
(xf,i). This is defined as
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(17)

When using the partial likelihood formulation an empirical Bayes estimate of the baseline
survivor function, S0(t |z), must be calculated, since the model does not specifically enumerate
the baseline hazard. Weng and Wong (2007), for example, propose a method that discretizes
the likelihood to produce an estimator with the useful property that it cannot take negative
values. Accuracy of this estimate may be potentially improved by Rao–Blackwellizing the
computation by averaging over the MCMC runs.

6. SIMULATION STUDY
6.1 Parameter Settings

In all simulations and applications reported in this paper we set both priors on λa and λz as 
(1, 1). We did not observe any strong sensitivity to this choice. In particular, we considered
different choices of the two parameters of these Gammma priors in the range (0.01, 1), keeping
the prior mean at 1 but with progressively larger variances, and observed very little change in
the range of posterior sampled values. We also experimented with prior mean values of 10 and
100, which produced only a small impact on the posterior. For model (3) we set r ~ (ar, br)
with (ar, br) = (2, 0.1) to reflect our a priori expected residual variance. For the count model
(5), we set τ ~ (1, 1). For survival data, when using the full likelihood from Kalbfleisch
(1978) we specified a (1, 1) prior for both the parameter of the exponential base distribution
and the concentration parameter of the Gamma process prior on the baseline.

Some sensitivity on the Bernoulli priors on the γk’s is, of course, to be expected, since these
priors drive the sparsity of the model. Generally speaking, parsimonious models can be selected
by specifying γk ~ Bernoulli(αk) with αk = α and α a small percentage of the total number of
variables. In our simulations we set αk to 0.025. We observed little sensitivity in the results for
small changes around this value, in the range of 0.01–0.05, though we would expect to see
significant sensitivity for much higher values of α. We also investigated sensitivity to a Beta
hyperprior on α; see below.

When running the MCMC algorithms independent chain samplers with (0, 1) proposals for
the ρk’s have worked well in all applications reported in this paper, where we have always
approximately achieved the target acceptance rate of 40–60% indicating efficient posterior
sampling.

6.2 Use of Variable Selection Parameters
We first demonstrate the advantage of introducing selection parameters in the model. Figure
2 shows results with and without the inclusion of the variable selection parameter vector γ on
a simulated scenario with a kernel that incorporates both linear and nonlinear associations. The
observed continuous response, y, is constructed from a mix of linear and nonliner relationships
to 4 variables, each generated from a (0, 1),

with ε ~ (0, σ2) and σ = 0.05. Additional variables are randomly generated, again from (0,
1). In this simulation we used (n, p) = (80, 20). We ran 70,000 MCMC iterations, of which
10,000 were discarded as burn-in.
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Plot (a) of Figure 2 displays box plots of the MCMC samples for the , k =1, …, 20, for the
case of no variable selection, that is, by using a simple “slab” prior on the ρk’s. As both
Linkletter et al. (2006) and Neal (2000) note, the single covariates demonstrate an association
to the response whose strength may be assessed utilizing the distance of the posterior samples
of the ρk’s from 1. One notes that, according to this criterion, the true covariates are all selected.
It is conceivable, however, for some of the unrelated covariates to be selected using the same
criterion, since the ρk’s all sample below 1, and that this problem would be compounded as p
grows. Plot (b) of Figure 2, instead, captures results from employing the variable selection
parameters γ and shows how the inclusion of these parameters results in the sampled values
of the ρk ’s for variables unrelated to the response being all pushed up against 1.

This simple simulated scenario also helps us to illustrate a couple of other features. First, a
single exponential term in (7) is able to capture a wide variety of continuous response surfaces,
allowing a great flexibility in the shape of the response surface, with the linear fit being a subset
of one of many types of surfaces that can be generated. Second, the effect of covariates with
higher-order polynomial-like association to the response is captured by having estimates of the
corresponding ρk’s further away from 1; see, for example, covariate x4 in Figure 2 which
expresses the highest order association to the response.

