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Decoding Sound Source Location and Separation Using
Neural Population Activity Patterns
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The strategies by which the central nervous system decodes the properties of sensory stimuli, such as sound source location, from the
responses of a population of neurons are a matter of debate. We show, using the average firing rates of neurons in the inferior colliculus
(IC) of awake rabbits, that prevailing decoding models of sound localization (summed population activity and the population vector) fail
to localize sources accurately due to heterogeneity in azimuth tuning across the population. In contrast, a maximum-likelihood decoder
operating on the pattern of activity across the population of neurons in one IC accurately localized sound sources in the contralateral
hemifield, consistent with lesion studies, and did so with a precision consistent with rabbit psychophysical performance. The pattern
decoder also predicts behavior in response to incongruent localization cues consistent with the long-standing “duplex” theory of sound
localization. We further show that the pattern decoder accurately distinguishes two concurrent, spatially separated sources from a single
source, consistent with human behavior. Decoder detection of small amounts of source separation directly in front is due to neural
sensitivity to the interaural decorrelation of sound, at both low and high frequencies. The distinct patterns of IC activity between single
and separated sound sources thereby provide a neural correlate for the ability to segregate and localize sources in everyday, multisource

environments.

Introduction

There is a clear understanding of the basic mechanisms by which
the firing rates of neurons in the auditory brainstem become
sensitive to the cues for the horizontal direction of a sound
source—interaural time difference (ITD) and interaural level dif-
ference (ILD) (Grothe et al., 2010). What remains unclear is how
the central auditory system combines information across these
neurons to arrive at an estimate of location—i.e., how source
location is decoded.

A place code of sound location was originally proposed by
Jeffress (1948), who hypothesized that the central auditory sys-
tem contains a topographic map of tuning to ITD (seeFig. 1A).
Elaborations of this influential model (Colburn, 1977; Stern and
Trahiotis, 1995) account for many psychophysical observations.
However, after decades of neurophysiological research, no com-
pelling evidence for a topographic map of ITD has been reported
in mammals. On the other hand, a “population vector” decoder
(Fig. 1B), which also characterizes tuning functions by their peaks
but does not require systematic topography, predicts source azi-
muth consistent with behavioral measurements when tested on
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modeled neural activity in the optic tectum of barn owls (Fischer
and Pena, 2011).

The observation that the steepest slopes of tuning functions of
inferior colliculus (IC) neurons tend to be near the midline mo-
tivated another population code for ITD in mammals (McAlpine
et al., 2001). To take advantage of the large range of firing rates
along tuning slopes, rates are summed separately in each IC and
an estimate of ITD is then “read out” from the difference of
summed rates (Fig. 1C). However, lesion and cortical cooling
studies challenge this model by showing that localization only
requires information from brain areas contralateral to the sound
source (Jenkins and Masterton, 1982; Malhotra et al., 2004).

The above decoding models either reduce tuning functions to
the locations of their peaks, or ignore the diversity in tuning
functions by focusing on population-averaged activity. The pres-
ent study tests a maximum-likelihood decoder operating on the
pattern of activity across IC neurons (Fig. 1D), thereby using
information in both the shapes of individual tuning functions
and the distribution of peaks across the population. Pattern de-
coders have widely been used in visual cortex (Jazayeri and
Movshon, 2006; Berens et al., 2012), but rarely in the auditory
system. They have been applied to sound localization based on
the responses of auditory cortical neurons in awake macaques
(Miller and Recanzone, 2009) and on the responses of IC neurons
in anesthetized gerbils to sources varying in ITD only (Lesica et
al., 2010). Here, we demonstrate that a pattern decoder operating
on the responses of IC neurons from one side in awake rabbits
estimates source azimuth with a precision consistent with rabbit
psychophysical measurements. We further show that, when
tested with stimuli having incongruent ITD and ILD cues, the
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decoder behaves in a manner consistent with the long-standing
“duplex theory” of sound localization (Strutt, 1907). Finally, we
show that the decoder accurately predicts the ability to perceptu-
ally segregate two spatially separated sources (Best et al., 2004).

Materials and Methods

Experimental methods

Single unit activity was collected from the right IC of two female, Dutch-
belted rabbits (Oryctolagus cuniculus). All procedures were approved by
the Institutional Animal Care and Use Committees of Massachusetts Eye
and Ear and the Massachusetts Institute of Technology. Data analyzed in
the present study were described in a previous report (Day et al., 2012),
which includes detailed experimental methods, including surgical and
electrophysiological methods, and the generation and presentation of
acoustic stimuli. Stimulus waveforms were given directional characteris-
tics by filtering through rabbit directional transfer functions (DTFs), and
acoustic stimuli were presented through ear inserts. DTFs were calcu-
lated from acoustic impulse responses measured in the ear canals of a
cadaver rabbit. To remove detailed spectral features specific to an indi-
vidualized DTF, simplified DTFs were constructed by extracting the first
principal component of the log magnitude spectra of the measured DTFs
(Kistler and Wightman, 1992). The resulting simplified DTFs capture the
dependence of ITD and gross ILD on both frequency and azimuth (Day
etal., 2012).

Single-unit recordings were collected from awake, head-restrained
rabbits in daily sessions over a period of months, likely from the central
nucleus of the IC (Day et al., 2012). Sound sources always consisted of the
same token of 300 ms broadband noise (0.1-18 kHz; 4 ms on/off cos?
ramp), presented every 500 ms. For the simultaneous presentation of two
sound sources, an additional token of noise was used, incoherent with the
first. In response to random tokens of noise, the variability of spike
counts of IC neurons is dominated by intrinsic neural variability as op-
posed to variability due to different tokens (Shackleton and Palmer,
2006); therefore we do not expect our decoder results using frozen noise
to be greatly different from those using random noise. For each neuron,
single sources were presented at a sound level 23 dB above noise thresh-
old, while two spatially separated sources were presented each at 20 dB
above threshold, yielding equivalence in sound level when the two
sources are colocated (two incoherent 20 dB noises at the same location
are equivalent to a 23 dB noise).

