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Summary
Modeling clinical endpoints as a function of change in antiretroviral therapy (ART) attempts to
answer one simple but very challenging question: was the change in ART beneficial or not? We
conceive a similar scientific question of interest in the current manuscript except that we are
interested in modeling the time of ART regimen change rather than a comparison of two or more
ART regimens. The answer to this scientific riddle is unknown and has been difficult to address
clinically. Naturally, ART regimen change is left to a participant and his or her provider and so the
date of change depends on participant characteristics. There exists a vast literature on how to
address potential confounding and those techniques are vital to the success of the method here. A
more substantial challenge is devising a systematic modeling strategy to overcome the missing
time of regimen change for those participants who do not switch to second-line ART within the
study period even after failing the initial ART. In this paper, we adopt and apply a statistical
method that was originally proposed for modeling infusion trial data, where infusion length may
be informatively censored, and argue that the same strategy may be employed here. Our
application of this method to therapeutic HIV/AIDS studies is new and interesting. Using data
from the AIDS Clinical Trials Group (ACTG) Study A5095, we model immunological endpoints
as a polynomial function of a participant’s switching time to second-line ART for 182 participants
who already failed the initial ART. In our analysis, we find that participants who switch early have
somewhat better sustained suppression of HIV-1 RNA after virological failure than those who
switch later. However, we also found that participants who switched very late, possibly censored
due to the end of the study, had good HIV-1 RNA suppression, on average. We believe our
scientific conclusions contribute to the relevant HIV literature and hope that the basic modeling
strategy outlined here would be useful to others contemplating similar analyses with partially
missing treatment length data.
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1. Introduction
Patients enrolled in therapeutic HIV studies often have opportunity to switch antiretroviral
therapies (ARTs), both before and after virological failure on the current ART. In HIV
treatment trials conducted by the AIDS Clinical Trials Group (ACTG), for example, study
participants may switch ARTs due to toxicity or adverse events, regardless of whether
virological failure has occurred or not. In this paper, we address scientific and statistical
issues related to switching ARTs after virological failure, a challenging scientific question in
the HIV and AIDS literature (cf. Riddler et al., 2007). Although the Department of Health
and Human Services (http://www.aidsinfo.nih.gov) currently recommends switching ART
early following confirmed virological failure, the recommendation is debatable because it is
informed by expert opinion not controlled clinical studies, there is evidence to argue both
sides of the issue, and the definition of virologic failure is arbitrary. There exists
observational evidence to support delayed switch amidst partial virological suppression
(Deeks et al., 2000, 2002) and, on the other hand, arguments that maintaining a failing ART
diminishes the chance of success on a future ARTs (Napravnik et al., 2005). It is desirable to
assess the benefits of delayed ART regimen change objectively through a controlled clinical
study, however, it is difficult to design and enroll such a study. The ACTG designed a
randomized, controlled clinical trial (ACTG A5115) to study immediate versus delayed
switch for participants on stable ART. However, the study failed to accrue the target
enrollment and no definitive conclusions were drawn because the study lacked sufficient
power to detect meaningful differences (Riddler et al., 2007). Our contribution here and
elsewhere (Li et al., 2012) is to address the same scientific questions as the ones intended by
ACTG A5115 but to do so by developing and applying modern statistical tools in secondary
analyses of existing ACTG data bases. As we explain below, this paper complements our
other work (Li et al., 2012) but others new insight into the problem of how to assess the
effect of delayed regimen change and from a completely different perspective.

In Section 3, we conduct a secondary analysis of data from the ACTG A5095 study. The
5095 study was a randomized, multi-center clinical trial of three ARTs: two efavirenz
(EFV)-based regimens and one triple nucleoside reverse transcriptase inhibitor (NRTI)
regimen. The objective of the study was to suppress and maintain HIV-1 RNA below 200
copies/ml and the primary endpoint was time to first virological failure. At an interim review
meeting after a median 32 weeks follow-up, the triple NRTI group was clearly inferior to the
combined efavirenz-based group and the data safety and monitoring board recommended
that the triple NRTI group be discontinued but continued follow-up for the efavirenz-based
group. Detailed summaries of ACTG 5095 appear elsewhere in the literature (Gulick et al.,
2004, 2006; Ribaudo et al., 2008).