6.3 Large p
Next we show simulation results on continuous, count and survival data models, for (n, p) =
(100,1,000). We employ an additive term as the kernel for all models,

(18)

The functional form for the simulation kernel is designed so that the first four covariates express
a linear relationship to the response while the next two express nonlinear associations. Model-
specific coefficient values are displayed in Table 1. Methods employed to randomly generate
the observed count and event time data from the latent response kernel are also outlined in the
table. For example, the kernel captures the log-mean of the Poisson distribution used to generate
count data, and it is used to generate the survivor function that is inverted to provide event time
data for the Cox model. As in the previous simulation, all covariates are generated from (0,
1).

We set the hyperparameters as described in Section 6.1. We used MCMC scheme 1 and
increased the number of total iterations, with respect to the simpler simulation with only p =
20, to 800,000 iterations, discarding half of them for burn-in.

Results are reported in Table 1. While the continuous and count data GP models readily
assigned high marginal posterior probabilities to the correct covariates (figures not shown),
the Cox GP model correctly identified only 5 of 6 predictors; see Figure 3 for the posterior
distributions of γk = 1 and the box plots for the posterior samples of ρk for this model (for
readability, only the first 20 covariates are displayed). The predictive power for the continuous
and count data models was assessed by normalizing the mean squared prediction error (MSPE)
with the variance of the test set. Excellent results were achieved in our simulations. For the
Cox GP model, the averaged survivor function estimated on the test set is shown in Figure 4,
where we observe a tight fit between the estimated curve and the Kaplan–Meier empirical
estimate constructed from the same test data.

Though for the Cox model we only report results obtained using the partial likelihood
formulation, we conducted the same simulation study with the model based on the full
likelihood of Kalbfleisch (1978). The partial likelihood model formulation produced more
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consistent results across multiple chains, with the same data, and was able to detect much
weaker signals. The Kalbfleisch (1978) model did, however, produce lower posterior values
near 0 for nonselected covariates, unlike the partial likelihood formulation, which shows values
typically from 10–40%, pointing to a potential bias toward false positives.

Additional simulations, including larger sample sizes cases, are reported in Savitsky (2010).

6.4 Comparison of MCMC Methods
We compare the 2 MCMC schemes previously described for posterior inference on (γ, ρ) on
the basis of sampling and computational efficiency. We use the univariate regression
simulation kernel

with ε ~ (0, σ2) and σ = 0.05. We utilize 1,000 covariates with all but the first 8 defined as
nuisance. We use a training and a validation set of 100 observations each.

The two schemes differ in the way they update (γ, ρ). While scheme 1 samples either one or
two positions in the model space on each iteration, scheme 2 samples (γk, ρk) for each of the
p covariates. Because of this a good “rule-of-thumb” should employ a number of iterations for
scheme 1 which is roughly p times the number of iterations employed for scheme 2. The use
of the Keep move in scheme 1, however, reduces the need of scaling the number of iterations
by exactly p, since all ρk’s are sampled at each iteration. In our simulations we found stable
convergence under moderate correlation among covariates for scheme 2 in 5,000 iterations and
for scheme 1 in 500,000 iterations. For both schemes, we discarded half of the iterations as
burn-in. The CPU run times we report in Table 2 are based on utilization of Matlab with a 2.4
GHz Quad Core (Q6600) PC with 4 GB of RAM running 64-bit Windows XP.

We compared sampling efficiency looking at autocorrelation for selected ρk. The
autocorrelation time is defined as one plus twice the sum of the autocorrelations at all lags and
serves as a measure of the relative dependence for MCMC samples. We used the number of
MCMC iterations divided by this factor as an “effective sample size.” We followed a procedure
outlined by Neal (2000) and ran first scheme 2 for 1,000 iterations, to obtain a state near the
posterior distribution. We then employed this state to initiate a chain for each of the two
schemes. We ran scheme 2 for an additional 2,000 iterations and scheme 1 for 200,000 (using
the last 2,000 draws for each of the target ρk for final comparison). For scheme 2 we used both
the adaptive and nonadaptive versions. Table 2 reports results for ρ8, aligned to a covariate
expressing a linear interaction, and for ρ6, for a highly nonlinear interaction. We observe that
both versions of scheme 2 express notable improvements in computational efficiency as
compared to scheme 1. We note, however, that the adaptive scheme method produces draws
of higher autocorrelation than the nonadaptive method.

