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Abstract. Missing covariate data is a common problem in nonlinear mixed effects modelling of clinical
data. The aim of this study was to implement and compare methods for handling missing covariate data
in nonlinear mixed effects modelling under different missing data mechanisms. Simulations generated
data for 200 individuals with a 50% difference in clearance between males and females. Three different
types of missing data mechanisms were simulated and information about sex was missing for 50% of the
individuals. Six methods for handling the missing covariate were compared in a stochastic simulations and
estimations study where 200 data sets were simulated. The methods were compared according to bias and
precision of parameter estimates. Multiple imputation based on weight and response, full maximum
likelihood modelling using information on weight and full maximum likelihood modelling where the
proportion of males among the individuals lacking information about sex was estimated (EST) gave
precise and unbiased estimates in the presence of missing data when data were missing completely at
random or missing at random. When data were missing not at random, the only method resulting in low
bias and high parameter precision was EST.
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INTRODUCTION

Nonlinear mixed effects modelling is applied to clinical
data to obtain a better understanding of the pharmacokinetic
and/or pharmacodynamic characteristics of the investigated
treatment. The developed models are often used to design
future clinical trials or to guide individualised drug treatment,
and it is therefore important to include covariates which can
explain some of the observed between-subject variability in
the model. Missing covariate data is a frequently encountered
problem in analyses of clinical data, and to not venture the
predictability of the developed model, it is of great impor-
tance that the method chosen to handle the missing data is
adequate for its purpose.

Missing data are typically divided into three categories;
missing completely at random (MCAR), missing at random
(MAR) [1] and missing not at random (MNAR) [2]. For
MCAR, the underlying mechanism causing data to be missing
does not depend on any observed or unobserved data, for
MAR, the underlying missing data mechanism depends on
observed data but not on unobserved data, and for MNAR,
the underlying missing data mechanism depends on the
unobserved data itself. For example, if individuals have been
asked to fill out a form with questions about their sex and
body weight and some of the forms are returned with the
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question about body weight unanswered, the missing weights
would be MCAR if the reason they were missing was that
some individuals had not seen the question, they would be
MAR if the reason was that females in general were less
willing to reveal their body weight than males (but the
willingness was independent on the body weight itself) and
they would be MNAR if the reason was that obese
individuals were less willing to reveal their body weight than
normal weighted individuals. The underlying missing data
mechanism is usually unknown but can affect the predictabil-
ity of the model if wrong assumptions are made. When data
are MCAR, the missing data mechanism can be ignored when
analysing the data; when data are MAR, valid estimates of
the population model parameters are obtainable without a
model for the missing data mechanism as long as the data are
analysed using a proper method (a method which allows for
correlations between the observed and the missing data); and
when data are MNAR, it is necessary to include a model for
the missing data mechanism to get valid estimates of the
population model parameters [1]. However, the appropriate-
ness of a model describing the missing data mechanism when
data are MNAR relies heavily on untestable assumptions.

The choice of method to handle the missing data is also
affected by the extent of missing information in the data set
[3]: The fraction of missing information depends on both the
fraction of missing data and the importance of the data
missing. Missing a covariate of paramount importance will
hence require a more advanced method to avoid bias and
imprecision in parameter estimates than if the missing
covariate is of less significance.

Many methods for how to deal with missing data have
been proposed. Multiple imputation methods and methods
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based on maximum likelihood modelling give less bias and
higher precision in parameter estimates than simpler methods
when handling missing data in linear fixed effect models [4,5].
However, in the field of nonlinear mixed effects modelling,
the performance of missingness modelling and (multiple)
imputation techniques have not been well studied [6,7].

In this study, six of the most common and most
frequently suggested methods for handling missing data were
applied to simulated data sets where the underlying missing
data mechanism was either MCAR, MAR or MNAR. The
data sets were analysed in NONMEM 7 [8] and the
performance of the methods were evaluated and compared
with respect to bias and precision in population parameter
estimates.

METHODS

A stochastic simulations and estimations (SSE) analysis
was utilised to compare different methods for handling missing
covariate data. The methods were investigated under three
missing data mechanisms, and 200 data sets were generated by
stochastic simulation for each scenario. Each data set was
analysed with six different methods for handling missing
covariate data and the methods were compared according to
bias and precision in the estimates of fixed and random effects of
the population model. All simulations and model analyses were
performed using NONMEM 7.1.2 facilitated with PsN 3.3.2
[9,10], and statistical analyses of the data were completed using
R 2.14.1 (http://www.r-project.org).

