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Abstract
The underlying mechanisms of schizophrenia pathogenesis are not well understood. Increasing
evidence supports the glutamatergic hypothesis that posits a hypofunction of the N-methyl D-
aspartate (NMDA) receptor on specific gamma amino-butyric acid (GABA)-ergic neurons may be
responsible for the disorder. Alterations in the GABAergic system have been observed in
schizophrenia, most notably a change in the expression of parvalbumin (PV) in the cortex and
hippocampus. Several reports also suggest abnormal neuronal migration may play a role in the
etiology of schizophrenia. The current study examined the positioning and distribution of PV-
positive cells in the hippocampus following chronic treatment with the NMDA receptor antagonist
ketamine. A robust increase was found in the number of PV-positive interneurons located outside
the stratum oriens (SO), the layer where most of these cells are normally localized, as well as an
overall numerical increase in CA3 PV cells. These results suggest ketamine leads to an abnormal
distribution of PV-positive cells, which may be indicative of aberrant migratory activity and
possibly related to the Morris water maze deficits observed. These findings may also be relevant
to alterations observed in schizophrenia populations.
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Introduction
Schizophrenia is a severe neuropsychiatric disorder for which the underlying mechanisms
are not well understood [35]. Post-mortem investigations of patients with schizophrenia
have identified disruptions in glutamatergic signaling, most notably a hypofunction of the N-
methyl D-aspartate (NMDA) glutamate receptor [1,4,6,11,13]. Abnormal activity of NMDA
receptors on gamma amino-butyric acid (GABA)-ergic interneurons in particular has been
observed in the brains of schizophrenic patients [49]. A reduction in the expression of the
calcium-binding protein parvalbumin (PV) in fast-spiking GABAergic interneurons is
another consistent pathological feature of the disorder [2,15,29,50]. This change is
commonly reported as a decrease in mRNA expression or the number of PV-positive cells
[2,15,29], while more recent reports suggest the reduction is in the mean PV intensity per
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cell [25,40,48]. These findings collectively suggest that aberrant GABA functioning may
play an influential role in aspects of schizophrenia.

Neurodevelopmental hypotheses of schizophrenia indicate abnormal migration of newborn
neurons may play a role in the disorder [18]. The expression of reelin, a protein implicated
in neuronal migration during development [9,16], shows profound reductions in post-
mortem brains of schizophrenia patients [17], particularly in the prefrontal cortex [14] and
hippocampus [12]. Genetic linkage studies with schizophrenia patients have reported
additional risk factors tied to migratory regulation such as MDGA1 [20,30] and Disrupted-
in-Schizophrenia-1 (DISC1) [7,45]. DISC1 in particular has been implicated in normal
neuronal migration in the hippocampus [10,24,27], suggesting DISC1 mutations may impair
migration and alter network function in schizophrenia.

Sub-anesthetic doses of noncompetitive NMDA receptor antagonists, such as phencyclidine
(PCP) and ketamine, produce neurological and behavioral alterations consistent with
schizophrenia in humans [19,28,47]. Investigations of disease processes in rodents have also
benefitted from pharmacological approaches with these drugs [3,8,37,44]. Modeling aspects
of schizophrenia in various animal systems has demonstrated heterotopic expression of
newborn neurons during development [21,33] and adulthood [31,36]; however, the types of
abnormally migrated neurons have not been well elucidated. Based on the altered expression
of PV in schizophrenic brains, we examined the distribution and localization of PV-positive
neurons within the CA3 region of the hippocampus and cortex following chronic
administration of ketamine. In this exploratory study, we observed differences in the number
and positioning of the PV-positive cells which may be indicative of migratory deficits, and
could be linked to altered connectivity.

Methods
Subjects

Forty male Sprague-Dawley rats (n=10) from Charles River Laboratories (Hollister, CA,
USA) weighing between 250 and 350 g were pair-housed in a standard animal facility with a
12–12h light-dark cycle, and with food and water available ad libitum. All procedures were
performed in accordance with the institutional Animal Care and Use Committee and NIH
guidelines for ethical treatment of research subjects.

Drugs
Ketamine HCl (Henry–Schein, Indianapolis, IN) was diluted in physiological saline (VWR,
Bridgeport, NJ) to achieve a final concentration of 8 mg/ml as has been previously
demonstrated to impair sensorimotor gating and spatial learning [42]. Ketamine or saline
was administered subcutaneously once daily at a dose of 1 ml/kg of body weight beginning
on the first day of behavioral testing through the completion of testing, a total of 18 days
consistent with previous investigations [42].

