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Abstract. Phytochemicals from diet and herbal medicines are under intensive investigation for their
potential use as chemopreventive agents to block and suppress carcinogenesis. Chemical diversity of
phytochemicals, together with complex metabolic interactions between phytochemicals and biological
system, can overwhelm the capacity of traditional analytical platforms, and thus pose major challenges in
studying chemopreventive phytochemicals. Recent progresses in metabolomics have transformed it to
become a robust systems biology tool, suitable for examining both chemical and biochemical events that
contribute to the cancer prevention activities of plant preparations or their bioactive components. This
review aims to discuss the technical platform of metabolomics and its existing and potential applications
in chemoprevention research, including identifying bioactive phytochemicals in plant extracts, monitoring
phytochemical exposure in humans, elucidating biotransformation pathways of phytochemicals, and
characterizing the effects of phytochemicals on endogenous metabolism and cancer metabolism.
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INTRODUCTION

Cancer is a major cause of disease-related mortalities over the
world. In the USA, nearly one in four deaths is due to cancer (1).
Therefore, developing potent therapeutic and preventive agents
with low toxicity has become a focus of cancer research in the past
decades. Poor prognosis and high cost are commonly associated
with cancer therapy targeting the late-stage carcinoma. In contrast,
by intervening with the early stages of carcinogenesis, cancer
prevention can be more effective in both prognosis and cost,
especially for human subjects who are in high risk of cancer based
on their genetic background, health status, and life style. Feasibility
of cancer prevention is supported by epidemiological and experi-
mental evidences showing that the risk of cancer could be reduced
at the initiating and progressing stages (2). Among various
approaches to abrogate and control the risk factors of carcinogen-
esis, chemoprevention is under intensive investigation due to its
potential efficacy and feasibility. In definition, chemoprevention is a
type of pharmacological intervention that uses synthetic or natural
compounds to prevent, inhibit, or reverse the development of
invasive malignancy caused by carcinogenesis (3,4). An ideal
chemopreventive agent is expected to be nontoxic and effective
at low doses, easily administered, and relatively inexpensive.
Compared to synthetic compounds, phytochemicals are presumed
to be a safer and more accessible source of chemopreventive agents

1 Department of Food Science and Nutrition, University of Minneso-
ta, 1334 Eckles Avenue, 225 FScN, St. Paul, Minnesota 55108, USA.

>To whom correspondence should be addressed. (e-mail:
chichen@umn.edu)

» aaps

911

owing to their presence in human diet, herbal medicines, and
supplements (5). This perception is partially based on the inverse
correlation between fruit and vegetable consumption and cancer
incidence observed in numerous epidemiological and animal
studies (6-9) as well as the widespread usage of herbal medicines
in human history (10). It has been shown the diets high in fruits and
vegetables (>400 g/day) reduce at least 20% of total cancer
incidence and lead to even more reduction of gastrointestinal
cancer (11). Protective effects of these botanical products against
carcinogenesis have been largely attributed to their bioactive
phytochemical components, such as indole-3-carbinol in crucifer-
ous vegetables and polyphenols on green tea (12-14). Therefore,
major scientific efforts in chemoprevention are devoted to
identifying bioactive phytochemicals from fruits, vegetables, and
herbs and to characterizing underlying mechanisms of their anti-
carcinogenic activities.

Because of complex interactions between phytochemical
and biological system, the systems biology tools, including
genomics, transcriptomics, and proteomics, have been widely
adopted to understand biological events contributing to the
cancer prevention activities of plant extracts and their
bioactive components (15). Omics-based studies have yielded
novel insights on the impacts of phytochemical exposures at
gene and protein levels, such as intracellular targets and
signaling pathways of chemoprevention. However, gene and
protein analyses are unable to define the chemical identities and
properties of chemopreventive phytochemicals in plant extracts
as well as the metabolic interactions between phytochemicals
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and biological system. Traditionally, chemical and metabolic
events in chemoprevention are examined with a trial-and-error
approach, which usually starts with a hypothesis and followed by
tedious targeted chemical or metabolite analysis. In recent
years, development of metabolomics, especially untargeted
metabolomics, offers a new powerful tool for investigating
chemical and metabolic events in chemoprevention.