6.5 Sensitivity Analysis
We begin with a sensitivity analysis on the prior for ρk|γk = 1. Table 3 shows results under a
full factorial combination for hyperparameters (a, b) of a Beta prior construction, where we
recall Beta(1, 1) ≡ (0, 1). Results were obtained with the univariate regression simulation
kernel

Savitsky et al. Page 14

Stat Sci. Author manuscript; available in PMC 2013 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with ε ~ (0, σ2) and where we employed a higher error variance of σ = 0.28. As before, we
employ 1,000 covariates with all but the first 8 defined as nuisance. A training sample of 110
was simulated, along with a test set of 100 observations. We employed the adaptive scheme
2, with 5,000 iterations, half discarded as burn-in.

Figure 5 shows box plots of posterior samples for ρk for two symmetric alternatives, 1 : (a, b)
= (0.5, 0.5) (U-shaped) and 2 : (a, b) = (2.0, 2.0) (symmetric uni-modal). For scenario 2 we
observe a reduction in posterior jitter on nuisance covariates and a stabilization of posterior
sampling for associated covariates, but also a greater tendency to exclude x3, x4. One would
expect the differences in posterior sampling behavior across prior hyperparameter values to
decline as the sample size increases. Table 3 displays the number of nonselected true variables
(false negatives), out of 8, along with the normalized MSPEs for all scenarios. There were no
false positives to report across all hyperparameter settings. Overall, results are similar across
the chosen settings for (a, b), with slightly better performances for a < 1 and b ≥ 1,
corresponding to strictly decreasing shapes that aid selection by pushing more mass away from
1, increasing the prior probability of the good variables to be selected, especially in the presence
of a large number of noisy variables.

Next we imposed a Beta distribution on the hyperparameter α of the priors γk ~ Bernoulli(α)
for covariate inclusion. We follow Brown, Vannucci and Fearn (1998a) to specify a vague
prior by setting the mean of the Beta prior to 0.025, reflecting a prior expectation for model
sparsity, and the sum of the two parameters of the distribution to 2. We ran the same univariate
regression simulation kernel as above with the hyperparameter settings for the Beta prior on
ρk equal to (1, 1) and obtained the same selection results as in the case of α fixed and a slightly
lower normalized MSPE of 0.14.

Last, we explored performances with respect to correlation among the predictors. We utilized
the same kernel as above with 8 true predictors from which to construct the response. We then
induced a 70% correlation among 20 randomly chosen nuisance covariates and the true
predictor x6. We found 2 false negatives and 1 false positive, which demonstrates a relative
selection robustness under correlation. We did observe a significant decline in normalized
MSPE, however, to 0.33, as compared to previous runs.

7. BENCHMARK DATA APPLICATIONS
We now present results on two data sets often used in the literature as benchmarks. For both
analyses we performed inference by using the MCMC—scheme 2, with 5,000 iterations and
half discarded as burn-in.

7.1 Ozone data
We start by revisiting the ozone data, first analyzed for variable selection by Breiman and
Friedman (1985) and more recently by Liang et al. (2008). This data set supplies integer counts
for the maximum number of ozone particles per one million particles of air near Los Angeles
for n = 330 days and includes an associated set of 8 meteorological predictors. We held out a
randomly chosen set of 165 observations for validation.

Liang et al. (2008) use a linear regression model including all linear and quadratic terms for a
total of p = 44 covariates. They achieve variable selection by imposing a mixture prior on the
vector β of regression coefficients and specifying a g-prior of the type

. Their results are reported in Table 4 with various formulations for
g. In particular, the local empirical Bayes method offers a model-dependent maximizer of the
marginal likelihood on g, while the hyper-g formulation with a = 4 is one member of a
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continuous set of hyper-prior distributions on the shrinkage factor, g/(1 + g) ~ Beta(1, a/2 −1).
Since the design matrix expresses a high condition number, a situation that can at times induce
poor results with g-priors, we additionally applied the method of Brown, Vannucci and Fearn
(2002) who used a mixture prior of the type βγ ~ (0, cI). Results shown in Table 4 were
obtained from the Matlab code made available by the authors.

