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      In contrast to the widespread belief that all obese 
adults are inactive, there are many obese individuals 

who exercise rigorously, compete in endurance races, 
and potentially have high levels of cardiorespiratory 
fi tness (CRF). However, it is unclear whether this 
group of endurance-trained obese individuals encoun-
ters obesity-related respiratory limitations.  1-4   

 End-expiratory lung volume (EELV) increases in 
obese adults at or near maximal exercise,  5-7   which may 
be in response to the presence of expiratory fl ow lim-
itation (EFL).  8   The high ventilatory demand in trained 

athletes may exacerbate their work of breathing, as well 
as their risk of developing EFL.  9-11   However, little is 
known about CRF in “fi t and obese” individuals; in 
addition, the mechanical mechanism by which they are 
able to generate the high ventilatory demand associated 
with increased physical fi tness is unclear. Understand-
ing these physiologic changes in endurance-trained 
obese individuals may provide valuable new insights 
for prescribing exercise training in obese adults. 

 We sought to investigate CRF, lung function, respi-
ratory, and ventilatory dynamics during submaximal 

  Background:    Alterations in respiratory mechanics predispose healthy obese individuals to low 
lung volume breathing, which places them at risk of developing expiratory fl ow limitation (EFL). 
The high ventilatory demand in endurance-trained obese adults further increases their risk of 
developing EFL and increases their work of breathing. The objective of this study was to investi-
gate the prevalence and magnitude of EFL in fi t obese (FO) adults via measurements of breathing 
mechanics and ventilatory dynamics during exercise. 
  Methods:    Ten (seven women and three men) FO (mean  �  SD, 38  �  5 years, 38%  �  5% body fat) 
and 10 (seven women and three men) control obese (CO) (38  �  5 years, 39%  �  5% body fat) sub-
jects underwent hydrostatic weighing, pulmonary function testing, cycle exercise testing, and the 
determination of the oxygen cost of breathing during eucapnic voluntary hyperpnea. 
  Results:    There were no differences in functional residual capacity (43%  �  6% vs 40%  �  9% total 
lung capacity [TLC]), residual volume (21%  �  4% vs 21%  �  4% TLC), or FVC (111%  �  13% 
vs 104%  �  15% predicted) between FO and CO subjects, respectively. FO subjects had higher 
FEV 1  (111%  �  13% vs 99%  �  11% predicted), TLC (106%  �  14% vs 94%  �  7% predicted), peak expira-
tory fl ow (123%  �  14% vs 106%  �  13% predicted), and maximal voluntary ventilation (128%  �  15% 
vs 106%  �  13% predicted) than did CO subjects. Peak oxygen uptake (129%  �  16% vs 86%  �  15% 
predicted), minute ventilation (128  �  35 L/min vs 92  �  25 L/min), and work rate (229  �  54 W 
vs 166  �  55 W) were higher in FO subjects. Mean inspiratory (4.65  �  1.09 L/s vs 3.06  �  1.21 L/s) 
and expiratory (4.15  �  0.95 L/s vs 2.98  �  0.76L/s) fl ows were greater in FO subjects, which yielded 
a greater breathing frequency (51  �  8 breaths/min vs 41  �  10 breaths/min) at peak exercise in 
FO subjects. Mechanical ventilatory constraints in FO subjects were similar to those in CO subjects 
despite the greater ventilatory demand in FO subjects. 
  Conclusion:    FO individuals achieve high ventilations by increasing breathing frequency, matching 
the elevated metabolic demand associated with high fi tness. They do this without developing 
meaningful ventilatory constraints. Therefore, endurance-trained obese individuals with higher 
lung function are not limited by breathing mechanics during peak exercise, which may allow healthy 
obese adults to participate in vigorous exercise training.    CHEST 2013; 144(4):1330–1339   

  Abbreviations:  CO  5  control obese; CRF  5  cardiorespiratory fi tness; EELV  5  end-expiratory lung volume; EFL  5  expi-
ratory fl ow limitation; FO  5  fi t obese; IC  5  inspiratory capacity; MVV  5  maximal voluntary ventilation; PEF  5  peak expi-
ratory fl ow; TLC  5  total lung capacity;    e   5  minute ventilation;    o  2   5  oxygen uptake;    o  2 peak  5  peak oxygen uptake; 
V t   5  tidal volume 
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serve as a control group (control obese [CO]) for comparison pur-
poses. These subjects had the same exclusion criteria as the FO 
subjects. However, they had not engaged in any regular exercise 
activities for 6 months prior to enrollment in the study. 