Estimated number of metabolites in human metabolome
ranges from thousands to tens of thousands (16). Since
metabolites are end products of gene expression and enzyme
activities of organisms, analyzing metabolites can reveal the
consequences of altered gene expression, protein expression,
and signaling pathways. Thus, metabolomics is a better
platform for defining the metabolic status of a biological
system than genomics, transcriptomics, and proteomics
(17,18). Another advantage of metabolomics is that metabolic
profiling can be achieved by analyzing biofluids samples
instead of using tissue samples that are required for genomic,
transcriptomic, and proteomic analyses. This property of
metabolomics increases the possibility of carrying out large-
scale research in a noninvasive manner (19). Starting with its
initial applications in examining inborn metabolic errors,
chemical-induced toxicity, and functional nutrigenomics (20—
22), metabolomics has been widely adopted in many fields of
biomedical research due to its capacity for comprehensive
metabolite analysis. Dependent on instruments and experi-
ment design, metabolomic profile can be generated through
targeted analysis of metabolites associated with a particular
metabolic pathway (23,24) or global analysis of all detectable
metabolites (15).

Untargeted metabolomics has been widely used in
identifying new natural product and dissecting natural
product biosynthesis pathways in plants and microbiota,
including anti-cancer phytochemicals (25). However, the
application of metabolomics in discovering novel chemopre-
ventive phytochemicals remains largely unexplored, even
though the rationales of using metabolomics to study other
bioactive natural products are also applicable for studying
chemopreventive phytochemicals. Similarly, metabolomics
has been widely adopted for investigating the interactions
between xenobiotics and biological system, including xenobi-
otic metabolism and xenobiotic-induced metabolic changes in
animals and humans (26,27), but not yet for studying the
biotransformation and metabolic effects of chemopreventive
phytochemicals. Because of the analytical capacity of
metabolomics and the importance of chemical and metabolite
analysis in studying chemopreventive phytochemicals in vitro
and in vivo, this review aims to provide a brief introduction to
the technical platform of metabolomics, and then discuss its
potential applications in identifying bioactive phytochemicals
in plant extracts, monitoring phytochemical exposure in
humans, elucidating biotransformation pathways of phyto-
chemicals, and characterizing the effects of phytochemicals on
endogenous metabolism and cancer metabolism.

TECHNICAL PLATFORM OF METABOLOMICS

The capacity of metabolomics for identifying bioactive
phytochemicals and revealing the interactions between phy-
tochemicals and biological system originates from its
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sophisticated technical platform. As nuclear magnetic reso-
nance (NMR) and mass spectrometry (MS) are two most
widely used detection methods in metabolomic analysis,
sample acquisition and preparation methods adopted in
metabolomics-based studies are intended to facilitate data
acquisition by NMR and MS instruments, while the ap-
proaches used in data analysis aim to maximize the values of
metabolomic data from NMR and MS analysis (Fig. 1).

Sample Acquisition and Preparation

Depending on the aims of metabolomic investigations,
samples from plants, animals and humans, including plant
extracts, biofluids (serum, cerebrospinal fluid), waste (urine
and feces), tissue and cell extracts, can be chosen for
identifying bioactive phytochemicals in vitro or examining
the exposure, metabolic fate, and metabolic impact of
chemopreventive phytochemicals in vivo (Fig. 1). Whether it
contains interested phytochemicals or metabolites is the most
important consideration in sample acquisition, while con-
founding factors, such as age, gender, chronobiological
effects, animal species and environmental factors should also
be considered in experimental design. In general, a power
analysis should be conducted to ensure that a sufficient
number of samples is included and the data can be statistically
validated. Furthermore, to maintain the integrity of chemical
composition in acquired samples, experimental techniques
and storage conditions, including snap freezing in liquid
nitrogen, freeze clamping, or quenching in preservation
solution, should be optimized to avoid or minimize the
formation of new chemical species or degradation of existing
metabolites during and after sample collection (28).

Making samples compatible with analytical platform with
minimal loss in sample preparation is essential for the success
of metabolomic analysis, especially for MS-based
metabolomics. For metabolomic analysis of phytochemical-
mediated chemoprevention, ideal sample preparation process
should be able to efficiently extract small-molecule phyto-
chemicals and metabolites from plant, animal, and human
materials, and also remove incompatible matrices (macro-
molecules and salts) simultaneously. Widely used extraction
and preparation techniques include liquid-liquid extraction,
solid-phase extraction, supercritical fluid extraction, micro-
wave-assisted extraction, protein precipitation, and dialysis.
Their applications in sample preparation are largely deter-
mined by chemical and physical properties of samples (29). In
addition, extraction efficiency can be monitored by adding
internal standards, such as stable isotope-labeled metabolite,
prior to extraction.