Confirmed virological failure was defined as lab readings from two consecutive visits after
at least 16 weeks of study treatment where HIV-1 RNA > 200 copies/ml. In our analysis
below, we use data from 182 participants randomized to EFV-based ART who met the
protocol definition of confirmed virological failure over the course of the study. After
confirmed virological failure on an initial efavirenz-based ART, participants were given
opportunity to switch of the initial ART and move to a second-line ART. Unlike ACTG
5115, however, the decision of when to switch to second-line ART was left to the participant
and his/her provider. Because factors associated with switching to second-line ART may be
associated with immunological response or clinical endpoints, to evaluate the relative
benefits of early or delayed switch, we must think carefully of how to address a clear case of
confounding. When examining the ACTG A5095 data, a second critical issue arises due to
the limited nature of the follow-up window. In Figure 1, we plot the Kaplan-Meier estimate
of the time to switch to second-line ART for 182 participants who failed their initial EFV-
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based ART. Figure 1 tells several intriguing stories. First, it is clear that a subgroup of
participants that fail the initial ART switch shortly after confirmed virological failure. Here,
we know that 31 participants (17% of 182) switched within eight weeks of confirmed
virological failure, which is equivalent to switching at the same clinic visit as the the
confirmation lab reading or the following clinic visit.

After eight weeks, switching to second-line ART is far less frequent as the Kaplan-Meier
curve flattens out. Next, we notice that a very large proportion of participants do not switch
to second-line ART, even nearly five months after confirmed virological failure. To be
precise, 100 participants (55% of 182) did not switch within the follow-up period. Of these
100 participants with censored switching times, 42 participants were followed for at least
100 days, 27 participants followed for at least 120 days, and 11 participants followed for at
least 140 days. As the text indicates in Figure 1, the median time to switch to second-line
ART is 139 days following virologic failure on an initial EFV-based ART. Hence, in
addition to addressing the issue of confounding, we must also think critically about how to
model data for participants whose outcome may be observed but whose switching time to
second-line ART may be unknown.

This paper approaches the data analysis from a completely different perspective compared to
another recent work by our group. Li et al. (2012) casts the problem in the context of two-
stage designs (Lunceford et al., 2002): a first randomization to initial ART and then a second
randomization to immediate or delayed switch to second-line ART if virological failure on
the initial ART. They addressed the issues of confounding through a causal framework via
propensity scores and a minimum variance estimator for the average causal effect of
switching to second-line ART before or after eight weeks of confirmed virological failure.
They did not address the issue of censored switching times directly, however, but rather
conducted sensitivity analyses to assess the effect on their conclusions depending on
whether the participants were included or deleted from the analysis. An interesting and
distinguishing feature of the two-stage methodology is how the method uses data from
participants who did not fail the initial ART in order to estimate the intent-to-treat causal
estimands. Using techniques described in their paper, Li et al. (2012) showed that early
switching was modestly associated with lower levels of HIV-1 RNA, higher CD4 cell
counts, and a larger proportion of the follow-up period with suppressed levels of HIV-1
RNA.

Although the estimator proposed by Li et al. (2012) has desirable theoretical properties and
operating characteristics for their two-stage estimand, some investigators find a two-stage
approach awkward for a question directed towards participants who have failed an initial
ART. In the two-stage framework, as explained in Li et al. (2012, p. 543), “ … treatment
comparisons are made without regard for the success or failure of the initial regimen and,
therefore, the estimands reect the combined inuence of initial … regimen and viral load
levels.” Identifiability assumptions imposed in their paper are a reflection of the statement
above and accommodate a participant that may not, in fact, fail the initial ART. A
conditional analysis, on the other hand, foregoes the complexities of the two-stage analysis
and simply ignores the first-stage randomization altogether. Here, in this paper, we will
model outcomes for n = 182 participants that failed initial ART and whose switch to second-
line ART regimen is represented in Figure 1. The methods outlined in Section 2 and the
statistical analysis presented in Section 3 will accommodate and model directly censored
switching times. Using the methods here and for participants who failed an initial EFV-
containing regimen, we estimate linear and nonlinear trends of HIV-1 RNA and CD4 T-cell
count outcomes as a function of switching times. Compared with Li et al. (2012), the
methods here estimate the entire dose-response curve rather than simply mean outcome for a

Johnson et al. Page 3

Biometrics. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



particular eight-week cutoff. Thus, although the broad objectives of the two statistical
analyses are similar, the populations, treatment policies, and causal estimands all differ.