Spike counts over the duration of the stimulus were measured for a
single source presented at each of 13 azimuths in the frontal hemifield
(£90° with 15° resolution, where 0° is straight ahead and positive indi-
cates contralateral), using 3—10 repetitions (usually 8). This azimuth
tuning function was also collected in the presence of an additional source
fixed at 0°. Single-source and two-source azimuth tuning functions
were also collected under two different manipulations of binaural cues.
In the “ITD-only” condition, magnitude spectra of the DTFs were fixed
to those at 0°, allowing only phase to vary naturally with azimuth. Con-
versely, in the “fixed-ITD” condition, phase spectra of the DTFs were
fixed to those at 0°, allowing only magnitude to vary naturally with azi-
muth. Finally, new data were collected for the present study, from the
same animals, where two sources were presented simultaneously in every
location combination in the frontal hemifield, with a 30° resolution (7
single-source locations and 21 spatially separated location combinations).

Computational methods

Source azimuth was estimated from the spike counts of IC neurons using
three different decoding models. Two main assumptions shared by all
decoders are that spike counts in response to any sound stimulus have
Poisson distributions, and that the spike counts of different neurons are
statistically independent of each other for a given stimulus. Of the 1014
spike count distributions in our single-source dataset (78 neurons X 13
azimuths), 82% had a Fano factor within the 95% confidence intervals of
that expected from a Poisson process (Eden and Kramer, 2010). Since we
did not record simultaneously from multiple neurons, we could not
directly assess the correlations in spike counts, and assumed statistical
independence for simplicity. The limited available data from simultane-
ous recordings of neuron pairs in the IC of anesthetized gerbils to noise
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suggest that correlation coefficients between spike counts are small
(Lesica et al., 2010, their supplemental Fig. 3; mean: 0.03, range: [—0.1,
0.225]).

Population-vector decoder. For the “population-vector” decoder, we
focused on the majority of neurons whose firing rates were sensitive to
azimuth. Excluded were seven neurons with azimuth-insensitive firing
rates (Day et al., 2012) and another neuron with very low firing rates in
response to single sources. The best azimuth (BA) of each azimuth-
sensitive neuron was defined as the azimuth with the highest firing rate,
with a unit vector, 0,, pointing in the direction of the BA. For any test
azimuth, one spike count in response to that azimuth, n,, was then se-
lected randomly from each of N azimuth-sensitive neurons in the popu-
lation. The estimated azimuth, 6, was computed as the angle of a
weighted vector sum of BAs: & = /3N | n,6,. The estimated azimuth
was then rounded to the nearest 15°. This procedure was iterated 500
times for each test azimuth to yield 500 estimates. In every iteration, the
randomly selected test spike counts, 1,, were removed from the dataset
before determining the BA of each neuron; therefore BAs were not influ-
enced by the data used to test the decoder so as to avoid overfitting. We
also alternatively normalized each n,; by the mean spike count at the BA of
the corresponding neuron, but the performance of the decoder remained
essentially the same.

To assess the influence of tuning function shape on the performance of
the population-vector decoder, we compared decoder performance
when tested on experimental data versus simulated data with homoge-
neous tuning shapes. Simulated azimuth tuning functions were Gaussian
with means positioned at the same BAs as in the experimental data, and
SD set to 31° to create an ipsilateral “slope” equal to that of the median
slope across the experimental sample (52°; slope defined later in Results).
Tuning functions had a maximum firing rate of 100 spikes/s. Spike
counts were randomly drawn from a Poisson distribution.

Two- and single-channel decoders. All neural data were obtained from
the right IC. For the “two-channel difference” decoder, we simulated
neural data for the left IC by assigning the response of each right-side
neuron at a given azimuth to a “left-side” neuron’s response at the same
azimuth with the opposite sign (e.g., response of L neuron at +90° =
response of R neuron at —90°). For each azimuth, 6, one spike count in
response to that azimuth was selected randomly from each right and left
neuron in the population. The difference, d,, was then taken between the
sums of these spike counts on the left and right sides, [, and r,, respec-
tively. This was repeated 50 times for different randomly selected spike
counts to create 50 samples of d,. The probability distribution of d, was
well approximated by a Gaussian function, with mean and variance, w,
and 029, respectively, estimated from the 50 samples. To test the model,
a difference of summed spike counts, d’, was computed for each
azimuth from randomly selected spike counts in response to that
azimuth. The estimated azimuth was then chosen to maximize the
following likelihood:

1
L(6) = soom expl — (d' — py)’/207].

This whole procedure was iterated 500 times for each test azimuth. As for
the population vector, in every iteration spike counts used to compute d’
were removed from the dataset before p, and o, were estimated; there-
fore the decoder was never tested on the data it was trained with to avoid
overfitting. The “single-channel” decoder was implemented in the same
way as the two-channel difference decoder, except d,and d’ were sums of
spike counts on the right side only (r, and ') instead of a difference of
sums between sides.

The two-channel decoder was also used to distinguish between one
and two spatially separated sources. In this case the two-source combi-
nation, 6, could be any spatially separated combination or colocated
(single source) combination. Instead of operating on the difference of
summed spike counts, d’, the decoder operated on both the left and
right summed spike counts, I’ and r’. These summed spike counts were
assumed to be statistically independent, therefore the likelihood was a
product of Gaussians:
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L(6) = expl = (I' = wio)*1200 = (' = )’/ 207 ).

01,00, 627

The estimated two-source combination was chosen to maximize the like-
lihood. This estimate was then further categorized as “two sources” (any
spatially separated combination) or “one source” (any colocated
combination).

Population-pattern decoder. For the “population-pattern” decoder, the
tuning function of each neuron, f}(6), was defined as the mean spike
count as a function of azimuth, 6. For each test azimuth, one spike count
in response to that azimuth, #;, was then selected randomly from each of
N neurons in the population. As shown in Jazayeri and Movshon (2006),
the logarithm of the likelihood given the assumption of independent,
Poisson spike counts is as follows:

log L(6) = Zn log fi(6) — ;f,(e) - ;bg(mo.

The first term is a weighted sum of spike counts and the second term is
independent of spike count, but dependent on 6. The third term may be
ignored since it is independent of 6. The estimated azimuth was then
chosen to maximize the log likelihood. To avoid taking the logarithm of
zero whenever the mean spike count of neuron i at some azimuth, 6, was
equal to zero, we set f,(6,) to 1/(number of trials + 1). This effectively
assumes that one spike would have occurred in response to an extra
stimulus repetition. Similar to the other decoders, this procedure was
iterated 500 times at each test azimuth, and in each iteration the test spike
counts n; were removed from the dataset before estimating f,(6) to avoid
overfitting.