In MS-based analysis, the barriers for detecting phyto-
chemicals or metabolites in the MS systems are not just their
concentrations in samples, but also their non-optimal perfor-
mance in chromatography and MS systems, such as poor
retention in liquid chromatography (LC) column and insuffi-
cient ionization in MS (30). To enhance the chromatographic
and spectroscopic performance of these metabolites, one
effective approach is to conduct chemical derivatization
(Fig. 1). Chemical derivatization has been widely used in
gas chromatography (GC)-MS analysis to improve separa-
tion, detectability and sensitivity of metabolite detection. The
application of chemical derivatization in LC-MS analysis has
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Fig. 1. The work flow of untargeted metabolomics. Samples from diverse sources need to
be processed appropriately to make them compatible with MS- and NMR-based
metabolomic analysis. Chemical derivatization can be performed to facilitate the
chromatographic separation of metabolites and increase the sensitivity of metabolite
detection in LC-MS and GC-MS systems. Spectral data acquired by MS and NMR need to
be deconvoluted to a data matrix compatible to multivariate data analysis. Subsequently, a
multivariate model can be established in which the scores plot illustrates the principal or
latent components of the model as well as sample classification while the loadings plot
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presents the contribution of each ion to sample classification in the model

greatly expanded in the recent years (31). In general,
derivatization reactions are designed based on the functional
groups, such as amino, carboxyl, carbonyl, and hydroxyl
moieties in the metabolites. Increased hydrophobicity and
chargeability are two desired effects of chemical derivatiza-
tion (32). For example, amino acids are commonly
derivatized by dansyl chloride (33). The detection of organic
acids is enhanced through esterification of carboxyl group
with amines, hydrazines, or alcohol, while detection of
aldehydes and ketones is assisted by the formation of Schiff
bases after derivatization reactions (34,35).

Analytical Platform of Metabolomics

A variety of detection methods have been adopted for
metabolite analysis in metabolomics, including electrochemical

array (36), infrared spectroscopy (37), NMR, and MS. Among
these platforms, MS and NMR (mainly "H-NMR) are the most
widely used ones. Under electromagnetic field, NMR measures
the resonant frequency of nuclei, while MS determines the mass-
to-charge ratio (m/z) of ions. Compared to MS, NMR is non-
destructive in nature and capable of providing more
structural information, but less sensitive for detecting low-
abundance metabolites. Another advantage of NMR is that
chromatographic separation is not required for NMR analysis
even though LC-NMR technology has become a choice for
conducting high-resolution analysis of complex chemical and
metabolite mixture (38). In contrast, majority of MS-based
metabolomics requires a separation process, such as GC, LC,
and capillary electrophoresis (CE), prior to sample
introduction and mass detection in MS system. GC is an
excellent platform for the metabolites that are volatile or
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could become volatile through derivatization while CE is
suitable for separating polar compounds. However, the
strength of GC and CE in separating these specific classes
of chemicals also limits their application in analyzing other
classes of chemicals in plant extracts, animal and human
samples. At present, LC is the most commonly used platform
in MS-based metabolomics owing to its good compatibility
with the metabolites in biological system. High-performance
liquid chromatography (HPLC) used to be the predominant
LC technology used in chemical analysis. However,
development of ultra-performance liquid chromatography
(UPLC) or ultra-high-pressure liquid chromatography
(UHPLC) that uses smaller particles, faster flow rate, and
higher pressure than HPLC has greatly improved the
chromatographic resolution and reduced the running time in
the LC system (39). After eluting from GC, LC, or CE,
analytes need to become ionized before they can be detected
by mass detectors in MS-based chemical analysis. Electron-
impact ionization, a hard-ionization method, is widely used in
GC-MS analysis to establish the fragmentation pattern of
derivatized analytes. In contract, soft-ionization methods, such
as electrospray ionization and atmospheric pressure chemical
ionization, are commonly used in LC-MS analysis to reduce
the fragmentation in the ionization source and facilitate the
detection of parent molecules since additional fragmentation
of parent molecules can be achieved inside the mass detector.
For mass detection, the selection of mass detector is largely
based on the nature of MS-based metabolomics. In general,
triple-quadrupole and ion-trap mass spectrometers are better
platforms for quantitative analysis in targeted metabolomic
analysis owing to their sensitivity (40), while time-of-flight,
Orbitrap, or Fourier transform ion cyclotron resonance mass
spectrometers are more suitable for untargeted metabolomic
analysis because of their high resolution to acquire accurate
mass for elemental composition analysis and their high
capacity to detect multiple ions simultaneously for
comprehensive metabolite profiling (41-43).