To model the immunological outcomes as a function of switching times, we cast the
statistical problem in terms of a dynamic treatment regime: basically, a sequence of
decisions over time to continue on initial ART or switch to second-line ART at time t given
they are still on initial ART at time t. The problem here is similar to the analysis of infusion
trial data, where the treatment decision is whether to stop or continue infusion at time t given
the participant has been continuously infused up to time t. Johnson and Tsiatis (2004, 2005)
first proposed an estimator in the context of infusion trials for participants undergoing
coronary stent implantation. In that application, participants were treated with anticoagulant
for an unspecified amount of time after surgery but providers stop infusing participants
when it was deemed appropriate to do so or until an infusion-terminating event occurs,
whichever came first. To accommodate treatment censoring, they defined a treatment policy
which incorporates censoring as part of its definition. Other authors have articulated the
causal estimands in terms of targeted treatment lengths or intended treatment lengths (cf.
Johnson, 2008; Zhang et al., 2011), arguing that these particular treatment-terminating
events led to compulsory treatment discontinuation as opposed to potentially optional
treatment-terminating events which could lead to a different set of treatments and more
complex treatment assignment mechanism (Zhang et al., 2011). Hence, in the infusion
application, an infusion-terminating event censors what would have otherwise been the
targeted infusion infusion length.

In this application and extension to therapeutic HIV/AIDS studies, the proposed method
accommodates the complexities including sequential decision making, potential for
treatment censoring and time-dependent confounding; we make those connections explicit in
Section 2. Incidentally, the technique also allows for censoring to be informative but this
condition is not necessary for applicability of the method. Although the statistical methods
employed below were proposed elsewhere, the application to switching from initial ARTs to
second-line ARTs in therapeutic HIV/AIDS studies is new and provides a principled
framework for modeling a clinical outcome as a function of a targeted switching time even
when some switching times are unobserved.

2. Methods
2.1 Dynamic Regimes

We begin our statistical analysis with notation and assumptions embodied in a theory of

dynamic treatment regimes (DTR). A (continuous-time) DTR, say , is a
sequence of decision rules for treatment assignment, or in our application, rules for
switching to second-line ART. First, we define treatment assignment,

and Āt = (A1, …, At) as the history of treatment assignment up to and including time t. Next,
we define the treatment assignment rule in the DTR at time t,
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where “w/p.” is an abbreviation for “with probability,” ℰt is eligibility at time t and ℰt− is
interpreted to mean that a participant is still on first-line ART just prior to time t. In the
DTR, a participant switches in the infinitesimal [t, t + ε) with probability Pδ̄T (At = 1|ℰt− =
1) ≈ hδ̄T (t)εI(ℰt− = 1), where Pδ̄T (·) denotes probability in the DTR. In the observational
study, however, switching to second-line ART depends on participant characteristics. Let Xt
denote a time-dependent covariate vector at time t and X¯t = {Xu, u ≤ t}, the history of co-
variate information up to time t. Thus, in the observational study, switch to second-line ART
in the interval [t, t + ε) occurs with probability, P(At = 1|ℰt− = 1, X¯t) ≈ h(t, X¯t)εI(ℰt− = 1),
and P(·) denotes probability in the observational study. The observed outcome is denoted as
Y and we elaborate on the clinical outcome measures from 5095 in Section 3.1.

Using results from Johnson and Tsiatis (2005, Appendix) and Lemma 4.1 from Murphy et
al. (2001), the marginal mean outcome can be modeled parametrically as a function of target
switching times through,

(1)

β is vector of parameters, β = (β1, …, βp), and estimated through the system of estimating
equations,

(2)

where R(t) = I(U ≥ t) and U is the observed time to switch second-line ART or censoring,
whichever came first, π is the product integral, μ̇(t, β) is the first derivative of μ(t, β) with
respect to β and ℙn(·) is the empirical average. To reconcile the at-risk indicator R(t) with
earlier notation, note that at-risk is synonymous with eligibility, i.e. R(t) = I(ℰt− = 1).