Morris Water Maze
The Morris water maze (MWM) was conducted as described previously [42]. In experiment
1, subjects underwent 5 days of acquisition followed by a probe trial an average of 5 hours
later. Ketamine-administered rats were then retrained for 7 additional days in an effort to
determine if equivalent performance to controls could be achieved prior to 3 days of reversal
training and 2 days of visible training. Based on the data from the first experiment a second
experiment was performed to replicate and verify tissue results. In experiment 2, small
variations were made in reversal training in order to parse out ketamine-induced deficits, but
overall number of days of drug administration and training days was consistent.
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Immunohistochemistry
Half of the animals run in each of the Morris water maze (n=5) experiments were randomly
selected for transcardial perfusion with 4% paraformaldehyde following CO2 asphyxiation.
Brains were then removed and placed in 4% paraformaldehyde at 4° C for 48 hours before
being moved to a 30% sucrose solution until sectioning. Whole brains were sectioned at a
thickness of 15 μm on a cryostat and sections were stored at 4° C until the
immunohistochemistry (IHC) experiments. Sections were placed in plastic wells and
remained free floating until the completion of the IHC procedure. Sections were initially
blocked for 45 minutes in a 5% normal goat serum (NGS) solution and then incubated
overnight at room temperature with a primary monoclonal antibody raised in mouse directed
against PV (1:1000; Sigma-Aldrich, St. Louis, MO). Following five washes, fluorescent
labeling was performed with Alexafluor 488 anti-mouse secondary antibody (1:2000;
Invitrogen, Grand Island, NY) for 45 minutes at room temperature. Following five washes,
sections were mounted onto slides for fluorescent imaging.

Serial sections beginning at the anterior hippocampus (2.5 mm posterior of Bregma) were
evaluated by two independent observers blind to treatment. PV-positive neuron number and
positioning were examined in the CA3 region of the hippocampus due to their abundance
and typical localization in this area. PV-positive neuron number was also examined in the
retrosplenial cortex, directly superior to the hippocampus. For each individual section, the
area of interest, encompassing the CA3 region medial to and including the stratum oriens
(SO), was determined by alignment of the outer shell of the CA3 region of the hippocampus
along the border of the field of view using a 10X objective. All images were captured at an
objective of 10X using a Zeiss Axioskop II Plus microscope (Carl Zeiss MicroImaging, Inc,
Thornwood, NY). A cell was determined to be outside the SO if no part of the cell fell
within the clearly defined SO layer. A minimum of six sections per subject was utilized to
determine the number and location of PV-positive cells.

Statistical Analyses
MWM acquisition and visible training data were analyzed using the SPSS statistical
software package by a repeated measures analysis of variance (ANOVA), while probe trial
data were analyzed with one-way ANOVA. One-way ANOVA was also performed to detect
differences in the amount or distribution of PV-positive cells in the hippocampus between
groups. Tukey post-hoc comparisons were performed to analyzed probe within group probe
trial performance.

Results
Morris Water Maze

Experiment 1—Ketamine produced a deficit in MWM consistent with previous
investigations [5,42]. Significant deficits were observed in acquisition training versus saline
(F1,78 = 40.04, p<0.01; see figure 1A). During the probe trial (see figure 1B), ketamine-
administered rats did not perform a selective search (F3,36 = 6.118, p<0.01; Tukey post-hoc
analyses of quadrant revealed that animals did not spent significantly more time in the target
quadrant than the adjacent left (p=0.997) or opposite quadrant (p=0.661)), whereas rats
administered saline did show a preference for the target quadrant (F3,36 = 29.635, p<0.01;
Tukey post-hocs indicated target versus each quadrant at p<0.01).

Experiment 2—Ketamine produced similar impairments in experiment 2 with a significant
deficit during acquisition (F1,78 = 64.741, p<0.01; data not shown) and the probe trial (F3,36
= 4.892, p<0.01; Tukey post-hocs revealed that rats spent significantly more time in the
opposite quadrant than the target quadrant (p<0.01).
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Immunohistochemistry
Cell counts for immunofluorescent PV-positive cells from both experiments were performed
within the left and right CA3 region of the hippocampus and left and right cortices to assess
changes in number. For the hippocampus, representative images for saline and ketamine are
displayed in figure 2A and 2B, respectively. Ketamine produced an increase in the total
number of PV-positive neurons in CA3 compared to controls in experiment 1 (F1,45 = 8.169,
p<0.01; see figure 2C) and experiment 2 (F1,45 = 9.609, p<0.01; see figure 2E). Ketamine
also produced a change in the localization of these neurons. The number of PV-positive cells
outside the SO was significantly greater following chronic ketamine administration as
compared to saline controls in experiment 1 (F1,45 = 7.659, p<0.01; see figure 2D) and
experiment 2 (F1,45 = 7.921, p<0.01; see figure 2F).

Cell counts were also performed in the retrosplenial cortex; representative images are
depicted in figure 3A and 3B, respectively. No significant differences were observed
between groups in the number of PV-positive neurons in the cortex in experiment 1 (F1,45 =
0.107, p=.745; see figure 3C) or experiment 2 (F1,45 = 1.276, p=.264; see figure 3D),
suggesting the ketamine-induced changes are region-specific. Table 1 depicts the raw cell
count data from both experiments.