Data Analysis

NMR data comprise chemical shift and signal intensity,
while LC-MS and GC-MS data comprise retention time (RT),
mass-to-charge ratio (m/z), and signal intensity. To conduct
untargeted metabolomic analysis, deconvolution is required
to convert these data into a data matrix suitable for
multivariate data analysis (MDA). Data analysis for NMR-
based metabolomics was reviewed in detail previously (44).
Here, we use LC-MS-based metabolomics as the example.
After LC-MS analysis, chromatographic and spectral data
need to be properly processed before being used in MDA.
The procedure includes data condensation and reduction by
centroiding and deisotoping mass spectra, chromatographic
alignment for peak identification, and filtering for removing
noise or isotope signals (45). To reduce the influence of
systematic and sample biases, MS data can be normalized by
either the parameters of whole dataset (such as total ion
count or median ion count) or the intensities of single or
multiple internal standards (such as creatinine in the case of
urine) (46). After all these procedures, a multivariate data
matrix containing information about sample identities, ion
identities (RT and m/z values) and normalized ion intensities
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can be generated. This dataset can be either directly used for
MDA, or be further statistically transformed and scaled
according to the properties of data and the purpose of
MDA analysis. To identify latent components or principal
components (PC) in a complex dataset, data are projected
onto a new coordinate system based on pattern recognition
algorithm (47). Thereafter, a model containing one or
multiple PCs can be established to represent a large portion
of examined dataset (Fig. 1). In contrast to other statistical
techniques, such as ¢ test and ANOVA, an established MDA
model and its PCs can be presented in the scores plot, in
which sample-PC and sample-sample relationships can be
visualized. In LC-MS-based metabolomics, the spatial dis-
tance between two samples in the scores plot reflects their
differences in chemical composition. When a clear sample
clustering is observed in the scores plot, the contribution of
individual ions to PCs and to the group separation can be
further examined in the loadings plot, in which the relation-
ships between ions and PCs are depicted. Two major
categories of MDA methods, unsupervised and supervised
MDA, have been widely used in metabolomic data analysis.
In unsupervised MDA, sample classification is unknown or
intentionally blinded to the analytical software, while in
supervised MDA this information is provided to the software
for the purpose of model construction. The most popular
unsupervised method is principal components analysis
(PCA). Because of its indiscriminate nature, the markers
identified in a robust PCA model can usually be validated.
Supervised MDA encompasses many methods, including
partial least squares (PLS), orthogonal partial least squares
(OPLS), and partial least squares-discriminant analysis (PLS-
DA) (48). The selection of supervised MDA method is
determined by the data properties and the aim of MDA
analysis. In metabolomic analysis of chemopreventive phyto-
chemicals, when a clear separation of different plant prepa-
rations or different treatments is observed in the scores plot,
phytochemicals related to chemopreventive activity or me-
tabolites related to chemopreventive phytochemicals can be
conveniently identified in the loadings plot through their
correlation with the PCs that separate sample groups (Fig. 1).
Subsequently, chemical identities of bioactive phytochemicals
and endogenous metabolites can be determined by accurate
mass measurement, elemental composition analysis, MS/MS
fragmentation and searches of metabolite and spectral
databases, such as Kyoto Encyclopedia of Genes and
Genomes (KEGG, http://www.genome.jp/kegg/), Human
Metabolome Database (http://www.hmdb.ca/), Lipid Maps
(http://www.lipidmaps.org/), METLIN database (http://
metlin.scripps.edu/), BioCyc (http://biocyc.org/), Spectral Da-
tabase for organic compounds (http:/sdbs.riodb.aist.go.jp).
Recent development in bioinformatics has further facilitated
metabolite annotation in metabolomics studies (49,50).