Population Model

A population pharmacokinetic (PK) model with constant
infusion at steady state was used for simulations and
estimations (Eq. 1);

R
In(Cssj) = In <C—E) + & (1)

where Css; is the steady-state concentration for individual i,
R, is the infusion rate, CL; is the drug clearance for individual
i, &; describes how the observed concentration in the jth
sample of the ith individual (Css;;) is deviating from Css; and
£~N(0,0%) where o is the standard deviation of the residual
error. To avoid simulation of negative concentrations the
logarithm of the steady-state concentrations were simulated.

The individual CL values were log-normally distributed
around the typical value of CL (Eq. 2);

CL; = 0-¢" 2)

Where 6 is the typical value (population value) of CL, #;
describes how the ith individual’s value of CL deviates from
the typical value of CL and n~N(0,0%) where o is the
standard deviation of the variability between individuals (i.e.
the between subject variability (BSV)).

Males were assigned to have a typical value of clearance
which was twice the typical value of CL for females (simulated
and estimated as two fixed effects, =2 for males and 6=1 for
females). The individual CLs were simulated with a BSV of 30%

1233

1.5

1.0

Density

CL [L/h]
Fig. 1. Distribution of individual CL values for males (dark grey) and
females (light grey) after simulation of data for 10,000 males and
10,000 females

(Fig. 1). The residual error of the population model was set to
20%. NONMEM code for the population model can be found in
Appendix 1.

Simulation of Data Sets

Each data set consisted of data for 200 individuals, 60%
of the individuals were randomly assigned to be males and
40% females. Two concentration measurements were simu-
lated for each individual. Weights were simulated from two
truncated log-normal distributions with sex-specific medians
and variances (InN(85.1, 0.0329) for males and InN(73.0,
0.0442) for females) (Fig. 2) which had been estimated using a
large data set with 1,022 males and 423 females [11]. Three
missing data mechanisms were simulated: MCAR, MAR and
MNAR. For each mechanism, 50% of the individuals were
assigned to lack information about the covariate sex. For
MCAR, all individuals had the same probability of missing
sex; for MAR, the underlying mechanism gave a higher
probability of missing sex with increasing weight (27%
probability of missing sex for a person weighing 40 kg and
83% probability of missing sex for a person weighing 145 kg);
and for MNAR, the underlying mechanism gave a three times
higher probability of missing sex for males than females. The
proportion of males in the data sets for whom sex was
observed was then approximately 60% when data were
MCAR, 56% when data were MAR and 37% when data
were MNAR.

Methods for Handling Missing Covariates

Six different methods for handling missing covariates
were compared: complete case scenario (CC), single imputa-
tion of mode (SIyoqe), single imputation based on weight
(SIwt), multiple imputation based on weight and individual
response (i.e. Css;) (MI), full maximum likelihood modelling
using information on weight (MOD) and full maximum
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Fig. 2. Distribution of individual weights for males (dark grey) and
females (light grey) after simulation of data for 10,000 males and
10,000 females

likelihood modelling where the proportion of males (and
females) among the individuals lacking information about sex
was estimated as an extra parameter in the model (EST). For
comparison purposes, estimation with all data (ALL) was also
conducted. Implementation of all methods except CC and Sl;oqe
required estimation of additional models for logistic regression
and MI also required additional simulations.

CC. All individuals lacking the covariate sex were excluded
from the analysis, i.e. 50% of the data were discarded.

81,04 The mode of the covariate, i.c. the most fre-
quently occurring category among the individuals for whom
the covariate was observed, was imputed for all individuals
lacking the covariate.

Sy A model was created to describe the likelihood of
being male given the observed weight (L(malelweight)). The
model was estimated as a logistic regression among the
individuals for whom both covariates were observed
(NONMEM code in Appendix 1). The model was used
together with the observed weights to predict the likelihood
of being male for each individual. For all individuals for
whom the information about sex was missing the covariate
was imputed based on the individual likelihood prediction,
i.e. a likelihood prediction greater than or equal to 0.5 was
imputed as ‘male’, otherwise ‘female’ (NONMEM code in
Appendix 1).