Though previous variable selection work on the ozone data all choose a Gaussian likelihood,
a more precise approach employs a discrete Poisson or negative binomial formulation on data
with low count values, or a log-normal approximation where counts are high. With a maximum
value of 38 and a mean of 11 we chose to model the data with the negative-binomial count data
model (5). We used the same hyperparameter settings as in our simulation study. Results are
shown in Figure 6. By selecting, for example, the best 3 variables, we achieve a notable decrease
in the root-MSPE as compared to the linear models. Also, by allowing an a priori unspecified
functional form for how covariates relate to the response, we end up selecting a much more
parsimonious model, although, of course, we lose in interpretability of the selected terms, with
respect to linear formulations that specifically include linear, quadratic and interactions terms
in the model.

7.2 Boston Housing data
Next we utilize the Boston Housing data set, also analyzed by Breiman and Friedman
(1985), who used an additive model and employed an algorithm to empirically determine the
functional relationship for each predictor. This data set relates p = 13 predictors to the median
value of owner-occupied homes in each of n = 506 census tracts in the Boston metropolitan
area. As with the previous data set, we held out a random set of 250 observations to assess
prediction.

We employed the continuous data model (3) with the same hyperparameter settings as in our
simulations. The four predictors chosen by Breiman and Friedman (1985), (x6, x10, x11, x13),
had all marginal posterior probability of inclusion greater than 0.9 in our model. Other variables
with high marginal posterior probability were (x5, x7, x8, x12). The adaptability of the GP
response surface is illustrated with closer examination of covariate x5, which measures the
level of nitrogen oxide (NOX), a pollutant emitted by cars and factories. At low levels,
indicating proximity to jobs, x5 presents a positive association to the response, and at high
levels, indicating overly industrialized areas, a negative association. This inverted parabolic
association over the covariate range probably drove its exclusion in the model of Breiman and
Friedman (1985). The GP formulation is, however, able to capture this strong nonlinear
relationship as is noted in Figure 7. By using only the subset of the best eight predictors, we
achieved a normalized MSE of 0.1 and a prediction R2 of 0.9, very close to the value of 0.89
reported by Breiman and Friedman (1985) on the training data.

We also employed the Matern covariance construction (9), which we recall employs an explicit
smoothing parameter, ν ∈ [0, ∞). While selection results were roughly similar, the prediction
results for the Matern model were significantly worse than the exponential model, with a
normalized MSPE of 0.16, probably due to overfitting. It is worth noticing that the more
complex form for the Bessel function increases the CPU computation time by a factor of 5–10
under the Matern covariance as compared to the exponential construction.

For comparison, we looked at GBMs. We used version 3.1 of the gbm package for the R
software environment. We utilized the same training and validation data as above. After
experimentation and use of 10-fold cross-validation, we chose a small value for the input
regularization parameter, ν= 0.0005, to provide a smoother fit that prevents overfitting. Larger
values of resulted in higher prediction errors. The GBM was run for 50,000 iterations to achieve
minimum fit error. The result provided a normalized MSPE of 0.13 on the test set, similar to,

Savitsky et al. Page 16

Stat Sci. Author manuscript; available in PMC 2013 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



though slightly higher than, the GP result. The left-hand chart of Figure 8 displays the relative
covariate importance. Higher values correspond to (x13, x6, x8), and agree with our GP results.
A number of other covariates show similar importance values to one another, though lower
than these top 3, making it unclear as to whether they are truly related or nuisance covariates.
Similar conclusions are reported by other authors. For example, Tokdar, Zhu and Ghosh
(2010) analyze a subset of the same data set with a Bayesian density regression model based
on logistic Gaussian processes and subspace projections and found (x13, x6) as the most
influential predictors, with a number of others having a mild influence as well. The right-hand
plot supplies a partial dependence plot obtained by the GBM for variable x13 by averaging over
the associations for the other covariates. We note that the nonlinear association is not
constrained to be smooth under GBM.