 Body Composition and Pulmonary Function 

 Hydrostatic weighing, with the measurement of residual volume, 
was performed to determine percent body fat, lean body mass, 
and total body fat mass. Participants underwent standard spirom-
etry, lung volume, airway resistance, maximal inspiratory pressure, 
and maximal expiratory pressure determinations (model V62W 
body plethysmograph, SensorMedics).  12   Predicted values were 
based on published norms.  13-16   

 Cardiorespiratory Responses and Rating of Perceived 
Breathlessness During Submaximal Exercise 

 A submaximal exercise test was performed to further evaluate 
and compare fi tness levels between the groups. Testing began 
with the subjects seated on the cycle ergometer for 3 min; then 
the subjects performed a 6-min constant-load exercise cycling test 
at 60 W (women), or 105 W (men).  17   The three CO men exercised 
at 90 W, rather than 105 W, as dictated by the requirements of 
a prior study. Physiologic data averaged from the last 2 min of the 
exercise stage were used in the analyses. Rating of perceived breath-
lessness and rating of perceived exertion were measured every 
2 min of the test, and the last value recorded was used for analyses. 

 Peak Cardiorespiratory Exercise Capacity and 
Breathing Mechanics 

 Peak aerobic power, peak oxygen uptake (   o  2 peak) (open circuit 
spirometry), was determined by graded cycle ergometer exercise 
(model CPE 2000, Medical Graphics Corporation) to exhaustion 
as described previously.  17   Expiratory and inspiratory fl ows were 
measured continuously at rest and during exercise as described 
previously.  18   EELV was estimated from measurement of inspiratory 
capacity (IC) during each of the protocol stages, and total lung 
capacity (TLC) during body plethysmography (EELV  5  TLC  2  IC).  5,6   
All subjects performed an FVC maneuver before and 2 min after 
exercise, with the largest loop accepted. EFL was computed as 
the percentage of the expiratory tidal fl ow-volume loop that met 
or exceeded the expiratory boundary of the maximal fl ow-volume 
loop. 

 The Oxygen Cost of Breathing 

 The oxygen cost of breathing was determined from 6-min mea-
surements of oxygen uptake (   o  2 ) and minute ventilation (   e ) at rest 
and 4-min measurements of    o  2  and    e  during eucapnic voluntary 
hyperpnea at 40 L/min and 60 L/min (women), or 60 L/min and 
90 L/min (men), as described previously.  17   To maintain eucapnia 
during the voluntary hyperpnea maneuver, the subjects breathed 
from a 1,000-L inspiratory reservoir bag containing 4% or 5% CO 2  
(21% oxygen and balance nitrogen).  19   The oxygen cost of breathing 
was assessed by calculating the slope of the    o  2  (mL/min) vs    e  
(L/min) relationship at rest and during eucapnic voluntary hyper-
pnea. Physiologic data were averaged from the 6-min measurements 
at rest and the 4-min measurements during the hyperventilation 
maneuvers. 

 Data Analyses 

 Differences between groups were determined by an indepen-
dent Student  t  test. Values are reported as mean  �  SD. A  P  value 
of  ,  .05 was considered signifi cant. 

and maximal exercise, and the oxygen cost of breathing 
in endurance-trained obese individuals. We hypothe-
sized that endurance-trained obese subjects would 
experience considerable mechanical ventilatory con-
straints, which may cause them to hyperinfl ate espe-
cially during intense exercise. Although their oxygen 
cost of breathing would be similar to healthy sedentary 
obese adults, their work of breathing during peak 
exercise would be increased in proportion to their 
increase in peak ventilation. 