MI. The MI method presented by Wu and Wu [6] was
implemented [12]. The PK model, without inclusion of any
covariate (i.e. estimation of 1 fixed effect parameter instead of 2),
was fitted to the data to get the CL; for all individuals. CL;
contains information about the response variable (Css;) [13,14]
and can hence be used to create a model which describes the
likelihood of being male given the observed weight and the
response (L(malelweight,CL;)). The likelihood model was esti-
mated as a logistic regression among the individuals for whom the

Johansson and Karlsson

covariate was observed (NONMEM code in Appendix 1). For all
individuals for whom the information about sex was missing, the
covariate was imputed (simulated) based on the logistic regres-
sion model, the individuals’ observed weight and their individual
estimate of CL (NONMEM code in Appendix 1). The imputation
step followed by an estimation of the imputed data set was
repeated six times for each data set. The six sets of population
parameter estimates were combined to one set by calculating the
average of the six point estimates of each fixed and random effect
in the population model [12,15,16].

MOD. Based on the individuals for whom there were no
missing covariate values, a model was created to describe the
probability of being male given the observed weight
(L(malelweight)). The probability model was used in a mixture
model (for subjects for whom sex information was missing)
together with the observed weights to provide the probability
of being male for each individual (NONMEM code in
Appendix 1). The mixture model functionality uses the
individual responses, in combination with information on the
probability of belonging to each of the subpopulations (in this
case male or female) on the population level, to estimate the
model parameters [8].

EST. Rather than fixing the expected relation between
covariates to the estimates from the portion of the population
without missing information, as in the MOD method, these
relations were estimated. Thus, the fraction of individuals
belonging to each subpopulation (i.e. the population likelihood
of being male) was estimated as a fixed effect parameter in the
mixture model. To ensure a hierarchical relation between EST
and MOD the fixed effect parameter was added to the
individual predicted probability of being male given the
observed weight (the same likelihood model as was used in
MOD) (NONMEM code in Appendix 1). The difference in
objective function value (OFV) between the two models was
then approximately y*-distributed and a decrease of at least 3.84
in OFV when adding the extra parameter was a significantly (p<
0.05) better fit of EST than MOD.

Comparison of Bias and Precision

Bias and precision of the estimated population parame-
ters were evaluated by calculation and comparison of relative
bias (RBias) and relative standard deviation (RSD), for each
population parameter (i), under each method for handling the
missing data (j; plus estimations using all data) and under
each missing data mechanism (k).

The bias was defined as the deviation of the mean of the
estimates from the true value and the RBias was calculated
according to Eq. 3;

PoisP;
RBias [P, 4] = % (3)

where P is the mean of the estimates of the parameter (fixed
or random effect) and P is the corresponding true value, i.e.
the value used in the simulation. All methods which resulted
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in parameter estimates with a RBias <5% for the fixed effect
parameters, and <10% for the random effect parameters,
were considered to be unbiased.

The RSD was used to describe the precision of the
estimates relative the mean of the estimates of the parameter
(Egs. 4 and 5);

1 . _
SD(P; ji] = \/m le (Pi,/lkfpi,j,k> (4)

RSE[Py] — SPPiis] .

Pijk

where SD is the standard deviation of the distribution of the
estimates and N is the total number of estimates, i.e. the
number of simulated data sets. All methods which resulted in
parameter estimates with a RSD <10% for the fixed effect
parameters, and <20% for the random effect parameters,
were considered to give precise parameter estimates.

RESULTS

The bias and precision of the population parameter
estimates, estimated using the different methods for han-
dling the missing covariate, are presented in Tables I
(RBias) and II (RSD). Bias and precision in estimates of
the fixed effect of CL for males (CLy,.) and females
(CLfemale) are also visualised in box plots, showing the bias
as the deviation of the median estimate from the true value
and the precision as the width of the box and the whiskers
(Figs. 3, 4 and 5).

CC. The method gave unbiased estimates for all
population parameters, independent on underlying missing
data mechanism (Table I). The estimates were less precise
than the ones received using MI, MOD or EST but all
RSDs were below the predefined limits (Table IT) and
should therefore be considered as precise. The estimates of
the residual error were more biased and less precise when
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the CC method was used compared with when any of the
other methods were used.

81,04 When data were MCAR or MAR, the SIo4c
method resulted in considerably underestimated values of CL a1
(RBias, —16% and —14%) while the estimates of CLemale
remained unbiased but less precise than the estimates received
with the more advanced methods (ML, MOD and EST) (Tables I
and IT; Figs. 3 and 4). More outliers were observed when data were
MAR than when data were MCAR (Figs. 3 and 4), and this was
also noticeable in the RSDs which were greater for CL;,,. and
CL¢emale When data were MAR (Table IT). When data were
MNAR the estimates of CL,,, were unbiased but less precise
while the estimates Of CLye,q. Were highly overestimated (RBias,
+42%) (Table T; Fig. 5). The estimates of the BSV were highly
overestimated independent on missing data mechanism (RBias
between +76% and +110%) (Table I). All population parameters
were estimated with RSDs which were lower than the
predefined limits, except CLgemale Which had a RSD of
10% when data were MAR.