The population-pattern decoder was also used to distinguish between
one and two separated sources. In this case, 6 could be any two-source
combination, and #; represented the spike count of neuron i in response
to some two-source combination. The same log likelihood as above was
then used to determine the two-source combination most likely to give
rise to the test spike counts. The estimated two-source combination was
further categorized as one source or two sources.

Performance of the population-pattern decoder was also tested when
the decoder was trained with “standard” data (normal binaural cues) and
tested on altered-cue data (incongruent binaural cues). In this case tun-
ing functions f,(0) were estimated from standard data and test spike
counts 1; were selected from altered-cue data.

Performance of each decoder was summarized by the mean absolute
error of localization over all source azimuths, €. In some cases the mean
absolute error was calculated over only contralateral or ipsilateral source
azimuths (including 0°), &cqpyra and &, respectively. Since decoder es-
timates were generated at each source azimuth over a finite number of
iterations, there will be some variability in the calculation of e. To esti-
mate this variability, we calculated ¢ from the population-pattern de-
coder on 100 separate simulations; the SD of & was only 0.06°.

Results
Poor source localization performance using
previous decoders
We tested the performance of alternative neural population de-
coders in estimating the azimuth of single sources in the frontal
hemifield. We used data from a previous study (Day et al., 2012)
in which single units (N = 78) were recorded from the right IC of
awake rabbits in response to broadband noise bursts presented in
virtual acoustic space at horizontal locations between =90°. The
decoders operate on the spike counts of IC neurons, as opposed
to the more general spike times. Spike counts have been shown to
contain the majority of mutual information between the neural
activity of IC neurons and ITD and ILD cues (Chase and Young,
2008). Best frequencies (BFs; the pure tone frequency yielding
maximum firing rate) spanned 0.3-17 kHz across the neuron
sample.

We first tested a “population vector” decoder (Georgopoulos
et al., 1982; Fischer and Pefa, 2011) of source azimuth. The re-
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Figure 1.  Population decoding schemes. A, In a place code, azimuth (red arrow) is read out
from the location of greatest activity along a topographic map of azimuth. B, For the
population-vector decoder, the activity of each neuron is represented as a vector with magni-
tude equal to its firing rate and direction equal to its best azimuth (black lines). Azimuth is
estimated as the direction of the vector sum. C, For the two-channel difference decoder, azi-
muth is estimated from the difference between the summed firing rates on the left and right
sides. D, For the population-pattern decoder, each azimuth is estimated from the pattern of
activity across the population. This can be visualized as a second layer of neurons associated
with each azimuth that sum population activity weighted by different synaptic strengths. Azi-
muth is estimated as that associated with the neuron in the second layer with greatest activity.

sponse of each neuron to a given sound source was represented by
avector whose direction is the neuron’s BA and whose magnitude
is the neuron’s firing rate in response to the source (Fig. 1B). The
source azimuth is then estimated as the direction of the vector
sum across the population.

The population-vector decoder performed very poorly at lo-
calizing sources in the frontal hemifield, classifying every source
to azimuths near 45° (Fig. 2A). This extreme contralateral bias
occurred because 93% (65/70) of BAs were located on the con-
tralateral side. A nonuniform distribution of tuning function
peaks is known to bias estimates in a vector decoding scheme
(Salinas and Abbott, 1994). However, the contralateral bias in the
distribution of BAs does not entirely explain the poor localization
of contralateral sources by the population vector; these estima-
tion errors were also partly due to heterogeneity in the shapes of
tuning functions across the sample (in particular, the marked
asymmetry of tuning functions, which we describe below). To
demonstrate this, we tested the population-vector decoder on a
simulated dataset in which the distribution of BAs was identical
to that measured in our sample but the tuning functions were all
Gaussians with equal variance (SD = 31°). Using these simulated
data, the decoder performed dramatically better at estimating the
azimuth of contralateral sources (€.onia = 9° VS €contra = 24°
using the empirical data). The poor performance of the
population-vector decoder was therefore due to both the bias
in BAs and the heterogeneity in the shapes of azimuth tuning
functions.

Next we tested the two-channel population decoder of
McAlpine et al. (2001), modified to decode azimuth rather than
ITD as in Stecker et al. (2005). Firing rates from neurons on the
right and “left” sides (see Materials and Methods) were summed
separately, and azimuth was estimated from the difference of the
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Figure 2.

Performance of previous decoders. A—, Distribution of estimated azimuths at each source azimuth for the population-vector, two-channel difference, and single-channel decoders,
respectively. Bubble diameter indicates fraction of estimates, where the sumin each column equals 1. e and &

ontra Me@N absolute error over all sources and only contralateral sources, respectively.

For completely random estimates, € .., = 63°. D, Summed firing rate across either all neurons (N = 78), neurons with low BFs (<<2 kHz; N = 21), neurons with high BFs (=2 kHz; N = 57), or
all neurons without a contralateral slope (N = 53). Summed rate for all BFs also plotted for azimuth tuning data from the IC of anesthetized cats (N = 105; Delgutte et al., 1999).

summed rates (Fig. 1C); we termed this the “two-channel differ-
ence” decoder. This decoder localized sources between *30°
nearly perfectly, but tended to blur source locations between 60
and 90° and between —60 and —90° (Fig. 2B). The mean absolute
error of localization for this decoder was 7°.

Lesion-behavior studies strongly suggest that the neural infor-
mation from the IC on one side is sufficient to localize sources on
the opposite side (Jenkins and Masterton, 1982). Even stronger
evidence for contralateral sufficiency is available for the auditory
cortex using reversible cooling of specific fields while cats per-
form a localization task (Malhotra et al., 2004). Could a single-
channel decoder (McAlpine et al,, 2001) therefore localize
contralateral sources? We tested this hypothesis by estimating
azimuth from the summed rate on one side, instead of the differ-
ence of summed rates. The single-channel decoder largely failed
to distinguish among source locations on the contralateral side
(&contra = 23°), although ipsilateral sources were localized accu-
rately (g;,; = 3° Fig. 2C). The reason for this poor performance
is that the summed firing rate plateaus at contralateral azimuths
(Fig. 2D), creating ambiguity between most contralateral loca-
tions. This ambiguity remained when we separately analyzed
low-BF and high-BF neurons, using a 2 kHz BF cutoff to separate
neurons whose azimuth sensitivity is determined by ITD in the
temporal fine structure from neurons sensitive to ILD and/or
envelope ITD (Devore and Delgutte, 2010; Day et al., 2012). We
also performed the same analysis on azimuth tuning functions
previously measured from IC neurons in anesthetized cats (Del-
gutte et al., 1999), using similar virtual acoustic space methods.
The summed rate in cats reaches a maximum around 15° and
decreases slightly at more lateral azimuths (Fig. 2D); therefore the
ambiguity of the summed neural activity at contralateral loca-
tions is not unique to rabbits.