METABOLOMIC INVESTIGATION
OF CHEMOPREVENTIVE PHYTOCHEMICALS

Phytochemical-elicited chemoprevention is a beneficial
consequence of dynamic interactions between phytochemicals
in vegetables, fruits, and herbal medicine and the biological
systems within human body and cancer cells. The complex-
ities of plant metabolome and biological system pose
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challenges in identifying chemopreventive phytochemicals in
plant extracts and understanding the chemopreventive phy-
tochemicals on humans and animals. Metabolomics offers an
analytical platform to tackle these challenges in chemopre-
vention research. Based on the aim and nature of
metabolomic analysis, metabolomic investigation of chemo-
preventive phytochemicals can be exploratory, such as the
identification of metabolites and biomarkers, or hypothesis-
driven, such as the investigation of enzymes and metabolic
pathways.

Metabolomics-Based Identification of Bioactive Phytochemicals

Identification of bioactive phytochemicals usually starts
with the bioassay-based screening of crude plant extracts,
followed by the bioactivity-guided fractionation and purifica-
tion of individual phytochemicals. Two types of high-through-
put bioassay platforms are available for screening plant
extracts or candidate bioactive phytochemicals for their
activities in cancer prevention and therapy. One is cell-based
platform for determining antiproliferative effects and cyto-
toxicity against cancer cells, such as the US National Cancer
Institute (NCI)’s 60 human tumor cell lines (51). The other is
a more mechanism-based approach, in which well-character-
ized signaling molecules (such as p53, Ras, tyrosine kinase) or
enzymes (such as histone deacetylase, DT-diapharose) are
chosen as the targets of screening assays (52-54). After
bioassays, efficacy of interested plant extracts and phyto-
chemicals can be further validated by animal experiments and
human trials. As the large-scale in vitro bioassays have been
commonly used for screening anti-cancer compounds (55),
the feasibility and effectiveness of bioassay platforms are no
longer the major limiting factor for identifying bioactive
phytochemicals. Instead, the need to obtain pure compounds
from crude plant extracts for bioassays is more challenging
due to the chemical properties of plant extracts and the
mechanisms of their bioactivity. Firstly, complex phytochem-
ical composition of plant extract makes bioactivity-guided
purification processes inefficient and time-consuming, espe-
cially when bioactive phytochemical is an unknown com-
pound and also exist as a minor component in the extract.
Secondly, if bioactivities of plant extract are the synergistic
effects of phytochemicals, testing pure phytochemicals in
bioassays might not be able to fully reveal their bioactivities.
To tackle these challenges, new research strategies are
needed for identifying bioactive phytochemicals, including
chemopreventive phytochemicals, from plant extracts (56).

Without exhaustive fractionation and purification, NMR
and MS-based metabolomics is capable of defining chemical
composition of multiple plant extracts and identifying major
differences among them through PCA modeling. In addition,
with PLS or PLS-DA analysis, the data from NMR or MS
analysis (as X variables) can be processed together with the data
from bioassay (as Y responses) to establish the correlation
between specific phytochemicals in plant extract and different
response observed in bioassay (Fig. 2) (57). Using this approach,
pure phytochemicals are not required prior to bioactivity
assessment. Instead, after the interested phytochemicals are
identified through the metabolomics-based correlation analysis,
purification and structural analysis can be followed to determine
the structure of bioactive phytochemicals, and a new round of
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bioassay can be conducted to validate the bioactivities of
identified phytochemicals. In practice, in order to utilize this
approach for identifying bioactive phytochemicals, plant ex-
tracts originated from different locations, genetic background,
treatments, or extraction methods are required to establish the
correlations between bioactivities and specific compounds in
chemical extracts (58).

The effectiveness of this metabolomics approach in
identifying bioactive phytochemicals has been illustrated
by several recent studies on herbal medicines (59,60). For
example, Galphimia glauca, a Mexican herb, has been
used for treating central nervous disorders. Mouse bioas-
say experiment revealed that G. glauca samples collected
from six locations possess different anxiolytic and sedative
activity (61). 'H NMR metabolomics of G. glauca extracts
was conducted to identify the bioactive components
responsible for its neuropharmacological activities. After
the compositional differences among six extracts were
defined by PCA analysis, galphimines and 1,3,4,5-tetra-O-
galloylquinic acid were found to be the phytochemicals
contributing to the separation of G. glauca extracts in the
PCA model. Subsequent PLS-DA analysis established a
strong correlation between the neuropharmacological
activities and two identified compounds, suggesting they
are the bioactive phytochemicals in G. glauca.