SIwz: When data were MCAR or MAR, the estimates of
CLhale Were underestimated (RBias, —11%) whereas the
estimates of CLgemae Were overestimated (RBias, 11% and
10%) (Table I; Figs. 3 and 4). For the MNAR mechanism,
the estimates of CL.,,. were unbiased according to the
predefined limits (RBias, —3.1) (Table I) but the boxplot
reveals a small underestimation (Fig. 5). The estimates of
CLfemale Were highly overestimated (RBias, +32%) when
data were MNAR (Table I; Fig. 5). The estimates of the
BSV were highly overestimated independent on missing
data mechanism (RBias between +69% and +87%)
(Table I).

MI. This method gave unbiased and precise estimates of
all population parameters when data were MCAR or
MAR. When data were MNAR, the estimates of CL,c
and CLgmae Were both overestimated (RBias, +5.2% for
CLjae and +6.2% for CLgemae) (Table I; Fig. 5). Both
random effect parameters (BSV and residual error) were
estimated without any bias and with high precision,
independent on underlying missing data mechanism
(Tables T and II).

Table 1. Relative Bias (in Per Cent) in Population Parameter Estimates for the Different Methods When Data Were MCAR, MAR and

MNAR
MCAR MAR MNAR
CLale CLtemale BSV ResErr CLnale CLtemate BSV ResErr CLnale CLtemale BSV ResErr

ALL -0.32 —0.064 -1.7 0.82 -0.32 —0.064 -1.7 0.82 -0.32 —-0.064 -1.7 0.82
EST -0.37 -0.25 -1.6 0.82 —0.65 0.020 0.22 0.82 -0.41 -0.18 -14 0.82
MOD -0.40 -0.10 -1.2 0.82 -0.88 —-0.055 1.1 0.82 5.8 10 6.9 0.82
MI -0.26 —0.054 -1.7 0.82 -0.69 0.14 0.75 0.82 52 6.2 =37 0.82
SIwt -11 11 69 0.83 11 10 69 0.83 =31 32 87 0.83
Sinode -16 0.24 78 0.82 -14 32 76 0.83 —-0.90 42 110 0.83
CC -0.14 0.022 -2.0 1.3 -0.27 0.18 -3.6 0.60 -0.90 —-0.051 =29 14

The between-subject variability (BSV) and the residual error (ResErr) were estimated as variances
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Table II. Relative Standard Deviation (in Per Cent) in Population Parameter Estimates for the Different Methods When Data Were MCAR,
MAR and MNAR

MCAR MAR MNAR
CLmae  CLtemae  BSV  ResErr CLpae  CLgemale  BSV ResErr CLpwe  CLimale  BSV ResErr
ALL 3.0 38 13 1 3.0 3.8 13 1 3.0 38 13 11
EST 3.4 46 15 11 3.7 45 15 1 36 42 16 11
MOD 3.4 45 15 1 35 4.4 15 1 35 47 17 11
MI 35 46 16 11 35 46 16 11 34 45 17 11
Syt 37 6.2 12 1 38 6.3 13 1 47 47 12 11
SLnode 3.9 6.1 11 11 6.3 10 12 1 5.4 3.6 11 11
cC 4.6 55 17 14 45 53 16 15 5.4 43 18 15

The between-subject variability (BSV) and the residual error (ResErr) were estimated as variances

MOD. The results received when using the MOD method
were similar to those observed for the MI method. All
population parameters were estimated without any bias and
with high precision when data were MCAR or MAR. When
data were MNAR, the estimates of CL,e and CLgepae Were
both overestimated (RBias, +5.8% for CL,,e and +10% for
CLtemale) (Table T; Fig. 5). The BSV and the residual error were
estimated without bias and with high precision independent on
the underlying missing data mechanism (Tables I and II).