Johnson and Tsiatis (2004, 2005) noted that this dynamic regime has a special structure and
that the history of treatment assignment can be viewed as a counting process which takes a
jump of size +1 if and when a participant switches to second-line ART and remains zero
throughout all time if a participant is censored prior to switching. Without loss of generality,
the potential outcomes can be summarized as {Y(t), t ≤ C}, where Y(t) is the outcome if a
participant switches to second-line ART at a target of t weeks and C is the time of a
potential censoring event. Using their counting process framework leads to a simple
expression for the estimator defined by (2). Define the indicator Γ = 1 if a participant
switches to second-line ART prior to the end of follow-up and Γ = 0 otherwise. The
treatment assignment probability h(t, X̄t) is the cause-specific hazard function,

(3)

Evaluating the product integral in (2), Johnson and Tsiatis (2005) showed that,

(4)

where
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As with other statistical analyses of observational data, we impose statistical assumptions to
help identify the causal estimand and consistently estimate the parameter β using the
observed data. We adopt the Rubin causal model (Rubin, 1974) and, in particular, the ‘stable
unit treatment value assumption.’ The assumption implies that the observed and potential
outcomes are equivalent for the treatment received, that subjects do not contaminate one
another and generally satisfied if subjects are independent. We believe such assumption is
satisfied in the 5095 study. We also make assumptions about the availability of potential
confounders which, in the current analysis, are defined as those factors that affect a
participant’s decision to switch to second-line ART and also associated with their
subsequent outcome. Namely, we assume the time-dependent data is sufficiently rich such
that

(5)

In (5), we allow for the possibility that a participant’s decision to switch to second-line ART
at any time t may depend on unobserved potential immunological outcomes. But after
conditioning on participant’s covariate history up to time t, it is assumed that unobserved
potential outcomes provide no additional information on a participant’s treatment decision.
This assumption in (3) is also called the sequential randomization assumption. Other
technical assumptions are contained in Lemma 4.1 of Murphy et al. (2001) and are omitted
because they are tangential to the application here (cf. Johnson and Tsiatis, 2005).

2.2 Modeling Details
We posit first- and second-order polynomial relationships for the marginal mean as a
function of target switching times such that the statistical model is written

(6)

where β = (β0, β1, …, βp) are the regression coefficients of interest and M is a user-specified
centering constant. Consequently, for the continuous outcomes considered below,

In order to operationalize the estimator in (4), one must model the the cause-specific hazard
in (3) and define fδ̄T (t). We adopt Cox’s proportional hazards model (Cox, 1972) for h(t,
X¯t), i.e.,
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where h0(t) is an arbitrary function of time and, hence, allows for much flexibility in
modeling the probability of switching to second-line ART. At the same time, the
proportional hazards model introduces an infinite-dimensional nuisance parameter h0(t) that
must be estimated to compute f(t, X¯t) in (4). To overcome this challenge, note that if fδ̄T (t)
∝ h0(t), then the expression in (4) simplifies to:

(7)

up to some proportionality constant that does not depend on β. Although this eliminates the
need to estimate the baseline hazard function h0(t) in the first expression of (7), the baseline
hazard function h0(t) still persists in the integrand of the second expression. However, under
suitable regularity conditions, one can show that

at the nominal root-n rate, where γ̂n is the maximum partial likelihood estimator, Ĥ0(t; γ) is
the Breslow estimator of the integrated hazard function, i.e.,

and N(t) is the counting process, . Johnson and Tsiatis (2005)
showed that the β̂, the solution to (7), was root-n consistent and asymptotically normal and
proposed a consistent estimator for the asymptotic variance. Their estimator for the
asymptotic variance is used to estimate standard errors and construct confidence sets for the
point estimates in Section 3.

3. The Effect of Delayed Treatment Switch in ACTG A5095
3.1 Outcome Measures

In Section 3, we present two new statistical analyses of the ACTG A5095 data. The first
data analysis in Section 3.2 facilitates comparisons to our earlier work (Li et al., 2012) in
that we use the same three clinical endpoints, defined as length-adjusted area-under-the-
curve (AUC) outcomes. Briey, the AUCs were computed using a trapezoidal rule (Yeh and
Kwan, 1978) for HIV-1 RNA level, CD4 cell count, and days below a limit of detection
(LOD). If one does not adjust AUC for length, then the endpoint is a non-decreasing
function of follow-up time and has little scientific value in the current analysis (cf. Spritzler
et al., 2008). If T* is the follow-up time and H(u) is HIV-1 RNA level or CD4 cell count at
time u, then we define the length-adjusted AUC as

(8)
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For the LOD endpoint, Y is simply the average number of days below a limit of detection
divided by the entire follow-up period.