8. DISCUSSION
In this paper we have presented a unified modeling approach via Gaussian processes that
extends to data from the exponential dispersion family and to survival data. Such model
formulation allows for nonlinear associations of the predictors to the response. We have
considered, in particular, continuous, categorical and count responses and survival data. Next
we have addressed the important problem of selecting variables from a set of possible predictors
and have put forward a general framework that employs Bayesian variable selection methods
and mixture priors for the selection of the predictors. We have investigated strategies for
posterior inference and have demonstrated performances on simulated and benchmark data.
GP models provide a parsimonious approach to model formulation with a great degree of
freedom for the data to define the fit. Our results, in particular, have shown that GP models
can achieve good prediction performances without the requirement of prespecifying higher
order and nonlinear additive functions of the predictors. The benchmark data applications have
shown that a GP formulation may be appropriate in cases of heterogeneous covariates, where
the inability to employ an obvious transformation would require higher order polynomial terms
in an additive linear fashion, or even in the case of a homogeneous covariate space where the
transformation overly reduces structure in the data. Our simulation results have further
highlighted the ability of the GP formulation to manage data sets with p ≫ n.

A challenge in the use of variable selection methods in the GP framework is to manage the
numerical instability in the construction of the GP covariance matrix. In the Appendix we
describe a projection method to reduce the effective dimension of this matrix. Another practical
limitation of the models we have described is the difficulty to use them with qualitative
predictors. Qian, Wu and Wu (2008) provide a modification of the GP covariance kernel that
allows for nominal qualitative predictors consisting of any number of levels. In particular, the
authors model the covariance structure under a mixture of qualitative and quantitative
predictors by employing a multiplicative factor against the usual GP kernel for each qualitative
predictor to capture the by-level categorical effects.

Some generalization of the methods we have presented are possible. For example, as with GLM
models, we may employ an additional set of variance inflation parameters in a similar
construction to Neal (1999) and others to allow for heavier tailed distributions while
maintaining the conjugate framework.
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APPENDIX: COMPUTATIONAL ASPECTS
We focus on the exponential form (7) and introduce an efficient computational algorithm to
generate C. We also review a method of Banerjee et al. (2008) to approximate the inverse
matrix that employs a random subset of observations and provide a pseudo-code.
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A.1 Generating the Covariance Matrix C

Let us begin with the quadratic expression, G = {gi,j} in (7). We rewrite 
with Ai,j constructed as a p × 1 vector of term-by-term squared differences, (xik −xjk)

2, k = 1,
…, p. We may directly employ the p × 1 vector, ρ, as P is diagonal. As a first step, we may
then directly compute G = A[−log(ρ)], where A is n × n × p. We are, however, able to reduce
the more complex structure of A to a two dimensional matrix form by simply stacking each
{i, j} row of dimension 1 × p under each other such that our revised structure, A*, is of
dimension n2 × p and the computation, G = A*[−log(ρ)], reduces to a series of inner products.
Next, we note that log(ρk) = 0 for ρk = 1. So we may reduce the dimension for each of the n2

inner products by reducing the dimension of ρ to the pγ < p nontrivial covariates. We may
further improve efficiency by recognizing that since our resultant covariance matrix, C, is
symmetric positive definite, we need only compute the inner products for a reduced set of
unique terms (by removing redundant rows from A*) and then “re-inflate” the result to a vector
of the correct length. Finally, we exponentiate this vector, multiply the nonlinear weight (1/
λz), add the affine intercept term, (1/λa), and then reshape this vector into the resulting n × n
matrix, C. The resulting improvement in computational efficiency at n = 100 from the naive
approach that employs double loops of inner products is on the order of 500 times.