To our knowledge, metabolomic comparison of plant
extracts with different chemopreventive activities has not
been applied to identify novel chemopreventive phytochem-
icals. Nevertheless, since bioassay models are widely available
for screening cancer prevention activities of plant prepara-
tions (62,63), the utilization of this metabolomics-based
approach in chemoprevention is highly executable. It is
possible that metabolomics-based identification of bioactive
phytochemicals, together with high-throughput bioassays and
more efficient purification of bioactive phytochemicals, such
as the HPLC-MS-guided online semi-prep micro-fraction-
ation (60), will lead to the discovery of new chemopreventive
agents in near future.

Metabolomics-Based Evaluation of Phytochemical Exposure

Monitoring and measuring exposure of plant extracts
and phytochemicals are indispensable components in the
epidemiological surveys that evaluate correlation of plant
extracts and phytochemicals with cancer incidence, as well as
in the human intervention trials that examine cancer preven-
tion effects of plant extracts and phytochemicals. Challenges
in assessing their exposure level in humans are multifaceted.
Diaries and questionnaires are the main sources of phyto-
chemical exposure information in human studies. However,
unpredictability of human behavior and errors in human
memory affect the reliability of this type of exposure
information. Furthermore, compositions and quantities of
phytochemicals in plant extracts are highly variable due to
both external and intrinsic factors (64). Therefore, consump-
tion of food and herb products that are presumed to contain
interested phytochemicals cannot be equivalent to definite
exposure of phytochemicals or the exposure of desired
amount of phytochemicals. Overall, inaccurate exposure
assessment makes it difficult to establish the correlations
between phytochemicals/plant extracts and health benefits.
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vitro and in vivo. Metabolomics-based phytochemical profiling and in vitro bioassays of
chemopreventive activities may establish the correlation between specific phytochemicals
in plant extracts and different bioactivity of plant preparations, leading to the identification
of bioactive phytochemicals. Depending on the experimental design, metabolomic analysis
of biological samples from the treatments of phytochemicals or plant extracts can be
utilized to evaluate phytochemical exposure, elucidate biotransformation pathways of
phytochemicals, and characterize the effects of phytochemicals on endogenous metabolism

and cancer metabolism

To address these challenges, chemical analyses of phyto-
chemicals or specific biomarkers in biological samples are
commonly required to validate the exposure of interested
phytochemicals or plant products in human subjects.
Metabolomics, as a highly effective tool for chemical and
metabolite profiling, can facilitate these analyses through its
capacity in discriminating the samples undergone different
phytochemical exposure (65). For example, many dietary
polyphenols are considered as chemopreventive compounds
due to their antioxidant and antiproliferative activities.
Through targeted metabolomic analysis, polyphenol content
in human urine was evaluated after the consumption of
polyphenol-rich beverages in a nutrition survey study (66).
The results showed that the levels of chlorogenic acid, gallic
acid, epicatechin, naringenin, and hesperetin in urine can
function as exposure biomarkers in epidemiological studies to
assess the intake of coffee, wine, tea, cocoa and citrus juices in
populations (66). This metabolomics-based approach has also
been applied to evaluate the exposure of traditional Chinese

medicines. Metabolomic analysis of rabbit serum samples
from dosing Dangguibuxue decoction, a tonic mixture
comprising of huangqi (Radix astragali) and danggui (Radix
angelicae sinensis), led to the detection of flavonoids,
phthalides, and triterpene saponins as the exposure bio-
markers of Dangguibuxue decoction (67).

Metabolomics-Based Examination of Phytochemical
Biotransformation

Metabolism of phytochemicals, including chemopreventive
phytochemicals, could serve as a double-edged sword for the
bioactivities of phytochemicals. On one hand, it can facilitate
elimination and excretion. On the other hand, it may also cause
bioactivation and toxicity. Therefore, studying the biotransfor-
mation of phytochemical in vivo is essential for understanding
and predicting the biological effects of phytochemicals, includ-
ing chemopreventive activities. Radiotracing is very effective
technique to determine the metabolic fate of an exogenous
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compound in vivo due to its sensitivity and quantitative nature in
metabolite analysis. However, application of radiotracing in
studying phytochemical biotransformation is limited by con-
cerns of environmental and health hazards as well as effort and
cost in radiolabeled phytochemical synthesis.