In the second analysis in Section 3.3, we consider four new clinical endpoints. The first two
endpoints are modifications of the earlier length-adjusted AUCs in (8) but with a start time
equal to the date of confirmed virological failure and, thus, could not have been defined for
the cohort used in Li et al. (2012) because not all participants experienced virological failure
in their analysis. There we define

where  is the time of virological failure. This modified endpoint is defined for HIV-1
RNA level and the limit of detection (LOD).

The third and fourth endpoints are defined through the final two observed HIV-1 RNA
levels in the follow-up period. We consider whether the final two viral load measurements
exceed 200 copies/mL, the threshold of virological suppression or failure in 5095, at the end
of the follow-up period. We found that 74 participants had both measurements below the
LOD, 84 participants had neither measurements below the LOD, and 24 participants had one
measurement below the LOD. For simplicity, we ran two analyses labeling the inconclusive
24 participants as suppressed and as non-suppressed. The two new case definitions are made
explicit in Table 1 and the analytic results for all four endpoints are displayed in Table 4.

As a final note on outcome measures, we draw attention to assumptions embedded in the
dynamic regime framework as it pertains to our outcomes. In Section 2, we adopt the
common assumption that Y = Y(Ā) = Y(ā) and, for this particular dynamic regime, Y(ā) =
Y(t)I(C > t)+Y(C)I(C ≤ t). Hence, when Γ = 0, the outcome is Y = Y(C) for any intended or
targeted treatmet length t, where t > C. In order for length-adjusted AUC outcomes to
remain constant given the already observed HIV-1 RNA levels up to time C, this implies
that when as follow-up time increases, the integrated viral load increases proportionally.
Constant length-adjusted AUC is quite different than constant AUC given the same history
of HIV-1 RNA level up to time C, that latter of which implies HIV-1 RNA is exactly 0 for
every t, t > C, and unrealistic even for participants with undetectable viral load. Johnson and
Tsiatis (2004, 2005) argued that, in the absence of information to the contrary, assuming that
the treatment-censoring event would have occurred at the same moment regardless of the
intended treatment length is a reasonable assumption in many studies and we conjecture here
as well.

3.2 Different Methods Applied to a Subcohort of Li et al. (2012)
The outcomes used are described in Section 3.1. Next, we model the probability of
switching to second-line ART as a function of potential confounders via Cox’s proportional
hazard model; in causal inference, this is referred to as a generalized propensity score (PS)-
model. We modeled ten potential confounders including HIV-1 RNA (copies/ml) level at
baseline, HIV-1 RNA (copies/ml) level at virological failure, time (days) to virological
failure, CD4 cell count, CD8 cell count, weight (kg), age (years), gender (1=male), history
of drug use (1=yes), and race. The coefficient estimates are presented in Table 2.

Because the validity of our estimator for β in (7) depends on the correct specification of the
PS-model for the cause-specific hazard h(t, X ¯t) in (3), we estimated the coefficient
parameters γ under three different models to compare the relative contribution of the effects:
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extreme value distribution (Weibull), Cox model, and rank-based coefficient estimates (Log-
rank) in an accelerated failure time model. In Table 2, we see that the two most important
covariates associated with switching to second-line ART are CD4 cell count and race.
Patients with higher CD4 cell count at baseline tended to wait longer to switch to second-
line ART after confirmed virological failure. Furthermore, black participants tend to switch
to second-line ART much more quickly compared to white (non-Hispanic) participants,
even after adjusting for all the other variables. It is interesting to note that both CD4 cell
count and race are the only two strong covariates among the ten across all three statistical
models. Although this does not confirm that our PS-model is correct, it does suggest that
other models would lead to similar estimates of the participant-specific propensity scores
and probably similar conclusions as well.

