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Abstract
It is difficult to study the breakdown of disc tissue over several years of exposure to bending and
lifting by experimental methods. There is also no finite element model that elucidates the failure
mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to
refine an already validated poro-elastic finite element model of lumbar motion segment to
investigate the initiation and progression of mechanical damage in the disc under simple and
complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated
into the finite element model to track the damage accumulation in the annulus in response to the
repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus
adjacent to the endplates and propagated outwards towards its periphery under all loading
conditions simulated. The damage accumulated preferentially in the posterior region of the
annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive
bending in the absence of compressive load. Compressive cyclic loading with low peak load
magnitude also did not create the failure of the disc. The finite element model results were
consistent with the experimental and clinical observations in terms of the region of failure,
magnitude of applied loads and the number of load cycles survived.
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1. Introduction
Low back pain is a major health condition affecting every population worldwide
(Andersson, 1999). It can lead to decreased quality of life, diminished physical activity and
psychological distress (Deyo and Tsui-Wu, 1987; Deyo et al., 2011). Intervertebral disc
degeneration is associated with low back pain (Cheung et al., 2009; Luoma et al., 2000;
Samartzis et al., 2011; Savage et al., 1997). Appearance of annular lesions has been
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suggested (Osti et al., 1992; Sharma et al., 2009a, 2009b; Vernon-Roberts et al., 2007a, b) as
the first sign of the disc degeneration process. Epidemiological studies have identified
frequent bending and lifting as a major risk for disc prolapse (Kelsey et al., 1984; KUMAR,
1990). Damage to disc structure has been reported in response to cyclic loading of the
motion segment by a number of studies involving human cadavers and animal models
(Adams and Hutton, 1983; Adams and Hutton, 1985; Adams et al., 2000; Goel et al., 1988a,
b; Hansson et al., 1987; Liu et al., 1983; Liu et al., 1985; Yoganandan et al., 1994). Yu et al.
(2003) reported presence of irregular fibres, buckling and bleeding in the porcine annulus in
response to compressive cyclic loading. Gordon et al. (1991) reported disc herniation in 14
cadaveric lumbar motion segments, subjected to combination of flexion, axial rotation and
compression for an average duration of 36,750 cycles. Liu et al. (1983) subjected cadaveric
lumbar motion segments to cyclic axial loads ranging from 37%–80% of their failure load
limit for up to 10,000 cycles. Disc injury was reported in 2 of 11 specimens while all the
specimens experienced endplate or vertebral bone cracking. Parkinson and Callaghan (2009)
conducted a series of in-vitro fatigue testing on porcine motion segments to understand the
failure mechanism. They concluded that cyclic flexion/extension bending results in the
failure of the disc while large cyclic compressive loading fractures the vertebral body.
Average numbers of load cycles for disc injury were reported to be 9000 as compared to 930
for vertebral bone fracture. Marshall and McGill (2010) showed that cyclic flexion/
extension bending of porcine motion segments caused nucleus tracking through the posterior
annulus, while cyclic axial rotation resulted in the radial delamination of the annulus. In case
of the human cadaver studies, it is difficult to obtain a large number of specimens without
disc degeneration or pre-existing annular disruptions. With current imaging techniques it is
not possible to identify the location and extent of damage during different stages of testing
without interruptions. It is difficult if not impossible to apply complex loadings that are
representative of daily life activities in the cadaver testing setup. These limitations make it
hard to track the initiation and progression of structural damage in the intervertebral disc
under complex loading conditions in the experimental setup.

Finite element (FE) modelling has been used extensively to explore the spine biomechanics.
However most of the FE models of the spine are employed to elucidate the spine kinematics
under single load cycle (Goel et al., 1995; Argoubi and Shirazi-Adl, 1996; Rohlmann et al.,
2006; Little et al., 2007; Schmidt et al., 2007; Galbusera et al., 2011). Damage to disc
structure had been studied using FE models but there is no FE study for lumbar spine that
investigates the degradation of the disc due to cyclic loading to the best of the authors'
knowledge (Shirazi-Adl, 1989; Natarajan et al., 1994; Schimdt et al., 2009). Initiation and
progression of structural damage can be tracked in a motion segment by employing user
written codes in conjunction with the FE model. The purpose of this study was to employ
continuum damage mechanics methodology to predict damage initiation and progression in
the disc under cyclic loading using a poro-elastic FE model of a lumbar motion segment.
The current analysis was restricted to the damage analyses in the annulus only. The FE
model considered annulus as a single continuum body reinforced by collagen fibres instead
of multilayered structure. It was hypothesised that the (a) number of load cycles to disc
failure will decrease as the motion segment is subjected to complex loading rather than uni-
axial compressive loading and (b) damage will initiate and progress preferentially in the
posterior region of the disc under all loading conditions.