Why does the summed firing rate plateau at contralateral lo-
cations? Good decoder performance requires the summed rate to
vary monotonically with azimuth, which would occur if the
slopes of individual tuning functions were all oriented in the
same direction and collectively spanned the entire range of con-
tralateral azimuths. For each azimuth-sensitive neuron in our
sample, we defined the “ipsilateral slope” of the azimuth tuning
function as the range of azimuths ipsilateral to the BA where the
firing rate grows from 10% of the maximum firing rate above the
ipsilateral minimum to 90% of the maximum firing rate (Fig.
3A). The “contralateral slope” was defined in the same way, if
existent, except it was referenced to the contralateral minimum.
We further computed the ipsilateral and contralateral half-
maximum azimuths—the azimuths at which the firing rate

equaled 50% of the maximum rate, if existent. The distribution of
ipsilateral slopes across the population of IC neurons nearly
spanned the entire frontal hemifield (Fig. 3B). However, 37% of
neurons, spread across the entire tonotopic axis, additionally had
a contralateral slope, meaning the firing rate decreased contralat-
eral to the BA by at least 20% of the maximum rate. Firing rate
was not as strongly modulated contralateral to the BA; only 9% of
neurons had contralateral slopes that decreased by at least 50%
from the maximum rate. Nevertheless, the existence of a sizeable
proportion of neurons with contralateral slopes causes the
summed firing rate to plateau at contralateral locations: the
summed rate excluding neurons with contralateral slopes was a
monotonic function of azimuth (Fig. 2D). Performance of the
single-channel decoder improved substantially when neurons with
contralateral slopes were excluded from the sample (g, a = 9° Vs
Econtra = 23° for all neurons).

Another trend apparent in Figure 3B is that ipsilateral slopes
are biased toward ipsilateral locations. We collapsed ipsilateral
slopes into the bar graph in Figure 3C, where each bar indicates
the fraction of neurons that have an ipsilateral slope overlapping
the corresponding azimuth bin. On the ipsilateral side, >50% of
neurons encode azimuths between —45 and 0° in the firing rates
of their ipsilateral slopes, while on the contralateral side this only
holds between 0 and 15°. We performed the same analysis on
azimuth tuning functions from IC neurons in anesthetized cats
(Delgutte et al., 1999) and the results were much the same as for
rabbits (Fig. 3C). The ipsilateral slopes of azimuth tuning func-
tions of IC neurons are therefore biased to encode ipsilateral
locations more than contralateral locations (Delgutte et al.,
1999).

Accurate decoding of source location using the pattern of
population activity

Although the diversity in the shapes of azimuth tuning functions
across IC neurons causes poor performance of the population-
vector and single-channel decoders, neural computations used
further along the auditory pathway may make use of the infor-
mation available in this tuning heterogeneity. For any source
location, the pattern of activity across the population of IC neu-
rons will be distinct from the patterns of activity evoked by
sources at other locations due to heterogeneous tuning. For in-
stance, Figure 4A shows the firing rates of neurons in our sample
in response to a source at 30°, ordered from greatest to least.
Maintaining the same order, the firing rates of the same neurons
are also shown for a source at 45°. The shift in source location
causes a slight change in the pattern of activity, which can be
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Delgutte et al., 1999). Dashed line indicates 50%.

more clearly seen by calculating the difference in firing rates be-
tween the two locations (Fig. 4B). The patterns for 30 and 45° are
clearly distinct, but we need to test whether the pattern for each
source location is distinct from every other source location, and
whether the differences are significant with respect to neural re-
sponse variability. We therefore implemented a maximum-
likelihood decoder operating on the pattern of spike counts
(Jazayeri and Movshon, 2006) across every IC neuron in the sam-
ple. The pattern-matching computation can be interpreted as a
summation of spike counts of IC neurons through a set of syn-
aptic weights onto a second layer of neurons, where each second-
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layer neuron represents one possible response azimuth (Fig. 1D).
Azimuth is then estimated as that of the second-layer neuron with
the greatest activity.

The “population-pattern” decoder estimated azimuth nearly
perfectly for sources located between *45°, but tended to blur
source locations between 60 and 90° and between —90 and —75°
(Fig. 4C). The overall performance exceeded that of the two-
channel difference decoder (¢ = 4° and ¢_,,,;, = 5° vs € = 7° for
the two-channel difference decoder). Unlike the two-channel dif-
ference decoder, the performance of the population-pattern de-
coder depends only on responses from one IC, consistent with
lesion studies (Jenkins and Masterton, 1982). We also trained and
tested the population-pattern decoder separately on neurons
with low BFs or with high BFs. Performance of the high-BF de-
coder was just as good as with all neurons (e, = 5% Fig. 4E),
but the low-BF decoder tended to blur lateral locations slightly
more (&cona = 9% Fig. 4D). This may, in part, be due to the
smaller number of low-BF neurons available in the dataset to
train the decoder.
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Rabbit behavioral acuity
(derived from Ebert et al.)
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Figure5. Behavioral azimuth JND versus reference azimuth, for rabbits, derived from datain
Ebert et al. (2008) (their Fig. 2c). Dashed line indicates a 15° JND. ITD JNDs from the Ebert et al.
(2008) data were transformed into azimuth JNDs using the inverse of the equation, ITD = (275
s) + sin(azimuth), taking reference location into account. JND data at the reference ITD of 300
s were used to compute the azimuth JND at a reference of 90°.

The all-BF pattern decoder also localized sources at ipsilateral
locations well, and did so with even higher accuracy than at con-
tralateral locations (&;,; = 2° VS 8cpa = 5°)- This is because the
ipsilateral slopes of azimuth tuning functions provide a wide
range of firing rates over which to encode azimuth, and ipsilateral
slopes tend to over-represent ipsilateral azimuths (Fig. 3C).
These results appear inconsistent with lesion studies in cats that
show an inability to localize ipsilateral sources accurately with
only a single intact IC (Jenkins and Masterton, 1982). Yet why
would the azimuths of ipsilateral sources be accurately repre-
sented in the IC if this information were only to be “lost” at higher
levels in the auditory system? It may be that neural information
regarding only contralateral, but not ipsilateral, source locations
remains reliable when stimulus parameters other than location
are varied, such as sound level, spectrotemporal profile, or the
presence of background noise or reverberation.