Finally, we estimated the regression coefficients β for two models, linear and quadratic, that
parameterizes how the expected length-adjusted AUC changes as a function of target
switching time. To compute the estimator in (7), we modeled time in weeks (whereas data
presented in Figure 1 is in days) and chose constants T = 21, M = 10 based on the data. The
estimated coefficients and their standard errors are presented in Table 3 with an
accompanying figure in Figure 2.

From Table 3, one can see that some trends do emerge. First, average HIV-1 RNA level
tends to be larger for participants who delay their switch to second-line ART. For this
endpoint, the linear term is significant at the nominal level in the linear model and the
quadratic term is also moderately significant in the quadratic model. However, the negative
coefficient estimate of the quadratic terms suggests that participants who delay their switch
to second-line ART have similar HIV-1 RNA profiles (at least approximately in aggregate)
to those who switch to second-line ART immediately after failing. A similar story unfolds as
we consider average days below LOD. Here, it is clear that participants who switch soon
after virological failure tend to spend more days below a limit of detection, 200 copies/ml,
during ACTG A5095 follow-up. When we considered the quadratic model, the quadratic
term was again moderately significant suggesting that the participants who delay their
switch to second-line ART the longest tend to have outcomes more similar to participants
that switch soon after confirmed virological failure rather than those participants who switch
3–4 months after failure.

Finally, we failed to find any significant linear or quadratic trends for the CD4 endpoint. The
conclusions for the HIV-1 RNA and Days below LOD endpoints agree with Li et al. (2012)
while the negative finding about the CD4 endpoint disagrees with the conclusions of Li et al.
(2012). In our earlier work, we concluded that there were modest but statistically significant
differences in CD4 endpoints between participants that switched to second-line ART before
eight weeks of confirmed virological failure compared to those that delayed switch. Two
possible explanations emerge for the discrepancy. First, the causal estimands here and in Li
et al. (2012) are different and not directly comparable. The two-stage analysis uses data
from 562 participants that do not fail initial ART in addition to 182 participants that fail
initial ART whereas our analysis here only uses data from the latter 182 participants.
Another possible explanation is that our estimates of linear and quadratic trends are global
estimates in the sense that we use data across the entire range of time to estimate trend. An
alternative approach would be to construct a weighted local regression estimator or use B-
spline bases instead of polynomial bases of second-order and see whether this leads to
different conclusions than what is presented in Figure 2. However, developing such a
statistical method is beyond the scope of the current paper and we leave it for future work.
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3.3 New Analysis of New Clinical Endpoints
In this subsection, we use the same statistical method described in Section 2 to analyze four
new endpoints described in Section 3.1. For both the length-adjusted AUC endpoints in
HIV-1 RNA and days below a LOD, the significant linear trends disappear in the new
definition compared to what we found in Table 3. This suggests that participants who had
larger HIV-1 RNA before virological failure tended to switch earlier once virological failure
actually happened. Interestingly, the quadratic trends were significantly different from zero
in the case of HIV-1 RNA, just as it was in Table 3, but not for days below a limit of
detection. Finally, when we considered the binary endpoints defined in Table 1, we modeled

In Table 4, we find that delayed switching is associated with lower probability of one or
more final HIV-1 RNA observations below a limit of detection. Thus, participants who
switched soon after virological failure were more likely to have viral suppression at the end
of the follow-up period.

4. Discussion
For persons living with HIV and AIDS, identifying the optimal time to switch from a failing
ART regimen to a new ART regimen is an important scientific question with no firm
solution. Although current Department of Health and Human Services guidelines (http://
www.aidsinfo.nih.gov) recommend that participants switch early after confirmed virologic
failure, attempts to collect objective data in controlled clinical studies have been
unsuccessful. For example, AIDS Clinical Trials Group (ACTG) A5115 was designed to
address such a scientific question but was unable to accrue enough participants to reach
target enrollment (Riddler et al., 2007). As a result, study investigators could not conclude
whether immediate switch to second-line ART was better or worse than delayed switch. We
attempt to answer a similar scientific question as that proposed by Riddler et al. (2007) but
do so in a secondary analysis of ACTG A5095 data using semi-parametric methods for
missing data problems and causal inference. Although the 5095 study is approximately 10
years old now, optimal switching times for participants failing ARTs are unknown so any
data analysis is a contribution to the field. In addition, the methods here could be applied to
other studies as that data is made available.