EST. The EST method was the only method which gave
unbiased and precise estimates of all population parameters
independent on underlying missing data mechanism (Tables I
and II; Figs. 3, 4 and 5). EST was significantly better than
MOD in 8.5% of the simulated data sets when data were
MCAR, in 13% of the data sets when data were MAR and in
100% of the data sets when data were MNAR. The extra
parameter that was estimated in the EST method had a
median estimate (median over the 200 simulated data sets) of
0 when data were MCAR or MAR whereas it had a median
estimate of 2.0 when data were MNAR.

DISCUSSION

The relative differences in performance of the tested
methods were very similar when data were MCAR and MAR,
whereas most methods gave a greater bias in the estimates when
data were MNAR. The more advanced methods (MI, MOD and
EST) gave unbiased and precise estimates of all population
parameters when data were MCAR or MAR. The only method
giving unbiased and precise estimates even when data were
MNAR was EST, followed by CC which gave unbiased but less
precise estimates under all missing data mechanisms.

The lower precision in all population parameters when
estimated with the CC method is because only 50% of the data
were used in this analysis. There were no biases in the estimates of
the population parameters as all data used in the analyses came
from individuals for whom sex was observed, ie. given the
particular model used, the missing data were MCAR when
analysed with the CC method, independent on missing data
mechanism. However, when data are MAR or MNAR, CC is
known to result in biased parameter estimates [2,5,17].

The incomplete data records contain a lot of information
and if the analyst does not want to discard 50% of the data, there
are many options and methods to choose in between. In single
imputation, the missing values are filled in to achieve a complete
data set without discarding any data. When the filled in data set is
analysed in NONMEM, the imputed values are analysed as if
they are the true values, without taking the uncertainty in the
imputations into account. The shortcomings of this procedure is
documented and discussed by Donner [18], Little and Rubin [2],
Little [4] and Schafer and Graham [5]. In this study, two types of
single imputation was included, SI,oqe and SIwt. The rationale
for including these methods, even though they are observed to
perform worse than full maximum likelihood methods and
multiple imputations [4,5], was that these methods are common
in nonlinear mixed effects modelling of clinical and pre-clinical
data. The SI,,oqc method is equivalent to imputing the mean or
median value of a continuous covariate and, as was shown in this
study, this type of method underestimates the strength of the
covariate—parameter relationship [2]. The underestimation of
CL a1 When data were MCAR or MAR (Table I; Figs. 3 and 4)
was because in the majority of the simulated data sets, there were
more males than females among the individuals for whom the sex
was observed. All individuals with missing sex were then
assumed to be males, but as some of them in fact were females,
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Fig. 3. Box-plot showing bias and precision of the estimates of the typical
value of CL for males (true value, 2) and females (true value, 1) after fitting
200 simulated data sets, in which the covariate sex was MCAR for 50% of
the individuals, using six different methods to handle the missing data
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Fig. 4. Box-plot showing bias and precision of the estimates of the
typical value of CL for males (true value, 2) and females (true value,
1) after fitting 200 simulated data sets, in which the covariate sex was
MAR for 50% of the individuals, using six different methods to
handle the missing data

their lower CLs were downward biasing the estimates of CL,, .
The same thing, but the other way around, happened when data
were MNAR and CLgeqe Was estimated with a positive bias
(Table T; Fig. 5). The overestimation of the BSV (Table I) is a
consequence of the large spread of individual estimates of CL
when data from females were assumed to derive from males and
vice versa. Despite the fact that the method underestimated the
covariate—parameter relationship, the distributions of the esti-
mates of CL,ae and CLgemale did not overlap each other which
indicates that, in this case, the covariate would have been found
significant even if Sl 04 Was the method used to handle the
missing covariate.