2. Materials and method
2.1. 3D poro-elastic finite element model of L4/L5 lumbar motion segment

A previously validated (Natarajan et al., 2006; Natarajan et al., 2008; Williams et al., 2007;
Tyrrell et al., 1985) three dimensional non-linear poro-elastic FE model of a healthy lumbar
L4–L5 motion segment was modified for the current study. It included parameters such as
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porosity, osmotic pressure and the strain dependent permeability. Element and material
model information for the FE model are listed in the Table 1 and detailed information is
included in the appendix. FE analyses were carried out using a commercially available
software package ADINA (ADINA R&D Inc., Watertown, Massachussetts).

2.2. Continuum damage mechanics
Kachanov (1999) introduced a concept of damage being continuously distributed throughout
the solid and proposed a damage variable as an internal state variable describing the state of
degradation of the material. A computational methodology (Verdonschot and Huiskes,
1997) for the prediction of degradation of materials under cyclic loading based on
Kachanov's concept was employed in the current study to investigate the failure progression
in the annulus. Continuum damage mechanics formulation along with the FE modelling was
employed to simulate the fatigue behaviour of the human cortical bone (Taylor et al., 1999a,
b). Jeffers et al. (2007) and Lennon et al. (2007) also used it to investigate the cement mantle
failure and loosening of femoral components in total hip arthroplasty respectively.

2.3. Application of continuum damage methodology to lumbar spine FE model
In the FE model, annulus was divided into 1920 elements. Element properties were
calculated at eight integration points distributed within the element. At the beginning of the
analysis each integration point in the elements representing annulus was assigned a value of
zero for the damage variable d representing its healthy state (Fig. 1). The loading was
applied to the FE model in incremental steps. At the maximum load step, principal tensile
stress was calculated at each integration point in the annulus elements. The number of load
cycles to failure (N) was calculated at each integration point in the annulus using a Stress–
Failure (S–N) curve. The lowest number of cycles to failure (Nmin) corresponded to the
integration point with the highest tensile stress value. Damage d at each integration point
was incremented as

where i represents the integration point and t represent the iteration number.

When damage d for an integration point reached a predefined limit, the corresponding
integration point in the element was assumed unable to share any load. The elastic modulus
at the damaged integration points was reduced to a predetermined value thus introducing the
degradation of the material at that location in the annulus. Even though the damage to the
tissue occur only in the direction of tensile principal stress, the algorithm assumes damage
equally occurs in all the three principal directions at each integrating point within an
element. The number of load cycles required to cause the given damage in the annulus was
equal to Nmin.. The stiffness matrix was then updated. The same loading was again applied
to the motion segment and damage was incremented for each integration point following the
above procedure. The damage initiation and progression was tracked by recording the
damaged integration points. The procedure was implemented by introducing a FORTRAN
code in the ADINA subroutine (“User Supplied Material”) that allowed changing elastic
modulus at each integration point of the annulus.

2.4. Stress–failure (S–N) curve for annulus
The S–N curve for the annulus was developed by using the data from a cyclic cadaver study
carried out by Green et al. (1993). They tested 22 annulus slices from the anterior and
posterior regions of the lumbar discs (age range 19–71 years) under different magnitudes of
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tensile stress for up to 10,000 cycles. In situ tensile strength of the annulus was then
estimated based on the size of the specimens. The numbers of cycles to failure at different
magnitudes of stress for individual specimens were plotted. A curve fit based on the power–
law represents the S–N curve for the annulus (Fig. 2). The logic behind using power–law
model rather than a linear model as reported for other biological tissues (Schechtman and
Bader, 1997; Wang et al., 1995) was to include the effect of endurance limit observed during
cyclic testing of annulus fibrosus (Green et al., 1993).

2.5. Effect of magnitudes of elastic modulus and damage parameter at damaged
integrating points on the damage progression

Analyses were carried out to investigate the effect of elastic modulus and damage parameter
value at the damaged integration points on the damage accumulation in the annulus. For this
the motion segment was subjected to a compressive cyclic loading with a peak load of 800
N. Analyses were conducted by reducing the elastic modulus at the damaged integration
points to one tenth, one hundredth and one thousandth of its original value at three different
values of damage parameter (0.99, 0.90, and 0.80). In total nine simulations were performed;
three different values of damage parameter paired with three different values of elastic
modulus at damaged integration points.