 Materials and Methods 

 Subjects 

 In accordance with the institutional review board   (University of 
Texas Southwestern Medical Center, approval number 122010-108), 
all details of the experiments were discussed with the volunteers, 
and informed consent was obtained before participation. All sub-
jects were obese based on their percentage of body fat (body 
fat  �  30%) and had the same exclusion criteria: history of asthma, 
cardiovascular disease, or musculoskeletal abnormalities. We used 
percent body fat to determine obesity rather than BMI because 
BMI is a general measure of the relationship of weight to height 
and can underestimate the true level of obesity. For example, 
some of the subjects had a BMI   that was  ,  30 kg/m 2 , but their 
percent body fat was  .  30%, which qualifi ed them for inclusion in 
the study. 

  Fit Obese:   A total of 19 fi t obese (FO) participants were recruited 
for the study. However, nine were disqualifi ed for different reasons: 
asthma (two), high BP (one), and body fat  ,  30% (six). Therefore, 
seven women and three men completed the study. Candidates 
for this study were screened carefully based on their exercise 
training history within the preceding 12 months. The subjects 
exercised aerobically at least four times per week, and their train-
ing sessions lasted 1 to 4 h. Moreover, they had recently (ie, within 
the preceding 12 months) competed in endurance events such as 
marathons, Ironmans, and road races, or were training to compete 
in future races. 

  Control Obese:   Seven women and three men were randomly 
selected from our large database of prior and ongoing studies to 
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ferences between the FO and CO groups in maximal 
inspiratory pressure (134%  �  26% vs 122%  �  20% pre-
dicted), maximal expiratory pressure (109%  �  21% 
vs 104%  �  28% predicted), or airway resistance (129%  �  
30% vs 129%  �  45% predicted). 

 Cardiorespiratory Responses and Rating of Perceived 
Breathlessness During Submaximal Exercise 

 The FO group exercised at lower relative exercise 
intensities than did the CO group ( Table 2  ). The FO 
group had signifi cantly ( P   ,  .05) lower relative    o  2  
(50%  �  7% vs 64%  �  8%    o  2 peak), respiratory exchange 
ratio (0.91  �  0.08 vs 1.02  �  0.09), relative heart rate 
(66%  �  6% vs 77%  �  9% maximal heart rate), blood 
lactate (2.0  �  1.2 mmol/L vs 4.5  �  2.2 mmol/L), rating 
of perceived breathlessness (2.0  �  1.6 vs 4.0  �  1.6), 
and rating of perceived exertion (9.8  �  2.1 vs 12.7  �  2.3), 
respectively. In addition, the ventilatory response 
to exercise (   e /   o  2  slope) was signifi cantly lower in 
the FO group compared with the CO group (26  �  3 
vs 31  �  6). These observations strongly suggest that 
the individuals in the FO group had higher fi tness 
levels than those in the CO group. 

 Results 

 Subjects and Body Composition 

 All subjects were obese (body fat  �  30%). There 
were no differences ( P   .  .05) between groups in body 
composition, age, height, or body size parameters 
( Table 1  ). 

 Pulmonary Function 

 Pulmonary function values are shown in  Table 1  
and  Figure 1  . The FO group had larger TLC than did 
the CO group (106%  �  14% vs 94%  �  7% predicted, 
 P   ,  .05) ( Fig 1A ). However, there were no differences 
between the FO and CO groups in functional residual 
capacity (43%  �  6% vs 40%  �  9% TLC) or residual 
volume (21%  �  4% vs 21%  �  4% TLC). 