A more advanced method to handle the missing covar-
iate would be to derive a model for the covariate based on
other, completely observed, covariates and then use that
model for the imputation. This strategy was evaluated in this
study by implementation of SIwr and MI. Slywt was a single
imputation of sex based on the observed weight while MI was
a multiple imputation of sex based on observed weight and
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Fig. 5. Box-plot showing bias and precision of the estimates of the typical
value of CL for males (true value, 2) and females (true value, 1) after fitting
200 simulated data sets, in which the covariate sex was MNAR for 50% of
the individuals, using six different methods to handle the missing data
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the response variable (Css). The advantage of multiple
imputations over single imputation is that the missing
covariate values are imputed several times. Each of the filled
in data sets are then analysed and the estimates are combined
to receive one set of estimates, which means that the imputed
values are not considered to be the true values and the
uncertainty in the imputed values are taken into account [19].
When the missing data were handled with the Sly method,
all estimates of the population parameters, except the
estimates of the residual error, were biased. The CLpale
parameter was always underestimated whereas the CLtemale
parameter and the BSV were overestimated (Table I; Figs. 3,
4 and 5). Despite the bias, the estimates were quite precise
(RSE, 3.7-6.3%) which means that all the single imputed
simulated data sets gave similar estimates. This indicates that
the main problem with this method was that the correlation
between weight and sex was weak and that a logistic
regression model based on only weight gave a poor descrip-
tion of the individuals’ true sexes. The MI method used both
the weight and information about the response as covariates
in the logistic regression model and this resulted in unbiased
estimates when data were MCAR or MAR (Table I; Figs. 3
and 4). The reason for this was not only because multiple
imputations are better than single imputation but also
because the response was more correlated with sex than
weight. This can also be seen in Figs. 1 and 2 where the
distributions of weights and the distributions of individual CL
values (containing information about the response) for males
and females are displayed. The weight distributions overlap
each other to a larger extent than the distributions of the
individual CL values do. The importance of including all
variables which can be predictive of the missing covariate or
the underlying missing data mechanism in the model for
multiple imputations is discussed by Meng [20], Rubin [21]
and Collins et al. [22]. These arguments should also be
applicable to single imputation when the imputation is based
on observed predictors in the data. Even if single imputation
is a less proper procedure than multiple imputations when
handling missing data, the differences between the methods
would have been smaller if the same logistic regression model
had been used for simulating the single imputations.

The MOD method gave estimates similar to those
received using the MI method. Both methods gave unbiased
and precise estimates of all population parameters when data
were MCAR or MAR, wheras the estimates of CL,,,. and
CLtemale Were overestimated when data were MNAR
(Tables T and II; Figs. 3, 4 and 5). The overestimation of
both these parameters was due to the difference in fraction of
males in the part of the data set where sex was observed for
all individuals (37% males) and the part where information
about sex was missing (83% males). As the fraction of males
was low in the part of the data set where sex was observed the
logistic regression models (both the one used in MI and the
one used in MOD) were assigning all individuals a relatively
low likelihood of being male independent on body weight
and/or individual estimates of CL. The MI method was
therefore imputing fewer males than females in total, and
males with a lower body weight and/or a lower individual
estimate of CL were more likely to be imputed as females
than males with a higher body weight and/or a higher
individual estimate of CL. Therefore, there was a positive
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bias in both the estimates of CLi.mae and the estimates of
CLhale- When modelling the missing data using a mixture
model (as in MOD) and the probability of male versus
female is different for the population with missing covariate
information compared with the rest of the population, there
will be a bias in the underlying probability model for which
parameters are fixed. This bias will influence the parame-
ters that are estimated. Thus, the mechanisms giving rise to
bias in MOD and MI when covariates are MNAR are
essentially the same.

Methods using multiple imputations or full maximum
likelihood modelling yield similar results when handling missing
data in linear fixed effect models, when the methods are
implemented in comparable ways [4,5,22]. The same relative
performance is expected for nonlinear mixed effect models. The
efficiency of multiple imputation methods depends on the
number of imputed data sets and between two and ten
imputations are enough to get the point estimates near their
minimum sampling variance on repeated sampling from the
population of interest [15] but more imputations might be
needed if the fraction of missing information is large [16]. Other
important inferential quantities such as null hypothesis signifi-
cance tests, p values and confidence interval half-widths can
suffer from substantial imprecision when just a few number of
imputations are used [23]. In this study, the focus was on the
point estimates of the population parameters and as the fraction
of missing information was assumed to be quite low, six
imputations were considered appropriate. The MI and MOD
methods both use the individual weights and responses when
fitting the data sets, MI in the logistic regression model used in
the imputation of missing sexes and MOD when maximising the
likelihood of the individuals’ sexes using information on their
weight, and hence they produce similar results.

The hierarchical relation established between EST and
MOD made it possible to compare the methods’ OFVs. A
significant drop in OFV when EST was used instead of MOD
indicated that the individual likelihood predictions (based on
the individuals” weight) used in the mixture model had poor
predictability. This could be due to data being MNAR but
could also be the result of a logistic regression model with
poor predictability. When data were MCAR or MAR, then
EST was in most cases not significantly better than MOD, but
when data were MNAR, then EST was significantly better
than MOD for 100% of the simulated data sets.