Metabolomics-guided metabolite profiling provides a ro-
bust platform to examine phytochemical biotransformation
(26). A straightforward approach is to conduct a metabolomics
comparison between the control and phytochemical treatments.
Diverse biological samples, including urine, serum, feces, tissue
extracts, can be used for this purpose. Since phytochemical and
its metabolites only appear in the samples from the phytochem-
ical treatment, separation of two treatment groups in the
multivariate model is expected to be contributed by phytochem-
ical and its metabolites (Fig. 3). Using this approach, novel
metabolites of phytochemicals as well as therapeutic agents and
toxicants have been identified, and novel metabolic routes have
been characterized (68-70). Noscapine, an alkaloid from opium,
is a promising anti-tumor agent. Metabolomics-based compar-
ison of urine and fecal samples from the control and noscapine-
treated mice led to the identification of multiple novel noscapine
metabolites originated from oxidation, demethylation, and
glucuronidation reactions, and thus defined the metabolic
pathways of noscapine in vivo (71).

It should be noted that the exposure of phytochemicals
and other exogenous compounds can also significantly affect
endogenous metabolism, leading to quantitative changes in
endogenous metabolite. This situation can interfere with the
detection of phytochemical metabolites in metabolomic
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analysis since endogenous metabolites increased by phyto-
chemical treatment also contribute to the separation of two
sample groups in the multivariate model. In this case, a
combination of metabolomics analysis and the use of stable
isotope-labeled phytochemicals could facilitate the detection
of phytochemical metabolites. To our knowledge, the stable
isotope-based metabolomics has not been used in studying
phytochemical metabolism, but the capacity of this method
for identifying novel metabolites was demonstrated in two
recent studies on ethanol and acetaminophen, in which N-
acetyl taurine, a novel ethanol metabolite, and multiple novel
metabolites of acetaminophen were identified through
metabolomic comparisons of urine samples from mice fed
unlabeled and deuterated ethanol or acetaminophen (72,73).

Besides identifying novel metabolites, metabolomics can
also carry out hypothesis-driven investigation on the roles of
metabolizing enzymes in biotransformation when appropriate
experiment models are used, such as transgenic mice containing
modified metabolizing enzymes (74). For instance, the role of
CYP1A2 enzyme in the biotransformation of 2-amino-1-methyl-
6-phenylimidazo[4,5-b]pyridine (PhIP), a common
procarcinogen in the human diet, was examined by a
metabolomics comparison of urine samples from the wild-type,
Cypla2-null, and CYPIA2-humanized mice treated with PhIP
(75). Genotype-dependent separation of three groups of PhIP-
treated animals demonstrated the importance of CYP1A2 in
PhIP metabolism, and also revealed the interspecies differences
between human and mouse as well as the potential role of other
cytochrome P450 enzymes in PhIP metabolism.
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Fig. 3. Utilization of metabolomics in both exploratory and hypothesis-driven investigation
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Metabolomics is not only able to identify the metabolites generated or affected by these
events (exploratory investigation), but also capable of revealing the mechanisms
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analyses on upstream/downstream metabolic reactions and regulatory pathways (hypoth-

esis-driven investigation)
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Metabolomics Investigation of Phytochemical-Induced
Metabolic Effects

Studying the metabolic events associated with phyto-
chemical exposure can provide mechanistic insights on
phytochemical-elicited chemopreventive activities since nutri-
ent metabolism, antioxidant metabolism and cancer metabo-
lism are closely related to anti-carcinogenic activities of
blocking and suppressing chemopreventive agents. Nutrient
and antioxidant metabolism, as the supplier of antioxidants
and detoxifying enzymes, determines the capacity of endog-
enous detoxification system to handle oxidative stress and
reactive metabolites, which are the main targets of blocking
chemopreventive agents. As for cancer metabolism, altered
energy and nutrient metabolism is now recognized as a major
driving force behind dysregulated proliferation of cancer cells
(76). Compared to normal quiescent cells, cancer cells have
greater needs for energy and nutrients to match the faster
rate of cell proliferation and increased biomass. Cancer cells
possess more active nutrient uptake (glucose and glutamine)
for anabolic biosynthesis (lipid, protein and nucleotide) and
more robust glycolytic activity for ATP and lactate production
than normal cells (77). These altered metabolic processes in
cancer cells could be the targets of suppressing chemopre-
ventive agents (78), and the intermediates and end products
of these metabolic activities could function as metabolite
biomarkers of cancer development (79). Furthermore, be-
sides their influences on the metabolic activities directly
related to carcinogenesis, chemopreventive phytochemicals,
especially after high-dose or repeated exposure, might affect
other physiological functions and metabolic pathways,
resulting in beneficial or toxic effects in humans and animals
(80-82). These needs for comprehensive metabolic profiling
warrant metabolomics to be a useful tool for studying
chemopreventive phytochemicals.