 FVC (111%  �  13% vs 104%  �  15% predicted) was 
not different between the FO and CO groups, respec-
tively ( Fig 1B ). However, the FO group had higher 
FEV 1  (111%  �  13% vs 99%  �  11% predicted,  P   ,  .05), 
peak expiratory fl ow (PEF) (123%  �  14% vs 106%  �  
13% predicted,  P   ,  .01), and maximal voluntary venti-
lation (MVV) (128%  �  15% vs 106%  �  13% predicted, 
 P   ,  .01) than did the CO group. There were no dif-

 Table 1— Subject Characteristics and Pulmonary Function  

Characteristic  Control Obese (n  5  10 [7 Female]) Fit Obese (n  5  10 [7 Female])

Age, y 37.6  �  5.0 (28-45) 37.6  �  5.3 (30-47)
Height, cm 170  �  9 (156-188) 169  �  10 (152-183)
Weight, kg 94.9  �  11.6 (84.6-116.8.0) 93.9  �  16.2 (73.5-112.0)
BMI, kg/m 2 33.1  �  3.2 (28.4-36.8) 32.6  �  3.6 (26.9-38.0)
Body fat, % 38.9  �  4.7 (32.5-45.7) 37.7  �  4.9 (29.7-43.9)
Fat mass, kg 36.6  �  3.5 (30.4-41.5) 35.3  �  7.9 (24.4-48.8)
Lean body mass, kg 58.3  �  11.0 (49.3-78.6) 58.6  �  10.8 (43.4-74.7)
TLC
 L 5.48  �  1.08 (4.09-7.89) 6.24  �  1.72 (3.97-9.44)
 % predicted 94  �  7 (84-101) 106  �  14  a   (88-129)
FRC
 L 2.20  �  0.62 (1.25-3.03) 2.65  �  0.71 (1.89-3.91)
 % TLC 40  �  9 (27-51) 43  �  6 (35-57)
RV
 L 1.19  �  0.37 (0.79-1.94) 1.32  �  0.38 (0.74-2.05)
 % TLC 21  �  4 (15-25) 21  �  4 (16-27)
FVC
 L 4.15  �  0.75 (3.20-5.75) 4.80  �  1.39 (3.23-7.23)
 % predicted 104  �  15 (82-127) 111  �  13 (94-131)
FEV 1 
 L 3.24  �  0.50 (2.56-4.16) 3.94  �  1.09 (2.84-5.94)
 % predicted 99  �  11 (81-112) 111  �  13  a   (96-138)
PEF
 L/s 8.39  �  1.36 (6.76-10.81) 9.84  �  1.80 (8.41-14.03)
 % predicted 106  �  13 (87-123) 123  �  14  a   (106-147)
MVV
 L/min 133  �  23 (100-173) 161  �  36 (123-230)
 % predicted 106  �  13 (89-126) 128  �  15  a   (104-151)

Data are presented as means  �  SD (range). Predicted values for spirometry and lung volumes were based on the norms of Knudson et al,  13,14   and 
Goldman and Becklake,  16   respectively. FRC  5  functional residual capacity; MVV  5  measured maximal voluntary ventilation; PEF  5  peak expiratory 
fl ow; RV  5  residual volume; TLC  5  total lung capacity.
 a  P   ,  .05.
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with the CO subjects (128  �  35 L/min vs 92  �  25 L/min, 
 P   ,  .05). There were no differences in peak heart rate, 
oxygen saturation, end-tidal P co  2 , respiratory exchange 
ratio, or peak lactate concentration between groups. 
FO individuals had shorter inspiratory time (0.562  �  
0.090 s vs 0.764  �  0.185 s,  P   ,  .01) and expiratory time 
(0.631  �  0.114 s vs 0.759  �  0.172 s;  P   5  .07) than did 
CO subjects. The FO group had signifi cantly higher 
( P   ,  .01) mean inspiratory (tidal volume [V t ]/inspira-
tory time) (4.65  �  1.09 L/s vs 3.06  �  1.21 L/s) and mean 
expiratory fl ows (V t /expiratory time) (4.15  �  0.95 L/s 
vs 2.98  �  0.76 L/s) at peak exercise. 