Our MCMC scheme 2 proposes a change to ρk ∈ ρ, one-at-a-time, conditionally on ρ−k and
the other sampled parameters. Changing a single ρk requires updating only one column of the
inner product computation of A* and [−log(ρ)]. Rather than conducting an entire recomputation
for C, we multiply the kth column of A* (with number of rows reduced to only unique terms

in C) by , where “prop” means the proposed value for ρk. This result is next
exponentiated (to a covariance kernel), re-inflated and shaped into an n × n matrix, Δ. We then

take the current value less the affine term, , and multiply by Δ, term-by-term, and
add back the affine term to achieve the new covariance matrix associated to the proposed value
for ρk. So we may devise an algorithm to update an existing covariance matrix, C, rather than
conducting an entire recomputation. At p = 1,000 with 6 nontrivial covariates and n = 100, this
algorithm further reduces the computation time over recomputing the full covariance by a factor
of 2. This efficiency grows nonlinearly with the number of nontrivial covariates.

A.2 Projection Method for Large n
In order to ease the computations, we have also adapted a dimension reduction method
proposed by Banerjee et al. (2008) for spatial data. The method achieves a reduced-dimension
computation of the inverse of the full (n × n) covariance matrix. It can also help with the
accuracy and stability of the posterior computations when working with possibly ill-
conditioned GP covariance matrices, particularly for large n. To begin, randomly choose m <
n points (knots), sampled within fixed intervals on a grid to ensure relatively uniform coverage,
and label these m points z*. Then define zm→n as the orthogonal projection of z onto the lower
dimensional space spanned by z*, computed as the conditional expectation

We use the univariate regression framework in (3) to illustrate the dimension reduction from
constructing the projection model using zm→n in place of z(x). Recast the model from (3) to
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where . Then derive . Finally, employ
the Woodbury matrix identity to transform the inverse computation,

, where the quantity inside the square
brackets, now being inverted, is m × m, supplying the dimension reduction for inverse
computation we seek. We note that, in the absence of the projection method, a large jitter term
would be required to invert the GP covariance matrix, trading accuracy for stability. Though
the projection method approximates a higher dimensional covariance matrix in a lower
dimensional projection, we yet improve performance and avoid the accuracy/stability trade-
off. We do, however, expect to use more iterations for MCMC convergence when employing
a relatively lower projection ratio.

All results shown in this paper were obtained with m/n = 0.35, for simulated data, and with m/
n = 0.25, for the benchmark applications, where we enhanced computation stability in the
presence of the high condition number for the design matrix. We have also employed the
Cholesky decomposition, in a similar fashion as in Neal (1999), in lieu of directly computing
the resulting m × m inverse.

A.3 Pseudo-code
Procedure to Compute, :

Input: data matrices;
(X1,
X2) of dimension (n1, n2) × p
Output: function, [A*, Ifull] = difference(X1,
X2)
% A* is matrix of squared L2 distances
for 2 data matrices of p columns
% A* size, ℓ × p, ℓ ≤ n1n2: only unique entries
% Ifull re-inflates A* with duplicate entries
% Key point: Compute A*, once,
and re-use in GP posterior computations
% Set counter to stack all (i, j) obs
from X1,
X2 in vectorized construction
count = 1;
% Compute squared distances
FOR
i = 1 to n1
FOR
j = 1 to n2

count = count + 1;
END
END
% Reduce  to A*
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;
END FUNCTION
Input: Data = (A*, Ifull), Θ = (ρ, λa, λz)
Output: function, [C] = C(A*, Ifull,
Θ)
% An n1 × n2 GP covariance matrix
% Only compute inner product
for column k where ρk < 1

% Compute vector of unique values for C

% Re-inflate Cvec to include duplicate values

% Snap Cvec into matrix form, C

END FUNCTION
Input: Previous covariance = Cold;
Data = (A*, Ifull); Position changed = k,
Parameters = (ρk,new, ρk,old), Intercept = λa
Output:[Cnew] = Cpartial(Cold, A*, Ifull, k, λa)
% Compose new covariance matrix, Cnew,
from old, Cold
% Compute inner products only for row k of A*
% Produce matrix of multiplicative differences
from old to new

% Re-inflate exp(−ΔGvec)