A much faster failure progression was observed when the elastic modulus was reduced to
one hundredth than if it was reduced to one tenth of its original value (Fig. 3). However
damage progression rate did not change appreciably when elastic modulus was reduced to
one thousandth rather than one hundredth of its original value (Fig. 3). Thus the magnitude
of the elastic modulus at the damaged integration point had a considerable effect on the rate
of damage accumulation.

The damage accumulation was faster with a decreasing value of d and became slower with
an increasing value of d (Fig. 4). However, the difference between the three cases was not
appreciable. Thus the damage parameter value at which the integration point was considered
degraded did not have a considerable effect on the damage progression rate.

Same conclusions were reached from all the nine combinations. Based on the above findings
it was decided to reduce the elastic modulus of the integration point to one hundredth of its
original value, if its damage parameter reached a value of 0.90 for subsequent analyses.

2.6. Validation of the FE model incorporated with damage accumulation formulation
The FE model incorporated with the continuum damage mechanics methodology was
validated by comparing the results with the human cadaver study carried out by Gordon et
al. (1991). They studied the disc rupture mechanism using 14 human lumbar motion
segments (age range 18–65 years) under complex cyclic loading. 12 motion segments were
from L1L2, L3L4 and L4L5 levels with four specimens at each level and two specimens
were from L2L3 level. Testing was carried out under displacement control. Motion
segments were subjected to 7° flexion, 0.93±0.56 mm compression and 1.9±0.6° axial
rotation simultaneously. The testing was stopped when a sharp decrease in the forces was
observed and the motion segment was considered failed at that load cycle. They reported
mean failure cycles of 36,750 with a standard deviation of 12,612. Ten discs showed annular
protrusion and four showed nuclear extrusion in the posterior region. Annular tears were
found in all specimens in the posterolateral region. The current FE model was subjected to
7.16° flexion accompanied by 1.09 mm axial compression and 1.67° axial rotation
simultaneously in order to compare the results with the in vitro study.
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2.7. Loading conditions
In order to investigate the effect of different modes of loading on damage accumulation in a
lumbar disc, simple and complex loadings were applied to the motion segment. Simple
loading conditions involve the application of either the axial compressive load or the
bending moments in one of the three principal directions (Table 2, Load cases 1–5).
Complex loading scenarios were simulated by the application of the bending moments in
single or multiple directions along with the compressive load (Load cases 6–10).
Compressive load was simulated by applying a uniform pressure on the top of the superior
endplate. Bending moments were simulated by applying equal and opposite forces at
appropriate points on the top surface of L4 vertebra.

3. Results
The FE model subjected to the loading conditions similar to the in vitro study predicted that
the motion segment will require 31,855 cycles to fail for the given loading. The FE model
identified damage initiation and progression in the posterior region of the annulus. The
current FE study results thus matched well with the cadaver study observations in terms of
number of load cycles to failure and location of damage accumulation (Gordon et al., 1991).

Damage accumulation in the annulus with increasing number of load cycles was plotted
under different simple and complex loading conditions (Fig. 5). The damaged annulus
volume increased almost linearly with increasing number of load cycles until the point of
failure under all loading modes. At the failure point an exponential increase in the damaged
annulus volume was observed against a very small increase in the number of load cycles.
The number of load cycles to failure decreased as the motion segment was subjected to
bending moments in addition to the compressive load. The failure load cycle was identified
by sharp increase in failure volume against a very small increase in number of load cycles.

Application of 6 Nm moments in the three principal directions without any compressive load
(Load cases 3–5) did not create the failure of the disc, regardless of the number of applied
load cycles. Similarly, cyclic compressive loading with a peak load of 400 N (Load case 1)
did not fail the disc. The FE model predicted the failure of the disc in 50,798 load cycles
under cyclic compressive loading with a peak load of 800 N (Load case 2). Introduction of 6
Nm moments in the three principal directions in concert with the cyclic compressive load
(Load cases 6–8) decreased the number of load cycles to failure by 50%(flexion), 32%
(lateral bending) and 18%(axial rotation) as compared to the uni-axial cyclic compressive
loading (Load case 2). Application of 6 Nm moments in flexion, lateral bending and axial
rotation simultaneously along with the compressive cyclic load (Load case 10), reduced the
number of load cycles to failure by 71% as compared to the cyclic compressive loading
(Load case 2).

FE model predicted the initiation of damage at the posterior region of the inner annulus next
to the inferior endplate and progressed towards outer periphery under all loading conditions
considered (Fig. 6). Damage was also identified at the mid disc height in the posterior
annulus which did not propagate beyond few inner annulus layers. Introduction of bending
moments caused the damage to progress preferentially in the posteriolateral region of the
annulus.