How many neurons does the population-pattern decoder
need to accurately estimate the azimuth of a source? To answer
this question, we examined how sensitive the performance of the
decoder was to population size. We trained and tested a sequence
of decoders of increasing population size with each population
randomly selected from our sample without replacement, and
repeated this selection 25 times for each size. Decoder perfor-
mance improved with size approximately following a power law
(Fig. 4F ), with a decoder using 38 neurons performing on average
with a mean absolute error < 5°.

Although rabbit behavioral localization data are unavailable
for comparison to decoder performance, our results can be indi-
rectly related to rabbit behavioral ITD acuity. Ebert et al. (2008)
measured just noticeable differences (JNDs) in ITD for low-
frequency (0.5-1.5 kHz) noise presented to rabbits. Using a mea-
sured mapping between ITD and azimuth for rabbits (Day et al.,
2012, their Fig. 2¢), we converted these ITD JNDs into azimuth
JNDs for each reference azimuth (Fig. 5). We assume that in a
localization task, a rabbit would confuse the locations of two
sources separated by less than one azimuth JND (Moore et al.,
2008). Based on this assumption and the Ebert et al. (2008) data,
we predict that (1) sources at 0 and 15° will not be mistaken for
each other; (2) sources at 30 and 45° are on the threshold for
being mistaken for each other; and (3) a source at 90° may be
mistaken for one at 75°, 60°, or 45°. Since the behavioral measure-
ments were conducted with low-pass noise, we compare these
predictions to the performance of the population-pattern de-
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coder trained only on low-BF neurons. Figure 4D shows that all
three of the above predictions are met by the low-BF decoder
using data from only 21 neurons; therefore performance of the
population-pattern decoder is consistent with this limited behav-
ioral dataset.

ITD acuity in rabbits is much worse at a reference ITD point-
ing to 90° as compared with a reference ITD pointing to 0° (Fig.
5). This observation is correctly predicted by the low-BF pattern
decoder (Fig. 4D). Some ambiguity at lateral azimuths remains
even when the decoder is trained with neurons of all BFs (Fig.
4C). These estimation errors occur because the firing rates of
most IC neurons tend to saturate at the most lateral azimuths,
with very few neurons having ipsilateral or contralateral slopes
that extend beyond 75° (Fig. 3). This saturation of rate is partly
due to the compression of the dependence of ITD and ILD on
azimuth at lateral positions (Day et al., 2012, their Fig. 2b,c). Rate
ambiguity due to compression of binaural cues with azimuth
could in theory be countered by placing sharper slopes in ITD
and ILD tuning functions at ITDs or ILDs corresponding to lat-
eral azimuths, but Figure 3 demonstrates that this rarely occurs
among IC neurons.

Consistency of population-pattern decoder performance with
the duplex theory

Early work by Lord Rayleigh (Strutt, 1907) determined that the
primary cue used to lateralize a pure tone is ITD for low-
frequency tones, and ILD for high-frequency tones. This “du-
plex” theory has been shown to largely hold for broadband noise
when investigated using manipulations of binaural cues in virtual
acoustic space (Wightman and Kistler, 1992; Macpherson and
Middlebrooks, 2002). In previous work (Day et al., 2012), we
investigated how IC neurons encode the azimuth of a noise
source when sound to the two ears is presented in either of two
conditions with incongruent binaural cues: (1) to allow the nat-
ural variation of ILD and spectral tilt with azimuth while ITD
remains fixed to its value at 0° (“fixed-ITD”) or (2) to allow the
natural variation of ITD with azimuth while ILD and spectral tilt
remain fixed to their value at 0° (“ITD-only”). For low-BF neu-
rons such as the example in Figure 6A, azimuth tuning functions
measured in the ITD-only condition were nearly the same as
those measured in the “standard” condition (where both ITD
and ILD varied naturally), while tuning functions were usually
flatin the fixed-ITD condition, showing that ITD cues were dom-
inant. On the other hand, for a majority of high-BF neurons,
fixed-ITD tuning functions tended to be similar to standard tun-
ing functions, while ITD-only tuning functions were either flat or
had shapes that did not match the standard tuning function (Fig.
6B). However, ITD-only tuning functions were similar to stan-
dard tuning functions in a minority of high-BF neurons (Fig. 6C).
Most high-BF neurons in our sample were sensitive to the ITD in
the fluctuating envelope induced by cochlear filtering of the
broadband sound waveforms, as shown by the similarity of ITD
tuning functions measured during the sustained portion of the
response with either the same or opposite waveform polarities at
the two ears (Joris, 2003; Devore and Delgutte, 2010; Day et al.,
2012). While the examples in Figure 6, A-C, suggest a general
consistency with duplex theory as far as the encoding of azimuth
in the firing rates of IC neurons, it does not necessarily follow that
the population decoding of azimuth would also be consistent
with duplex theory, especially for high-BF neurons that are sen-
sitive to multiple cues. We therefore examined the performance
of the population-pattern decoder when tested on data from con-
ditions with incongruent binaural cues.
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eral sources in the fixed-ITD condition
(Fig. 6I), indicating a stronger influence
of ITD than for contralateral sources.

The poor performance of the high-BF
decoder tested on data from the ITD-only
condition (Fig. 6H) may be simply due to
a possible weak dependence of the firing
rates of IC neurons on envelope ITD. To
address this possibility, we both trained
and tested the high-BF decoder on data
from the ITD-only condition. In this con-
dition, the performance of the high-BF
decoder dramatically improved (e = 9°vs
& = 38° when trained on the standard
condition). Therefore, source azimuth is
sufficiently encoded by the pattern of ac-
tivity across high-BF neurons in response
to stimuli varying only in ITD. The poor
performance of the high-BF decoder in
Figure 6H is due to differences between
these ITD-only response patterns and the
response patterns evoked by stimuli with
both natural binaural cues.

-90 P Eosiis — D € s = 43°

‘contra

-90

-90 0 90
ipsi contra
Source azimuth (°)
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Figure 6.

is tested on data in the fixed-ITD condition. Unity lines shown in DI (gray lines).