  Figure 2   illustrates the ventilatory response (   e  
vs CO 2  output) ( Fig 2A ) and breathing pattern (breath-
ing frequency [ Fig 2B ], V t  [ Fig 2C ]) during the peak 
exercise test.    e  (128  �  35 L/min vs 92  �  25 L/min) 
and breathing frequency (51  �  8 breaths/min vs 41  �  
10 breaths/min) at peak exercise were higher in the 
FO group ( P   ,  .05). 

 Breathing Mechanics 

 CO individuals with EFL and without EFL at peak 
exercise are shown in  Figures 3A and 3B  , respec-
tively. FO subjects with EFL and without EFL at 
peak exercise are shown in  Figures 3C and 3D . EFL 
was observed in four FO subjects (three women and 
one man) and in fi ve CO subjects (3 women and two 
men) at peak exercise. However, the degree of fl ow 
limitation was mild ( ,  20% V t ) and was not differ-
ent between the FO and CO groups (13%  �  6% V t  
vs 16%  �  7% V t , respectively).  Figure 3E  illustrates 
that there were no signifi cant differences between the 
CO and FO groups regarding EELV and end-inspiratory 
lung volume at rest, submaximal, or peak exercise. 

 Peak Cardiorespiratory Exercise Capacity 

 The FO group had increased CRF and exercise 
capacity (about 40%, as indicated by exercise time to 
exhaustion, peak work rate, and    o  2 peak) compared 
with the CO group ( Table 3  ). The FO subjects further 
increased their    e  by approximately 40% compared 

  Figure  1. A, Lung volumes. B, Spirometry. Data are presented 
as mean and SD. Predicted values for spirometry and lung vol-
umes were based on the norms of Knudson et al,  13,14   and Goldman 
and Becklake,  16   respectively. Dotted lines represent the normal 
range.  20   FRC  5  functional residual capacity (reported as %TLC); 
MVV  5  maximal voluntary ventilation; PEF  5  peak expiratory 
fl ow; %pred  5  percent predicted; RV  5  residual volume (reported 
as % total lung capacity); TLC  5  total lung capacity. * P   ,  .05.   

 Table 2— Cardiorespiratory Responses to Submaximal (6-Min) Exercise  

Parameters Control Obese (n  5  10 [7 Female]) Fit   Obese (n  5  10 [7 Female])

Work rate,  a   W 69  �  14 (60-90) 74  �  22 (60-105)
   o  2 , L/min 1.31  �  0.24 (1.08-1.81) 1.54  �  0.38 (1.14-2.17)
   o  2 , % peak 64  �  8 (47-76) 50  �  7  a   (40-61)
   co  2 , L/min 1.30  �  0.21 (1.09-1.65) 1.41  �  0.41 (1.05-2.07)
RER 1.02  �  0.09 (0.91-1.19) 0.91  �  0.08  a   (0.77-1.04)
   e , L/min 42  �  7 (32-53) 39  �  10 (28-54)
   e /   co  2 , slope 31  �  6 (24-42) 26  �  3  a   (23-33)
P et  co  2 , torr 41  �  6 (32-51) 44  �  3 (39-49)
Sp o  2 , % 99  �  1 (98-100) 99  �  1 (96-100)
Heart rate, bpm 139  �  15 (108-155) 118  �  13  a   (99-143)
Heart rate, % max 77  �  9 (61-91) 66  �  6  a   (58-75)
Lactate, mmol/L 4.5  �  2.2 (2.3-8.8) 2.0  �  1.2  a   (0.9-4.9)
RPB, 0-10 scale 4.0  �  1.6 (2-6) 2.0  �  1.6  a   (0-5)
RPE, 6-20 scale 12.7  �  2.3 (9-15) 9.8  �  2.1  a   (7-13)