Even though the failure of annular fibres based on maximum strain value (for assumed fibre
failure strain of 15%) was also included in the analyses (Shirazi-Adl et al., 1986), no fibre
damage was observed in any of the simulations.
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4. Discussion
A poro-elastic FE model of L4/L5 lumbar motion segment incorporated with continuum
damage mechanics methodology was presented that predicted structural damage in the disc
under cyclic loading. Results of the validation study were consistent with the experimental
observations in terms of the region of failure, magnitude of applied loads and the number of
load cycles. In vitro and in vivo human studies have reported occurrence of radial fissures in
the posterior annulus (Haefeli et al., 2006; Osti et al., 1992; Sharma et al., 2009a, 2009b;
Vernon-Roberts et al., 2007a, b). Cyclic testing of porcine discs also reported failure in the
posterior annulus (Marshall and McGill, 2010;Callaghan and McGill,2001). Thus damage
accumulation in the posterior annulus as predicted by the current FE model matched well
with clinical and experimental observations. The numbers of load cycles to failure predicted
for complex loading modes were considerably smaller than those for uni-axial loading
supporting the first hypothesis. Damage initiated and progressed preferentially in the
posterior annulus under all loading conditions simulated in this study validating the other
hypothesis.

Goel et al. (1988) subjected 11 cadaveric human lumbar spines T12-S1 to 3Nm flexion
moment for up to 9600 cycles. They reported structural failure in none of the discs, which is
consistent with the results from the current study. The FE model results showed that the
repetitive bending without compressive load and cyclic compressive loading with low peak
load magnitude did not create a failure in the disc irrespective of the number of load cycles.
These findings compare well with the results presented by Callaghan and McGill (2001)
who observed just an initiation of a fissure in the posterior region in only 1 out of 5 discs
subjected to low compressive load. Marshall and McGill (2010) reported increased annulus
damage in porcine discs subjected to combination of axial rotation and flexion/extension
than those tested under flexion/extension alone. This result supports the less number of load
cycles to failure predicted under complex loading modes than single axis bending in the
current study.

One of the major limitations of the algorithm used here is that even though the damage to
the tissue occurs only in the direction of tensile principal stress, the algorithm assumes
damage equally occurs in all the three principal directions at each integrating point within an
element. The current analyses also did not take into account the changes in the viscoelastic
characteristics of the annulus due to the fluid flowing in an out of the disc with increasing
number of load cycles which is another major limitation of the analyses. Instead, the damage
accumulation methodology was employed as it enabled the simulation of large number of
load cycles without having to run every load cycle, thus dramatically reducing the
computational expense. Further, the change in permeability resulting from instantaneous
disc volume change due to loading was approximated by the change in axial strain in the
tissue rather than change in void ratio in the tissue. It should also be noted that the modulus
values assumed for facet cartilage and AF matrix in the current analyses were based on
tensile tests and much smaller values should be considered in compression.

Damage accumulation was designed as a linear process which is a fair assumption in
absence of any experimentally derived data on damage propagation in the annulus. The
analyses further assumed no rest periods between the loading cycles as well as the tissue
healing process. Shearing between the annulus layers has been suggested to cause the
delamination of the annulus layers (Iatridis and ap Gwynn, 2004; Marshall and McGill,
2010; Schmidt et al., 2009). However, lack of stress–failure curve based on shear stress
made it impossible to include the damage mechanism due to shearing.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Numerical algorithm based on continuum damage mechanics methodology incorporated into
finite element model to investigate the initiation and progression of structural damage in the
annulus.
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Fig. 2.
Stress–Failure (S–N) curve for annulus fibrosus. Annulus specimens from different discs
were cyclically loaded in tension for up to 10,000 cycles by Green et al. (1993). Stress level
and the numbers of load cycles to failure are plotted for each specimen. A trend line based
on power function represents the fatigue behaviour of the annulus ground material.
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Fig. 3.
Failure progression for different values of elastic modulus for failed integrating point.
Elastic modulus of failed integrating points was reduced by one tenth, one hundredth and
one thousandth of its normal value.
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Fig. 4.
Failure progression for different values of damage parameter d at which integrating point is
declared failed. A value of zero for d represents the normal state of the annulus with no
damage. Analyses was carried out for three values of d i.e. 0.80, 0.90, 0.99.

Qasim et al. Page 14

J Biomech. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Damage accumulation in the annulus fibrosus under different loading conditions. Failure
cycle is identified by sharp increase in the failure volume against a small increment in the
number of load cycles.
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Fig. 6.
Damage accumulated in the annulus up to the failure cycle under cyclic compressive loading
with a peak load of 800 N. White colour shows the volume of the annulus that has degraded
while black colour represents the normal annulus.
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