Using only neurons for which we had data from all three cue
conditions, we first trained and tested the population-pattern
decoder on data from the standard condition as a baseline of
performance, separately for low-BF and high-BF neurons (Fig.
6D, G, respectively). We then tested the same decoders on data
from either the ITD-only condition (Fig. 6 E,H) or the fixed-ITD
condition (Fig. 6F,I). This procedure is motivated by the idea
that an animal is “trained” on sound sources with naturally co-
varying—as opposed to incongruent—binaural cues. Perfor-
mance of the low-BF decoder was nearly the same when tested on
data from the ITD-only condition (Fig. 6E) as when tested on
data from the standard condition, but azimuth estimates when
tested on data from the fixed-ITD condition (Fig. 6F) remained
locked to the ITD cue (0°). Therefore decoder performance was
completely determined by ITD for low-BF neurons, consistent
with the duplex theory.

Performance of the high-BF decoder was more complex. Since
lesion studies imply that localization depends only on neural
information from the contralateral IC (Jenkins and Masterton,
1982), we focus on decoder performance for contralateral
sources. Localization of contralateral sources was reasonably ac-
curate in the fixed-ITD condition, although source laterality
tended to be overestimated by the decoder (Fig. 6I). In contrast,
azimuth estimates in the ITD-only condition (Fig. 6 H) remained
locked to the ILD cue (0°). Therefore azimuth estimates for con-
tralateral sources using the high-BF decoder were dominated by
ILD, consistent with the duplex theory. On the other hand, the
high-BF decoder severely undershot azimuth estimates of ipsilat-

Population-pattern decoding is consistent with the “duplex theory” of sound localization. A-C, Azimuth tuning
functions of 3 IC neurons under standard (solid line), [TD-only (dashed line), and fixed-ITD (dotted line) cue conditions. BF of each
neuron indicated in upper left corner. D, G, Localization performance of the population-pattern decoder using low-BF (N = 11) or
high-BF (N = 32) neurons, respectively. E, H, Performance of the decoder when trained on data in the standard condition and
tested on datain the ITD-only condition, using the same neurons asin Dand G, respectively. F, I, Same asin Eand H except decoder

Population-pattern decoder
distinguishes single sources from two
spatially separated sources

Best et al. (2004) measured the ability of
human listeners to detect the spatial sepa-
ration of two incoherent tokens of broad-
band noise presented concurrently in
virtual acoustic space. When emitted
from the same location, these stimuli are
perceived as a single sound source. A per-
cept of two sources was evoked by a sepa-
ration of about 15° when one of the sources was fixed at 0° a
progressively larger separation was necessary for a two-source
percept when one of the sources was fixed at more lateral azi-
muths (Fig. 7A).

The perceptual ability to distinguish the presence of two spa-
tially separated sources from that of a single source suggests that
the corresponding patterns of population activity in the IC must
also be distinct. We tested this hypothesis using data from the
rabbit IC. For each neuron, we recorded responses to two differ-
ent tokens of broadband noise presented concurrently in every
possible two-source combination in the frontal hemifield, in 30°
steps (Fig. 7B). As before, we used a maximum-likelihood de-
coder operating on the pattern of spike counts from every neuron
in the sample. This decoder classified each population response
into one of 28 possible unique location combinations (7 single-
source locations and 21 spatially separated combinations). Esti-
mates were then further categorized into “one source” or “two
sources.”

The population-pattern decoder performed very well (Fig.
7C), with 97% of population responses correctly distinguished
between single sources and two spatially separated sources over
all stimulus conditions. When one source was fixed at 0°, perfect
distinction was obtained for a separation of 30°, while a 60° sep-
aration was necessary for perfect distinction when one source was
fixed at either 90° or —90°. This trend approximates that of the
human psychophysical data (Fig. 7A); however, the spatial reso-
lution of our measurements was limited to 30° versus 3° in the
human data. Spatial separation was successfully detected for two
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sources confined to the ipsilateral side as
well as to the contralateral side. Further,
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VVVVY 30°

the performance of the decoder when
trained and tested on only low-BF neu-
rons or only high-BF neurons was similar
to that shown in Figure 7C using all neu-
rons (91, 97, and 97% of responses were
correctly distinguished for low-BF, high-
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fundamentally incompatible with distin-
guishing between one and two sources
because any two-source combination sym-
metric about 0° (e.g., 30 and —30°) would
activate both sides equally, with a difference
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of zero. The same would be true for a single
source at 0°. Therefore two sources symmet-
ric about the midline will always be indistin-
guishable from a single source at 0° for this
decoder. To address this problem, we mod-
ified the decoder to operate on both the left
and right summed rates independently in-
stead of their scalar difference (see Materials
and Methods). This extended two-channel
decoder was generally unable to distinguish
between single sources and two spatially
separated sources (Fig. 7D). In particular,
single sources at 0° 30°, or 60° were often misclassified as two
separated sources. These errors occurred because the left and
right summed rates in response to single sources were similar to
those evoked by some spatially separated two-source combina-
tions; for example, the left and right summed rates in response to
a single source at 30° were nearly identical to those in response
to two sources at 30 and 60°.

ipsi

Figure 7.

Neural sensitivity to interaural decorrelation underlies the
accurate detection of separation in front of a listener

Best et al. (2004) performed additional psychophysical experi-
ments to investigate the role of ITD in detecting the spatial sepa-
ration from a fixed source directly in front of a listener (0°).
Human listeners were able to detect the spatial separation of two
high-pass noises with as little physical separation as when detect-
ing the separation of two broadband noises (Fig. 84). However,
the separation of two broadband noises was more poorly detected
in a fixed-ITD condition compared with the standard condition
(Fig. 8A), despite the availability of high-frequency ILD cues in
the fixed ITD condition. Together, these psychophysical results
suggest that envelope ITD is an important cue for this task in the
case of high-pass noise. However, Best et al. (2004) did not di-
rectly test the detection of separation of highpass noises in the
fixed-ITD condition.

In previous work (Day et al., 2012), we observed a character-
istic firing rate suppression (Fig. 8B) or enhancement (Fig. 8C)
occurring in most high-BF IC neurons when one broadband
noise is separated from another broadband noise fixed at 0°.
These dramatic rate changes were also observed under the ITD-
only condition but not in the fixed-ITD condition, and we dem-
onstrated that such changes are due to neural sensitivity to the

0 1
-90 60 -30 0

Variable source azimuth (°)

: 0 \ . . .