Data are presented as mean  �  SD (range). The three fi t obese men exercised at 105 W, whereas the three control obese men exercised at 90 W, 
rather than 105 W. All fi t obese and control obese women exercised at 60 W. bpm  5  beats per min; P et  co  2   5  end-tidal CO 2 ; RER  5  respiratory 
exchange ratio; RPB  5  rating of perceived breathlessness; RPE  5  rating of perceived exertion; Sp o  2   5  oxygen saturation;    co  2   5  CO 2  uptake; 
   e   5  minute ventilation;    o  2   5  oxygen uptake.
 a  P   ,  .05.
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pared with CO subjects. This increase in    e  resulted 
from the FO subjects having higher mean inspiratory 
and expiratory fl ows, which allowed them to shorten 
their breathing cycle time and increase    e  by further 
increasing breathing frequency. In this sample of FO 
subjects, their pulmonary function was in the upper 
limits of normal. Finally, the oxygen cost of breath-
ing in FO subjects was not higher, even at peak exer-
cise, because of the increase in frequency strategy 
vs increasing V t . 

 Cardiorespiratory Fitness 

 This is the fi rst study, to our knowledge, that com-
pared CRF between sedentary and endurance-trained 
obese adults, and it showed that high CRF can be 
achieved in this population despite the presence of 
obesity. The FO group had a 43% increase in exercise 
time to exhaustion, a 38% increase in peak work rate, 
and a 48% increase in    o  2 peak compared with their 
control counterparts. Although quantifying and inter-
preting CRF in obesity is a complex issue,  22     we strongly 
believe that predicted    o  2 peak values allow for a nor-
malized evaluation of CRF in the obese population. 
   o  2 peak and peak power output in the FO group 

 The Oxygen Cost of Breathing 

 The oxygen cost of breathing measured during 
eucapnic voluntary hyperpnea was not signifi cantly 
dif fer ent between the FO and CO groups (1.64  �  
0.63 mL O 2 /L    e  vs 2.14  �  0.57 mL O 2 /L    e , respec-
tively;  P   5  .08). In addition, the    o  2  of the respiratory 
muscles (estimated from the unit-corrected product 
of the oxygen cost slope and    e ) at peak exercise was 
not different between the FO and CO groups (206  �  
89 mL/min vs 201  �  83 mL/min,  P   5  .89; 6.9%  �  2.8% 
vs 9.6%  �  3.1%    o  2 peak,  P   5  .05). This was despite 
the 40% increase in    e  in the FO group. 

 Discussion 

 The results of this study demonstrate several impor-
tant fi ndings. Obese individuals are capable of achiev-
ing high CRF levels. Only 40% to 50% of the FO or 
CO subjects experienced EFL (and then only min-
imal) at peak exercise, and operational lung volumes 
were not different between groups. Nevertheless, 
FO individuals were able to increase ventilation by 
about 40% at peak exercise without a considerable 
increase in mechanical ventilatory constraints com-

 Table 3— Peak Exercise Data  

Parameters Control Obese (n  5  10 [7 Female]) Fit   Obese (n  5  10 [7 Female])

Exercise time, min 7.0  �  1.1 (5.0-8.4) 10.0  �  1.5  a   (8.0-12.0)
Work rate, W 166  �  55 (100-270) 229  �  54  a   (160-330)
Work rate, % pred 100  �  17 (67-129) 140  �  16  a   (125-171)
   o  2  , L/min 2.10  �  0.69 (1.39-3.29) 3.10  �  0.87  a   (2.13-4.80)
   o  2  , % predicted  b  86  �  15 (64-109) 129  �  16  a   (110-152)
   o  2 , mL/kg PWT/min 34  �  8 (23-47) 50  �  8  a   (40-68)
   o  2 , mL/kg LBM/min 35  �  6 (28-42) 52  �  6  a   (43-64)
   co  2 , L/min 2.55  �  0.85 (1.66-4.04) 3.73  �  1.03  a   (2.62-5.67)
RER 1.22  �  0.07 (1.10-1.31) 1.21  �  0.04 (1.13-1.26)
   e , L/min 92  �  25 (70-146) 128  �  35  a   (90-200)
   e , % MVV 69  �  12 (54-85) 79  �  11  a   (60-93)
   e /   co  2 37  �  5 (30-47) 35  �  5 (30-43)
P et  co  2 , torr 33  �  5 (26-42) 33  �  4 (25-38)
O 2  saturation, % 99  �  1 (97-100) 98  �  1 (96-99)
Heart rate, bpm 181  �  12 (164-200) 177  �  7 (164-189)
Heart rate, % predicted 100  �  6 (90-106) 96  �  5 (87-105)
Lactate, mmol/L 7.9  �  1.6 (6.1-11.0) 9.4  �  2.0 (6.7-12.1)
RPB, 0-10 scale 7.5  �  2.3 (4-10) 8.0  �  1.6 (6-10)
RPE, 6-20 scale 17.6  �  2.3 (13-20) 18.4  �  1.3 (17-20)
T i , s 0.764  �  0.185 (0.472-1.113) 0.562  �  0.090  a   (0.453-0.744)
T e , s 0.759  �  0.172 (0.502-1.053) 0.631  �  0.114  a   (0.502-0.862)
V t /T i , L/s 3.06  �  1.21 (1.81-5.46) 4.65  �  1.09  a   (3.48-6.74)
V t /T e , L/s 2.98  �  0.76 (1.91-4.38) 4.15  �  0.95  a   (2.94-6.10)