% Re-shape −ΔGvec to matrix, Δ

% Compute Cnew

END FUNCTION
Procedure to Compute Inverse of :
Input: Number of sub-sample = m, Data = X,
Error precision = r
Covariance parameters = Θ = (ρ, λa, λz)
Output: 
% Randomly select m < n observations
on which to project n × 1, z(x)
ind = random.permutations.latin.hypercube(n);
% space-filling
Xm = X(ind(1 : m), :);
% Compute squared distances, , A*
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% Compose associated covariance matrices

% Compute Λn

% Compute  employing
term-by-term multiplication

END
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Fig. 1.
Response curves drawn from a GP. Each plot shows two (solid and dashed) random
realizations. Plots (a)–(c) were obtained with the exponential covariance (7) and plot (d) with
the 2-term formulation (8). Plots (e) and (f) show realizations from the matern construction.
All curves employ a one-dimensional covariate.
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Fig. 2.
Use of variable selection parameters: Simulated data (n = 80, p = 20). Box plots of posterior
samples for ρk ∈ [0, 1]. Plots (a) and (b) demonstrate selection without and with, respectively,
the inclusion of the selection parameter γ.
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Fig. 3.
Cox GP model with large p: Simulated data (n = 100, p = 1,000). Posterior distributions for
γk = 1 and box plots of posterior samples for ρk.
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Fig. 4.
Cox GP model with large p: Simulated data (n = 100, p = 1,000). Average survivor function
curve on the validation set (dashed line) compared to the Kaplan–Meier empirical estimate
(solid line).
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Fig. 5.
Prior Sensitivity for ρk|γk = 1 ~ Beta(a, b): Box plots of posterior samples for ρk for (a, b) =
(0.5, 0.5)—plot (a)—and (a, b) = (2.0, 2.0)—plot (b).
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Fig. 6.
Ozone data: Posterior distributions for γk = 1 and box plots of posterior samples for ρk.
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Fig. 7.
Boston housing data: Posterior distributions for γk = 1 and box plots of posterior samples for
ρk.
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Fig. 8.
Boston housing data: GBM covariate analysis. Left-hand chart provides variables importance,
normalized to sum up to 100. Right-hand plot enumerates partial association of x13 to the
response.
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Table 1

Large p: Simulations for continuous, count and survival data models with (n, p) = (100, 1,000)

Continuous data Count data Cox model

Coefficients:

a1 1.0 1.6 3.0

a2 1.0 1.6 −2.5

a3 1.0 1.6 3.5

a4 1.0 1.6 −3.0

a5 1.0 1.0 1.0

a6 3.0 3.0 3.0

a7 1.0 1.0 −1.0

a8 5.0 5.0 5.0

Model Identity link log(λ) = y
t ~ Pois(λ)

S(t|y) = exp[−H0(t) exp(y)]
H0(t) = λt, λ = 0.2

t = M/(λ exp(y)), M ~ Exp(1)
5% uniform randomly censored, tcens = (0, tevent)

Train/test 100/20 100/20 100/60

Correctly selected 6 out of 6 6 out of 6 5 out of 6

False positives 0 0 0

MSPE (normalized) 0.0067 0.045 see Figure 4
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Table 2

Efficiency comparison of GP MCMC methods

MCMC scheme 2 MCMC scheme 1

Adaptive Nonadaptive

Iterations (computation) 5,000 5,000 500,000

Autocorrelation time

ρ6 310 82 441

ρ8 59 35 121

Computation

CPU-time (sec) 980 4,956 10,224
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Table 3

Prior sensitivity for ρk|γk = 1 ~ Beta(a, b). Results are reported as (number of false negatives)/(normalized MSPE)

b\a 0.5 1.0 2.0

0.5 2/0.18 2/0.15 2/0.18

1.0 1/0.14 1/0.16 2/0.18

2.0 1/0.15 2/0.16 2/0.17
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Table 4

Ozone data: Results

Prior on g pγ RMSPE

Local empirical Bayes

X5, X6, X7, , X3X5

6 4.5

Hyper-g (a = 4)

X5, X6, X7, , X3X5

6 4.5

Fixed (BIC)

X5, X6, X7, , X3X5

6 4.5

Brown, Vannucci and Fearn (2002)

X1X6, X1X7, X6X7, 

6 4.5

GP model X3, X6, X7 3 3.7
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