30 60 90 -90 60 -30 0O 30 60 90
contra left right

Variable source azimuth (°)

Patterns of activity across IC neurons are largely distinct between single sources and two concurrent, separated
sources. A, Human perception of two sources as a function of separation between a fixed source and a variable source. Triangles
indicate location of the fixed source, with color-matched response curves below. Data from Best et al., 2004. B, Experimental
simulation for rabbits. Two sources are presented concurrently in virtual acoustic space in every possible two-source configuration
in the frontal hemifield. ¢, Performance of the population-pattern decoder on distinguishing two concurrent, separated sources
from single sources, using all neurons (N = 59). Triangles indicate location of the fixed source, same asin A. D, Performance of the
two-channel decoder, same asin C.

interaural decorrelation of cochlea-induced envelopes that oc-
curs when two sources are spatially separated. We proposed that
the rate suppression or enhancement in high-BF neurons—
evoked by interaural decorrelation—may underlie the detection
of separation of high-frequency sources in front of a listener. To
test this hypothesis, we investigated whether the performance of
the population-pattern decoder tested on data from cue-
manipulated conditions was consistent with the psychophysical
results outlined above.

We tested the decoder using those neurons from Day et al.
(2012) from which the following four sets of data were available
(as represented by the different lines in Fig. 8 B,C): (1) single-
source azimuth tuning function measured in 15° steps; (2) azi-
muth tuning function measured in the presence of an additional
source fixed at 0° and the same two-source azimuth tuning func-
tion (3) in the ITD-only condition and (4) in the fixed-ITD con-
dition. The population-pattern decoder was then trained on
population responses to both single sources and two spatially
separated sources in the standard condition and tested on re-
sponses in either the ITD-only or fixed-ITD conditions. For com-
parison we also tested the decoder on responses to two sources in
the standard condition.

When the decoder was tested on responses in the ITD-only
condition, perfect distinction between one and two sources was
obtained with a separation of 15°, the same as when tested in the
standard condition, while a 45° separation was necessary in the
fixed-ITD condition to achieve perfect distinction (Fig. 8D).
Therefore decoder performance was qualitatively consistent with
human performance in the fixed-ITD condition (Fig. 8A).

We also tested the decoder on populations containing only
neurons with either low BFs or high BFs. For the low-BF decoder
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Neural sensitivity to interaural decorrelation underlies the perception of source separation in front of a listener. 4, Human perception of two sources as a function of separation between

afixed source (triangle) and a variable source for broadband noises (black solid line), high-pass noises (green line), and broadband noises in a fixed-1TD condition (dotted line). Data from Best et al.,
2004. B, C, Azimuth tuning functions of two high-BF IC neurons to single sources (red line), and to a variable source in the presence of a concurrent fixed source (triangle) in the standard (black line),
[TD-only (dashed line), and fixed-ITD (dotted line) conditions. BF of each neuron indicated in corner. D, Performance of the population-pattern decoder on distinguishing two concurrent, separated
sources from single sources using all neurons (solid line; N = 43). Performance of the decoder using the same neurons when trained on data in the standard condition and tested on data either in
the ITD-only (dashed line) or fixed-ITD (dotted line) conditions. E, F, Same as in D except the decoder used only neurons with low BFs (V = 11) or high BFs (N = 32), respectively.

(Fig. 8E) tested on the ITD-only condition, a majority of neural
responses was classified as two sources when sources were sepa-
rated by 15°. On the other hand, when tested on the fixed-ITD
condition, no physical separation could cause a majority of re-
sponses to be classified as two sources. This result was expected
given the dominance of ITD cues in the azimuth sensitivity of
low-BF neurons.

For the high-BF decoder (Fig. 8F), performance was also good
in the ITD-only condition, but poor in the fixed-ITD condition,
very similar to the performance obtained with all neurons. This
means that the patterns of activity across high-BF IC neurons
used to distinguish one source from two separated sources are
similar between conditions in which all natural binaural cues are
available and conditions in which only ITD varies naturally, and
are dissimilar when only ILD varies naturally. This result is inter-
esting because decoder performance on single-source localiza-
tion using these same high-BF neurons was largely dependent on
neural sensitivity to ILD (Fig. 6 G-I). In summary, the detection
of separation of two sources when one is fixed at 0° depends
on strong neural sensitivity to interaural decorrelation, and this
holds both at low and high frequencies.

Discussion
Our detailed analyses of single-unit data from the IC of awake
rabbits show that decoders that reduce azimuth tuning functions
to either their peaks (population vector) or to population-
averaged activity on one side (single channel) fail to estimate
accurately the azimuth of a broadband noise at locations con-
tralateral to the IC. The poor performance of these decoders is
due to heterogeneities in both the shapes of azimuth tuning func-
tions and the locations of BAs across the population. In contrast,
a decoder operating on the pattern of spike counts across IC
neurons from a single side estimated sources at all locations with
high accuracy (e = 4°) and with precision comparable to rabbit
behavioral data.

We further used the population-pattern decoder to link psy-
chophysical observations to neural activity in the IC. Decoder

performance was consistent with the duplex theory of sound lo-
calization when tested on sounds with incongruent binaural cues.
Specifically, the ability of the low-BF decoder to localize sources
required natural ITD cues, while the ability of the high-BF de-
coder to localize contralateral sources required natural ILD cues,
despite sufficient information from envelope ITDs at high fre-
quencies. Both of these findings parallel human performance in
similar conditions (Macpherson and Middlebrooks, 2002).
Moreover, the decoder could accurately distinguish between a
single broadband noise and two concurrent noises spatially sep-
arated in the frontal hemifield, consistent with human perfor-
mance (Bestetal., 2004). Performance of the decoder when tested
under incongruent cue conditions strongly suggests that the abil-
ity to detect small spatial separations directly in front of a listener
is due to neural sensitivity to interaural decorrelation.

Pattern decoding could be implemented by simply integrating
IC responses through synaptic weights onto a second layer of
neurons (Fig. 1D). If this putative second layer were the anatom-
ical target of IC projections in the thalamus, then we would ex-
pect thalamic neurons to have narrow azimuth tuning functions.
However, azimuth tuning in medial geniculate neurons tends to
be broad, similar to that of primary auditory cortex (Clarey et al.,
1995). While it is unlikely that a pattern decoding computation is
implemented in the tectothalamic circuit, our analyses generally
suggest that a decoding circuit further along the auditory path-
way should be able to accurately estimate source azimuth based
on information contained in the spike counts of IC neurons if
some of the location-specific information represented in the vari-
ation of tuning functions across neurons (both tuning peaks and
shapes) is retained.