Data are presented as mean  �  SD (range). Exercise time  5  exercise time to peak; LBM  5  lean body mass; O 2   5  oxygen; PWT  5  predicted weight  21  ; 
T e   5  expiratory time; T i   5  inspiratory time; V t   5  tidal volume; V t /T i   5  mean inspiratory fl ow. See Table 1 and 2 legends for expansion of other 
abbreviations.
 a  P   ,  .05.
 b Although interpretation of peak   o 2  in determining cardiovascular conditioning in obesity is a complex issue,  22   the recommendation is to use a 
method whereby peak   o 2  is compared with an age, sex, and weight-corrected predicted peak   o 2 .  21   Thus, we used the following equation adapted 
from Wasserman et al,  23   Hansen et al,  24   and Wasserman and Whipp  25  : predicted peak   o 2   5  (predicted peak   o 2  in mL/min/kg  3  predicted 
weight)  1  [(actual weight – predicted weight)  3  6 mL/kg]  23-25   to predict peak   o 2 .
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respiratory exchange ratio, 18% drop in heart rate, 
reduction in blood lactate levels by more than one-
half, and 19% reduction in the ventilatory response to 
exercise, despite working at a higher absolute work 
rate. Collectively, these observations strongly sug-
gest that the individuals in the FO group had higher 
fi tness levels than those in the CO group. In fact, the 
increased CRF in this FO group was comparable 
to, if not higher than, values reported after exercise 
train ing studies in healthy obese individuals.  27-31   Finally, 
several studies on normal-weight and fit individ-
uals have reported fi tness levels comparable to this 
FO group.  8,10,32,33   

 Mechanical Ventilatory Constraints 

 We did not observe increased EFL in this FO group 
at peak exercise even though the FO group maximal   e 
was approximately 40% higher than in the CO group. 
This degree of fl ow limitation ( ,  20% of V t ) is consid-
ered to be a mild constraint according to Johnson et al.  34   
The proportion of subjects who developed EFL in 
the current investigation is very similar to that in 
prior studies in sedentary obese individuals.  5-7,35,36   For 
instance, Ofi r et al  7   reported that approximately 55% 
of sedentary obese subjects who underwent an incre-
mental exercise test experienced a moderate degree of 
fl ow limitation near peak exercise (about 38% of V t ). 
Babb et al  5   reported that about 45% of sedentary obese 
women experienced mild EFL (about 12% of V t ) at 
peak exercise. Likewise, DeLorey et al  6   reported mild 
EFL at peak exercise in six of 10 obese sedentary 
adults (about 12% of V t ). However, these compari-
sons should be done with care because of differences 
in the methodologies, the degrees of exertion, and 
the protocols used. The FO subjects had reduced 
EELV at rest. EELV also decreased during the early 
stages of exercise but returned to resting levels at 
peak exercise.  5-7   This dynamic hyperinfl ation is also 
an index of ventilatory constraint  34   and allows sub-
jects to further increase expiratory fl ow rates and 
minimize EFL.  8,37   At peak exercise, end-inspiratory 
lung volume approached 90% of TLC and    e  was 
approximately 79% of MVV, which may also indicate 
slight mechanical ventilatory constraint.  38   Despite some 
degree of mechanical ventilatory constraint observed, 
neither end-tidal CO 2  nor oxygen saturation revealed 
relative hypoventilation. Moreover, they do not appear 
to have exacerbated mechanical ventilatory constraints 
that could considerably alter breathing mechanics 
and ventilatory dynamics during heavy exercise. Part 
of this lack of increase in mechanical ventilatory con-
straints in the FO group despite the large increase in 
ventilatory demand at peak efforts could be due to 
the overall greater lung function in the fi t group com-
pared with the control group. The increase in TLC, 