Rubin shows that when a proper method is used (e.g.
multiple imputations or maximum likelihood modelling) to
analyse data where some information is missing and the
missing data are MCAR or MAR, the missing data mecha-
nism can be ignored [1]. When data are MNAR, the
underlying missing data mechanism is no longer ignorable
and a model describing the mechanism has to be included in
the analysis to enable unbiased estimates [1,24]. However, the
underlying missing data mechanism is usually unknown and
the model will therefore rely on the assumptions made by the
analyst. In this study, the missing data mechanism was not
included in the analysis using any of the methods which
means that the data were assumed to be MCAR or MAR.
The extra fixed effect parameter which was estimated when
using the EST method compensated for the MNAR mecha-
nism, and EST was the only method tested which gave
unbiased and precise estimates independent on missing data
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mechanism. When analysing data where a large extent of the
individuals are lacking information about one covariate or
more, estimation of this extra parameter should be used to
evaluate the predictability of the developed (logistic) regres-
sion model before any conclusions can be drawn from the
estimated parameters. The inclusion of the extra parameter
should be based on goodness of fit such as the OFV.

Multiple imputations and full maximum likelihood model-
ling of continuous missing covariates can be done in a similar
way as multiple imputations and full maximum likelihood
modelling of categorical missing covariates. A regression model
with observed covariates (and information about the response if
it is for multiple imputations) is created for the missing covariate
and a random effect is added to the regression model and
estimated to take the uncertainty in the model into account. For
multiple imputations, the imputations are then created by using
the regression model and drawing (i.e. simulating) random
values from the estimated uncertainty distribution [12]. For full
maximum likelihood modelling, the variance of the uncertainty
distribution is fixed to the estimated value and the values of the
missing covariates are estimated from the fixed distribution and
the individuals’ observed data.

The covariate effect simulated in this study was incorpo-
rated as an effect of the binary covariate sex on drug CL. The
choice of covariate name was arbitrary and the simulated
missing data mechanisms and/or the proportions of males/
females in the simulated data sets should not be given any
physiological meaning. A real-life situation when categorical
covariate data are MAR is for example during pooled analyses
when some covariates have not been measured/reported during
one of the studies, and a real-life example of when categorical
covariate data are MNAR is when individuals with a high
alcohol consumption are less willing to grade their alcohol
intake than individuals with a lower alcohol consumption.

The population PK model used in this study was very simple
and a more complex model with more population parameters to
estimate would result in less precise estimates than what was seen
in this study. This would be true even if no data are missing and a
more complex model would therefore make the observed
differences between the methods less obvious. Sex had a large
influence on the individual CL values, and at the same time, a
large proportion of the individuals were lacking information
about the covariate. These settings were chosen to emphasise the
differences between the tested methods, and even though the
observed differences might be smaller if the model is more
complex, the covariate is less influential and/or the fraction of
individuals lacking information about the covariate is smaller, the
relative differences between the methods will still remain. The
covariate under study was categorical, but the same
relative performances of the CC, MI, MOD and EST
methods are expected for continuous covariates since the
models in the continuous case builds on virtually the same
statistical principles. As there is no round off to the nearest
category in the continuous case, the continuous counter-
parts of the Sljoqe and SIwr methods are expected to
perform relatively better but still not as well as MI, MOD
and EST.

This analysis evidence that there is a large difference in
efficiency of the tested methods and that care has to be taken
when deciding which method to be used for the analysis of
missing covariates in nonlinear mixed effects modelling.
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CONCLUSIONS

The study shows that MI, MOD and EST are good
approaches to receive precise and unbiased estimates in the
presence of missing data when the underlying missing data
mechanism is MCAR or MAR. If the data are MNAR, the
only method resulting in low bias and high-parameter
precision is EST.
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APPENDIX 1

Implementation of methods for handling missing covar-
iate data in NONMEM:

Population Model

The population model used for simulations and estimations:

IF(MALE == 1) CL = THETA(1l)*EXP(ETA(1))
IF(MALE == 0) CL = THETA(2)*EXP(ETA(1))
Y = LOG(1/CL) + EPS(1)

where MALE is the sex covariate (1 if male and 0 if female), CL
is the drug clearance and Y is the response variable, i.e. the log-
transformed steady-state concentrations.

Regression Models

The likelihood/logistic regression model, run before
SIwt, MOD and EST, evaluated by analysis on data records
where no data were missing:

TH1 = THETA (1)

TH2 = THETA(2)

PHI = TH1 + TH2*WT

PMALE = EXP (PHI)/ (1+EXP (PHI)
IF(DV == 1) Y = PMALE

IF(DV == 0) Y = 1-PMALE
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where WT is body weight and PMALE is the probability of
being male given a specific weight.