Discussion
The current study investigated the expression and positioning of PV-positive cells in the
hippocampus following chronic ketamine administration and a spatial learning task. Our
findings reveal an increase in number and a shift in the precise localization of these
GABAergic neurons, which may be indicative of abnormal migratory activity. The
significant increase in the number of PV-positive neurons in CA3 in two distinct
experiments is in contrast to findings of decreased hippocampal PV density in animal
models [22,38] and schizophrenia populations [26]. The increased number of PV cells
reported here suggests ketamine may alter neurogenesis in these studies, as previously
reported [23], resulting in the increased number and aberrant positioning in CA3. This
interpretation is supported by the lack of a ketamine-induced increase in number in the
cortex. An overall increase the in total number of PV-positive neurons specifically in the
hippocampus is particularly interesting as it may related to the spatial learning and memory
deficits. The consequence of increased PV-positive neurons is difficult to estimate, however,
alterations in overall network function would be likely if these neurons are functional. The
increased number of PV-positive cells outside the SO in the ketamine-treated group suggests
a heterotopic distribution of newborn neurons in the CA3 region of the hippocampus. These
neuronal displacements could lead to altered connectivity within the hippocampus and
disrupted network activity, a phenomenon that may be occurring in schizophrenia [46].

The location of PV neurons within the hippocampus is generally restricted to the SO and
stratum pyramidale with sparse distribution in other layers such as the stratum radiatum
[32,34,43]. The heterotopic nature of PV-positive neurons observed in the current study
suggests there may be disrupted migration following chronic ketamine administration. The
protein reelin, which regulates the migration and positioning of immature neurons, is only
expressed in GABAergic cells in the adult rat hippocampus [39]. These findings, along with
post-mortem studies from schizophrenia brains showing reductions in PV [2,15,29] and
reelin expression [12,14,17], may present a link between PV-mediated network dysfunction
and abnormal migration.

Previous reports suggest the NMDA receptor plays an integral role in regulating the
migration of newborn neurons in the adult hippocampus [36] and developing cortex [41].
Our findings suggest that chronic NMDA receptor blockade with ketamine may impair
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neuronal migration. The current study, as well as previous studies from our laboratory, has
demonstrated that ketamine produces robust impairments in sensorimotor gating, spatial
learning, and emotional learning and memory [5,42]. It is possible that aberrant network
function due to migratory deficits may be important in these cognitive impairments. Future
studies may be able to elucidate if abnormal migration plays any role in these deficits.

Although the data reported here suggest the altered distribution of PV-positive neurons may
be a result of aberrant migration, more studies are necessary to confirm this hypothesis. The
co-administration of 5-bromo-2-deoxyuridine (BrDU) with ketamine may allow a clearer
picture of whether these heterotopic PV-positive cells are newborn neurons; previous studies
suggest ketamine enhances neurogenesis, though without altering newborn cell location or
showing BrDU-PV co-localization in the dentate gyrus [23]. Furthermore, more extensive
stereological analyses in future studies may be able to detect quantitative differences
produced by ketamine. Additional investigations are needed to determine if the above
changes persist once ketamine administration and behavioral testing have been completed
similar to previous work [23]. Despite these limitations, the current study strengthens the
link between ketamine-induced disruptions in PV and schizophrenia.
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Research Highlights

• Ketamine SC at 8mg/kg impaired spatial learning consistent with previous
findings.

• Ketamine induced a significant increase in the number of PV+ neurons in CA3
field of hippocampus.

• Ketamine induced a significant increase in PV+ neurons outside the SO of the
hippocampus.
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Figure 1.
Ketamine produced deficits in the Morris water maze. (A) Ketamine-treated rats displayed
significantly longer latency to find the platform during acquisition. (B) Saline-treated rats
exhibited a selective search on the probe trial, indicating a significant preference for the
target quadrant, while ketamine produced a deficit. Saline: n=10; ketamine: n=10; *p<0.01
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Figure 2.
Number and positioning of PV-positive neurons in the CA3 region of hippocampus. (A)
Representative image of saline-treated subject. (B) Representative image of ketamine-
treated subject. Ketamine produced a significant increase in PV-positive neurons in CA3 in
experiment 1 (C) and experiment 2 (E) compared to saline. Ketamine also led to a percent
increase in these cells outside the stratum oriens as compared to saline in experiment 1 (D)
and experiment 2 (F). Saline: n=10; ketamine: n=10; *p<0.01
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Figure 3.
PV-positive neurons in the cortex. (A) Representative image of saline-treated subject. (B)
Representative image of ketamine-treated subject. No significant differences were observed
in PV-positive neurons in the cortex in experiment 1 (C) or experiment 2 (D), p>.05. Saline:
n=5; ketamine: n=5.
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Table 1

PV + cell count data from experiments 1 and 2 (expressed as mean ± SEM).

Experiment Group CA3 CA3 outside SO Cortex

1
Saline 26.71 ± 1.46 3.50 ± 0.52 64.13 ± 2.94

Ketamine 32.61 ± 1.46 6.09 ± 0.78 62.59 ± 3.70

2
Saline 24.65 ± 0.65 3.65 ± 0.30 66.88 ± 1.70

Ketamine 36.33 ± 2.20 5.00 ± 0.37 62.50 ± 2.70
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