were about 130% of their predicted values. More-
over,    o  2 peak relative to their predicted body weight 
was about 50 mL/kg/min, which is above the 90th per-
centile according to the American College of Sports 
Medicine.  26   Moreover, the data from the submaximal 
exercise test further confi rm that the FO group indeed 
had higher CRF than did the CO group. This was 
refl ected by the 28% lower relative   o 2 , 12% lower 

  Figure  2. A-C, Ventilatory response and breathing pattern 
(B, breath ing frequency; C, tidal volume) during the peak exercise 
test (rest, submaximal exercise, and peak exercise). VCO 2   5  CO 2  
uptake; V E   5  minute ventilation.   
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fi ndings also show that our FO group did not have 
increased mechanical ventilatory constraints compared 
with normal-weight subjects of similar CRF.  32,39   

FEV 1 , PEF, and MVV may have masked some of the 
expected ventilatory constraints associated with a 40% 
increase in ventilatory demand. Furthermore, our 

  Figure  3. Sample fl ow volume loops from individuals at peak exercise. A, Control obese (CO) subjects 
with EFL. B, CO subjects without EFL. C, Fit obese (FO) subjects with EFL. D, FO subjects without 
EFL. EFL was observed in four (three women and one man) FO and fi ve (three women and two men) 
CO subjects; however, the degree of fl ow limitation was mild (EFL  ,  25% V t ) and was not different 
between the FO and CO groups (13%  �  6% V T  vs 16%  �  7% V T , respectively). E, Dynamic lung volumes 
(end-inspiratory lung volume and end-expiratory lung volume) during the peak exercise test (rest, sub-
maximal exercise, and peak exercise). EELV  5  end-expiratory lung volume; EFL  5  expiratory fl ow limita-
tion; EILV  5  end-inspiratory lung volume; FB  5  breathing frequency; F/V  5  fl ow volume; O 2 sat  5  oxygen 
saturation; P ET CO 2   5  end tidal CO; VO2  5  oxygen uptake; V T   5  tidal volume; WR  5  work rate. See Figure 1 
and 2 legends for expansion of other abbreviations.   
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gest that their oxygen cost of breathing is about 40% 
higher than those reported in nonobese individuals.  48   
The data from the FO group was somewhat lower 
compared with the CO group, but failed to reach sig-
nifi cance ( P   5  .08). Regardless, the FO subjects were 
able to increase   e at peak exercise by 40% without a 
signifi cant tax on the work of breathing. 

 Conclusions 

 These novel data suggest that young, otherwise 
healthy, obese adults can participate in vigorous phys-
ical activity without being ventilatory compromised, 
even at peak efforts. Therefore, these fi ndings are 
good news for those who carry extra weight but want 
to participate in physical activity, because many reports 
suggest that increased fi tness is associated with lower 
risk of mortality regardless of the degree of obesity.  49-51   
Although the results of the current investigation are 
encouraging for healthy individuals with mild-to-
moderate obesity, more research is warranted to inves-
tigate these responses in more extreme stages of 
obesity. 
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