The likelihood/logistic regression model, run before MI,
evaluated by analysis on data records where no data were
missing:

TH1 = THETA (1)

TH2 = THETA(2)

TH3 = THETA (3)

PHI = TH1 + TH2*WT + TH3*EBE
PMALE = EXP (PHI)/ (1+EXP (PHI)
IF(DV == 1) Y = PMALE

IF(DV == 0) Y = 1-PMALE

where WT is body weight, EBE is the individual empirical
Bayes estimates of CL, and PMALE is the probability of
being male given a specific weight and a specific individual
estimate of CL.

The imputation model:

IMALE = O

PHI = TH1 + TH2*WT

PMALE = EXP(PHI)/ (1+EXP(PHI))
IF(PMALE >= 0.5) IMALE = 1

where IMALE stands for ‘imputed male’ which was the sex
covariate used in the model if the observed sex covariate
MALE was missing.

MI

The imputation model:

IMALE = 0

IF(NEWIND /= 2) THEN
CALL RANDOM(2,R)

RAND = R
ENDIF
PHI = TH1 + TH2*WT + TH3*EBE
PMALE = EXP (PHI)/ (1+EXP(PHI))
IF(RAND <= PMALE) IMALE = 1

where RAND is a random value from the uniform distribu-
tion [0, 1] and IMALE stands for imputed male which was the
sex covariate used in the model if the observed sex covariate
MALE was missing.
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MOD

The mixture model/estimation model:

IF(MISS == 0 .AND. MALE == 1
IF(MISS == 0 .AND. MALE == 0
IF (MISS == 1 .AND. MIXNUM ==
IF(MISS == 1 .AND. MIXNUM ==
Y = LOG(1/CL) + EPS(1)
SMIX

PHI = TH1 + TH2*WT

PMALE = EXP(PHI)/ (1+EXP(PHI))
NSPOP = 2

P(1) = PMALE

P(2) = 1-PMALE

Johansson and Karlsson

CL = THETA (1) *EXP (ETA (1))
CL = THETA(2) *EXP (ETA (1))
1) CL = THETA(1)*EXP(ETA(1))
2) CL = THETA(2)*EXP(ETA(1))

where MISS is a missing data indicator (0 if the data record is
complete (i.e. the covariate is not missing) and 1 if the data
record is incomplete), MALE is the (partly) observed sex
covariate, MIXNUM is the index of the subpopulation for
which variables are to be computed (1 for male and 2 for
female) and $MIX describes the mixture model with the prior
information from the logistic regression model.

EST

The mixture model/estimation model:

Note that the parameters of the logistic regression model can
be estimated directly in the mixture model/estimation model. The
reason why this was not done in this study was because the methods
were compared using the SSE option of the mimp (multiple
imputation) functionality in PsN where MOD was tested as an
alternative model (i.e. fitted to a data set where the parameters of
the logistic regression model were already available).

IF(MISS == 0 .AND. MALE == 1) CL = THETA (1) *EXP (ETA (1))
IF(MISS == 0 .AND. MALE == 0) CL = THETA (2)*EXP(ETA (1))
IF(MISS == 1 .AND. MIXNUM == 1) CL = THETA(1l)*EXP(ETA(1))
IF(MISS == 1 .AND. MIXNUM == 2) CL = THETA(2)*EXP(ETA(1))
Y = LOG(1/CL) + EPS(1)
SMIX

PHI = TH1 + TH2*WT

PMALE = EXP (PHI+THETA (3))/(1+EXP(PHI+THETA(3)))

NSPOP = 2

P(1) = PMALE

P(2) = 1-PMALE

where MISS is a missing data indicator (0 if the data
record is complete (i.e. the covariate is not missing) and 1
if the data record is incomplete), MALE is the (partly)
observed sex covariate, MIXNUM is the index of the
subpopulation for which variables are to be computed (1

for male and 2 for female) and $MIX describes the
mixture model with the prior information from the logistic
regression model.

Note that the parameters of the logistic regression model can
be estimated directly in the mixture model/estimation
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model. The reason why this was not done in this study
was because the methods were compared using the SSE
option of the multiple imputation functionality in PsN
where EST was tested as an alternative model (i.e. fitted to a
data set where the parameters of the logistic regression model
were already available).
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