Comparison to previous sound localization decoding studies

Lesica et al. (2010) tested both the single-channel decoder and a
variant of the population-pattern decoder on spike counts from
low-BF IC neurons in anesthetized gerbils measured in response
to broadband noise varying in ITD. Unlike the present results,
they found that the single-channel decoder could estimate the



15846 - ). Neurosci., October 2, 2013 - 33(40):15837-15847

stimulus ITD nearly as well as their population-pattern decoder.
In particular, the dependence of summed firing rate on ITD
within the range of ITDs used to localize sources was strictly
monotonic for gerbils, unlike the plateau at contralateral azi-
muths observed in rabbits and cats (Fig. 2D). This discrepancy
may be simply due to differences in the range of ITDs used to
localize sound sources in each species. Best ITDs of IC neurons
are generally distributed on the contralateral side between 0 and
(2+BF) "' ITD (the so-called “7r-limit”; McAlpine et al., 2001;
Hancock and Delgutte, 2004; Joris et al., 2006). The wider the
ITD range used to localize sources, the more best ITDs will fall
within this range, and therefore the more contralateral slopes of
azimuth tuning functions will appear in the population (Fig. 3B),
causing a plateau in the summed firing rate at contralateral azi-
muths. Since the ITD range of gerbils (Maki and Furukawa, 2005)
is about one-half that of rabbits (Kim et al., 2010; Day et al., 2012)
or cats (Tollin and Koka, 2009), and one-fifth that of humans, the
success of the single-channel decoder in gerbils (at low frequen-
cies) is therefore likely due to their small ITD range.

A previous study in anesthetized cat IC from our laboratory
used a two-channel difference scheme to show parallel effects of
reverberation on IC responses and on psychophysical lateraliza-
tion judgments (Devore et al., 2009). While this study did not
explicitly test the localization performance of the two-channel
difference decoder, both the summed rate for cats shown in Fig-
ure 2D, and the difference of summed rates (Devore et al., 2009;
their Fig. 6b) show that neither the single-channel nor two-
channel difference decoders would match the behavioral acuity
of cats at the most lateral azimuths (Heffner and Heffner, 1988).
It remains to be seen whether the population-pattern decoder
can account for localization performance in the presence of
reverberation.

A recent azimuth decoding study in barn owls (Fischer and
Pefia, 2011) showed that the performance of the population-
vector decoder operating on the firing rates of modeled optic
tectum neurons was consistent with behavior. It is likely that the
success of the population vector was due to the nearly symmetri-
cal azimuth tuning of modeled neurons. Tuning functions were
narrow and had BAs < 50°, thereby largely avoiding lateral azi-
muths where the compression of ITD with azimuth causes asym-
metric tuning. In contrast, the azimuth tuning functions in rabbit
are broad and have mostly asymmetrical shapes (Fig. 3), which
leads to extremely poor performance of the population-vector
decoder.

Neural pattern decoding of sound source location has also
been studied in the auditory cortex. Using the same pattern de-
coder as in the present study, Miller and Recanzone (2009) found
that the azimuth of sources far to the contralateral side, but not
the ipsilateral side, could be estimated from firing rates of neu-
rons in the auditory cortex (both core and belt areas) of awake
macaques. However, estimation of frontal locations was substan-
tially worse than with the present IC decoder, even with a cortical
population size of 128 neurons. It may be that some of the
location-specific information available in the temporal firing pat-
terns of cortical neurons (Middlebrooks et al., 1994) is necessary
to achieve the same level of performance as that based on IC spike
counts. Nevertheless, a simple two-channel difference decoder
operating on the summed rates of subpopulations of ipsilateral-
and contralateral-tuned auditory cortical neurons from the same
hemisphere in anesthetized cats could also localize sources with
reasonable accuracy (Stecker et al., 2005); however, in this model,
responses of neurons with BAs within +30° were excluded from
the computation. These excluded neurons would likely have tun-
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ing functions with contralateral slopes, which would cause the
summed rate to plateau and degrade localization performance. It
remains unclear how to reconcile the accurate performance of the
suboptimal cortical two-channel difference decoder (Stecker et
al., 2005) with the poor performance of the theoretically optimal
cortical population-pattern decoder (Miller and Recanzone,
2009) on estimating frontal locations, unless the discrepancy is
simply due to differences in species and anesthetic state.

Patterns of neural activity indicating “glimpses” of a source
in isolation
A major unresolved question is how the auditory system localizes
sound in realistic environments with multiple, concurrent
sources and reverberation. The problem that confronts the audi-
tory system is that spatially separated sources with overlapping
spectral and temporal properties produce fluctuating binaural
cues distorted from those that occur for each source indepen-
dently (Day et al., 2012, their Fig. 1). Fortunately, most natural
sounds are spectrotemporally sparse such that in the presence of
multiple sources, the acoustic energy in certain frequency chan-
nels at certain moments in time will be dominated by a single
source. One strategy to localize in a multisource environment is
to accumulate evidence of spatial location during these glimpses
of a source in isolation (Yost and Brown, 2013). However, some
indicator would be required to identify which instants contain
one source in isolation. Using a model of auditory signal process-
ing, Faller and Merimaa (2004) showed that the correct ITD and
ILD cues associated with each source in a multisource condition
can be computed during those glimpses when the interaural co-
herence between left and right peripherally filtered signals is high.
Our decoder results show that the pattern of activity across IC
neurons is highly dependent on interaural coherence in some
conditions (Fig. 8), suggesting it may be a reliable indicator of the
presence of single sources. Since the population-pattern decoder
distinguishes between the presence of one and two sources, it may
also be able to distinguish between the presence of one and many
sources, or even between anechoic and reverberant conditions;
both multisource and reverberant conditions cause interaural
decorrelation and would therefore dramatically change the pat-
tern of IC activity from that in response to a single, anechoic
source. In this way, a decoder could accurately localize sources by
only accumulating evidence during glimpses when the pattern of
activity across IC (or perhaps a tonotopic subregion of IC)
matches the known pattern for a single source in anechoic con-
ditions. All other perceptual qualities of sound present in the
neural representation during a glimpse might then be temporally
bound to aid segregation of that source from others (Shamma et
al,, 2011).
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