We recast the modeling problem in the context of dynamic treatment regimes with stochastic
treatment assignment rules and then adopt an estimator by Johnson and Tsiatis (2004, 2005)
to estimate the parameters of interest. This framework allows for sequential treatment
decisions, adjusts for the confounding introduced by non-randomized treatment assignment,
and accommodates censored switching times as a result of limited follow-up. Our analysis
suggests that delayed switch to second-line ART regimen is associated with elevated level of
HIV-1 RNA and lowered CD4 cell count, although the latter was not statistically significant.
Our results here support a more nuanced conclusion than what we reported in earlier work.
Here, and in Li et al. (2012), we conclude that there may some benefit to switching early as
opposed to delayed switching. However, our new analysis also suggests that, on average, the
worst outcomes are observed for those participants switching to second-line ART regimen
10–13 weeks after confirmed virologic failure, not those participants switching 18–20 weeks
post-virological failure. We conjecture that this result may be tied more or less directly to
participants who met the 5095 definition of virological failure but then remained on initial
ART regimen to the end of the follow-up period. It is conceivable that these participants
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stopped taking the initial ART for a period of time which resulted in elevated viremia, but
then whose viral load levels returned to low levels after they resumed taking their
medications. This would explain both their virological failure and subsequent good
immunological outcomes. This explanation also begs for an improvement in the current
methodology which seems to suggest that all participants who fail virologically must switch
to second-line ART. We understand that any recommendation to switch ART regimens will
depend on participant adherence to their current ART regimen and, if non-adherence can be
corrected, that no such recommendation to switch from initial ART regimen would be
necessary.

Presumably, a more dynamic modeling approach could accommodate other subtleties or
nuance in the antiretroviral treatments that are not addressed here. In addition to adherence,
CD4 cell counts ought to play a role in switching to second-line ART regimen. We
recognize that virological failure is not synonymous with a drop in CD4 cell count and that
some participants exhibit a robust immune response even in the face of elevated HIV-1
RNA levels. Thus, provider recommendations to switch to second-line ART regimens are
more holistic in their rules for treatment assignment. We intend to include more elements in
future data analyses that reect what takes place in the clinic but also recognize the need for a
larger data set and possibly a different long-term clinical endpoint to realistically estimate
treatment effects.

Finally, our analyses here suggest that switching to second-line ART earlier rather than later
is preferred. Using two-stage methodology and a related but different causal estimand, Li et
al. (2012) reached a similar conclusion. Since mean outcome seems to get better as time to
switch is closer to virologic failure, an intriguing question raised by an anonymous referee is
whether the optimal switching time lies prior to virological failure. It is our opinion that,
except in the case of drug toxicity, no participant with undetectable levels of HIV-1 RNA
would be a candidate for switching to second-line ART. So, since the ACTG definition of
confirmed virological failure took measurements from two subsequent clinic visits, the only
possibility would be that the best time to switch to second-line ART could occur between
the first and second clinic visit where an elevated level of HIV-1 RNA is observed. Two
consecutive measurements are required because HIV-1 RNA levels may spike for some
participants on ART and not indicate whatsoever a failing ART and may, in fact, simply
reflect an erroneous lab measurement. Thus, although it may be possible to perform an
analysis where the mean outcome is modeled as a function of time-to-switch prior to the
confirmatory measurement of HIV-1 RNA level, we feel the results of such analysis will
have little impact on the science unless the recommended time to switch occurs after the
confirmatory measurement of HIV-1 RNA level.
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Figure 1.
Empirical distribution estimate for the time to ARV regimen change for n = 182 participants
who failed an initial efavirenz-based regimen.

Johnson et al. Page 13

Biometrics. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Linear (left-hand side) and quadratic (right-hand side) trends for mean length-adjusted AUC
endpoints as a function of switching time to second-line ART. Dashed lines represent 95%
pointwise confidence intervals.
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Table 1

Definition of new outcomes as function of final two HIV-1 RNA measurements in the follow-up period

Defn. of
Y = 1

Y

0 1

Case 1: 2 Obs. HIV-1 RNA ≤ 200 copies/mL 108 74

Case 2: 1 or 2 Obs. HIV-1 RNA ≤ 200 copies/mL 84 98
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