Both targeted and untargeted metabolomics could be
conducted to examine the metabolic changes induced by
chemopreventive phytochemicals. Targeted metabolomics is
usually highly subjective due to its typical focus on suspected
metabolites, and is commonly guided by observed changes in
genes and proteins. In contrast, untargeted metabolomics
could provide guidance for mechanistic investigations at the
enzyme, protein, and gene levels, especially when
transcriptomics and proteomic analyses are also performed
(83). Sample source is important for obtaining meaningful
information on phytochemical-induced metabolic changes.
Biofluids (serum and urine) and tissue extracts are suitable
for probing general metabolic effects of chemopreventive
phytochemicals since each of them contains distinctive
metabolite originated from different metabolic activities.
Accordingly, immortalized cancer cells, neoplastic tissues
and tumors are appropriate samples for determining the
impacts on cancer metabolism. Due to the structural diversity
of endogenous metabolites, selecting analytical platform that
can effectively detect interested metabolites is crucial for
metabolomic analysis. For example, LC-MS-based lipidomics
has clear advantages in detecting complex lipid species, which
makes it an ideal tool for the simultaneous examination of
diverse lipid species (84,85).

Metabolomics has been applied to examine the influences
of chemopreventive phytochemicals, such as isoflavones and tea
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polyphenols, on nutrient and antioxidant metabolism in humans
(86,87). NMR-based metabolomics of urine samples from a
dietary intervention study showed that a diet rich in soy
isoflavones, especially unconjugated soy isoflavone, had signif-
icant effects on several metabolic pathways associated with
osmolyte fluctuation and energy metabolism (86). Similarly,
another separate metabolomics study revealed that the con-
sumption of green tea significantly increased the levels of
several intermediate metabolites in energy metabolites, includ-
ing citrate, pyruvate and oxaloacetate, in healthy volunteers
(87). Besides profiling the changes in endogenous metab-
olism, metabolomics is also capable of detecting phyto-
chemicals-induced changes in gut microflora metabolism,
which is a major contributor to the metabolome in serum
and urine (88). For example, the increase of bacteria
metabolites, hippuric acid and trimethylamine-N-oxide, in
human subjects were observed after the metabolomic
analysis of urine samples from consuming chamomile tea
and soy isoflavones, respectively (86,89).

Metabolomics has also been applied to examine the
influences of chemopreventive phytochemicals on cancer
metabolism. NMR-based metabolomics was able to reveal
the dose-dependent metabolic changes in breast cancer cells
after the treatment of curcumin, an active chemopreventive
compound in turmeric rhizome (90). The influence of
curcumin on redox balance was demonstrated by the
observations of increased glutathione level at low dose of
curcumin and decreased glutathione level at high dose,
suggesting that glutathione biosynthesis was upregulated at
low dose while the consumption of glutathione elevated at
high dose. In addition, the effects of curcumin treatment on
lipid metabolism, including accumulation of polyunsaturated
fatty acids and decrease of glyerophospholipids, were also
observed (90).

CONCLUSIONS

The capacity of metabolomics to measure numerous
chemicals simultaneously and detect subtle differences among
sample groups makes it a powerful discovery tool in many
scientific fields. Compared to traditional reductionistic ap-
proach, metabolomics provide a holistic alternative to tackle
the challenges in identifying novel chemopreventive
chemicals from plant extracts and studying complex interac-
tions between chemopreventive phytochemicals and biologi-
cal system (91). Despite its analytical capacity, the utilization of
metabolomics in chemoprevention research, such as the four
major applications discussed in the review (Fig. 2), is still in its
infancy. For example, majority of metabolomics studies on the
metabolic effects of chemopreventive phytochemicals remain in
the observational level, even though the changes in individual
metabolites or a cluster of metabolites in specific metabolic
pathways provide opportunities for further biochemical in-
vestigations of underlying mechanisms, such as upstream and
downstream metabolic reactions as well as regulatory signaling
events (Fig. 3). Considering the newly established importance of
cancer metabolism in carcinogenesis and the great need for
potent chemopreventive phytochemicals, metabolomics has
great promise in both exploratory and hypothesis-driven
chemoprevention research.
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