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Abstract: Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also 
be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide vari-
ety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be pro-
duced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objec-
tive of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and 
possible side effects.  
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1. INTRODUCTION 
 The presence of non-hematopoietic stem cells in bone marrow 
as observed by Cohnheim more than 140 years ago [1] has been 
then confirmed by other studies that clearly showed that bone 
marrow (BM) contains cells that can differentiate into fibroblasts, 
as well as into other cells of mesodermal origin [2]. 
 In post-natal tissue, it has been shown that mesenchymal stem 
cells (MSCs) are localized in a “vascular niche” in the wall of large 
or in medium-size vessels of every organ and tissue of the body [3]. 
Their localization in the vascular wall probably originates during 
embryogenesis. In fact, immature vascular progenitor cells, i.e. 
angioblasts migrate from somites to the embryonic dorsal aorta [4]. 
It is possible that during the process of vessels maturation, some of 
these vascular mesenchymal cell progenitors remain entrapped 
within the vessel wall [5]. Their persistence in the vascular system, 
even after birth, may suggest a role for these cells in controlling 
vessel integrity; they could also compensate for the continuous 
post-natal mechanical forces and shear stress on vassels. Further-
more, vascular damage is induced by many human disorders  
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(cancer, atherosclerosis, inflammation, aneurysmal dilatation, 
vascular stenosis and others) and the in situ presence of MSCs may 
contribute to the vascular regenerative process.  
 Since 2001, when the European Directive 2001/83/CE relating 
to medicinal products for human use was approved, products for 
advanced medicinal therapy (AMT), used for gene therapy, somatic 
cell therapy and for tissue engineering, have been considered as 
drugs. Each of these products has specific pharmacologic, 
metabolic and immunologic activities and the potential for treating 
a variety of disorders. For these reasons cellular products for AMT 
must meet the same stringent conditions required for drugs before 
they are placed on the market, in particular their activity, efficacy, 
safety and required dose must be defined. Furthermore they must be 
manipulated according to Good Manufacturing Practices (GMP) 
and they require testing in approved clinical trials before being 
commercialized.  
 In the last decade, MSCs have attracted great interest due to the 
numerous applications proposed for their use. However, as AMT 
products, they must satisfy all the above mentioned requirements. 
Details concerning the European regulatory directives are reported 
in chapter 9.  
 The term “mesenchymal stem cells” initially referred to multi-
lineage progenitor cells isolated and culture-expanded from human 
adult BM. However, in order to better describe and define the direc-
tion of MSCs research, recent findings on MSCs cell features call 
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for an adaptation of the nomenclature. The first issue is that this 
class of cells can be isolated from almost every vascularized tissue; 
this is related to the fact that every blood vessel in the body has 
mesenchymal cells in abluminal locations that are summarily called 
pericytes. This observation led to the suggestion that MSCs are 
pericytes [6]. Moreover, it has been clearly demonstrated that 
MSCs home to sites of in�ammation or tissue injury and secrete 
considerable levels of both immunomodulatory and trophic agents. 
This indicates that their therapeutic capacities are not associated 
with the ability of MSCs to differentiate into different end-stage 
mesenchymal cell types and thus the term “stem” is not essential to 
describe these cells. Together with evidence that MSCs are highly 
heterogeneous and consist of several subpopulations with varying 
differentiation potentials [7], the term “mesenchymal stromal 
cells”, was proposed with reference to their stromal origin. Very 
recently Caplan, followed by other notable researchers, proposed a 
further adjustment in the term MSCs. Considering that MSCs mul-
tipotency is not the key aspect of their current therapeutic use, 
MSCs should be an acronym for “medicinal signaling cells” [6], 
focusing on their secretive paracrine activities. 
 For the purposes of this review and for the sake of simplifica-
tion, the acronym MSCs is generically used to identify this class of 
cells. Indeed, although the powerful immunomodulatory and tro-
phic functions of MSCs deserve further investigation to improve 
their therapeutic use, in our opinion the MSCs multipotency is still 
an important aspect for tissue engineering strategies.  
 Herein, we provide background in order to direct future studies 
on MSCs, considering them as drugs and thus discussing their 
physiological effects, delivery, clinical applications and possible 
side effects.  

2. IDENTITY DOCUMENT OF MSCs 
 Despite the exhaustive number of studies conducted to charac-
terize MSCs by their surface antigen expression profile, variability 
still exists within MSCs populations. Markers are useful can be of 
help to establish the homogeneity of a population of mature cells, 
whereas they may be less informative to study a stem cell popula-
tion. The International Society for Cellular Therapy (ISCT) pro-
posed three minimal criteria to identify MSCs: 1) adherence to 
plastic; 2) specific surface antigen expression (positivity for 
CD105, CD73,CD90 and negative for CD45, CD34, CD14 or 
CD11b, CD79a or CD19 and HLA class II); 3) multipotent capacity 
to differentiate into osteoblasts, adipocytes or chondroblasts under 
standard in vitro differentiating conditions [8]. However, in addi-
tion to these minimal criteria and to have a more precise, although 
complicated, picture, we should assume that adult human MSCs are 
also positive for several other markers as reported in (Table 1) [8-
17]. 
 According to some authors, MSCs should also express embryo-
nic stem cell markers, such as Oct-4, Rex-1, and Sox-2, for at least 
10 passages [18]. Based on the above markers, many techniques for 
the isolation of MSCs using antibody selection have been recently 
developed. Some methods use negative selection to enrich the 
MSCs cell population (by removing cells from the hematopoietic 
lineage); other methods positively select MSCs by using specific 
antibodies [14, 15].  
 The main reason for the marker expression variability are due to 
the source of MSCs (see chapter 3 - Source of isolation) and/or the 
different stages of culture [19].  
 MSCs surface marker expression may also be influenced by the 
method of isolation. Furthermore, a very important cause of 
differences in marker expression is due to stimulation by cytokines 
or growth factors secreted by contaminant cell populations present 
at the first stage of culture. This indicates that in vitro expression of 
MSCs markers may not correlate with their expression patterns in 
vivo.

Table 1. Markers for the Identification of BMSCs 

Positive selection Negative selection 

CD9 CD119 CD11a 

CD10 CD120a CD14 

CD13 CD120b CD15 

CD29 CD121 CD18 

CD44 CD123 CD19 

CD49a CD124 CD25 

CD49b CD126 CD31 

CD49c CD127 CD34 

CD49d CD140a CD40 

CD49e CD166 (ALCAM) CD45 

CD51 CD271 CD50 

CD54 (ICAM-1) CCR1 CD56 

CD58 CCR4 CD62E 

CD61 CCR7 CD62P 

CD62L CXCR5 CD80 

CD71 CCR10 CD86 

CD73 F9- 3C2F1, CD117 

CD90 HEK-3D6 HLA-II 

CD102 STRO-1  

CD104 HER-2/erbB2  

CD105 Frizzled 9  

CD106 (V-
CAM1) 

GD2  

 All the above considerations indicate that mesenchymal 
precursor cells are phenotypically very heterogeneous. This is a 
very crucial point because, as also stated by Boheler [20], it in-
volves the survival and homing capacity of the cells to host tissues 
following transplantation, and the differentiation potential of these 
cells in vivo. In a recent study, it has been shown that also fibro-
blasts possess multi-lineage differentiation capacity, albeit less than 
MSCs [21]. This confirms previous data on the fibroblast differen-
tiation potential [22] and underlines the necessity to find additional 
functional features to better characterize MSCs. In the same study, 
it was also observed that MSCs retained strong angiogenic proper-
ties, whereas fibroblasts were much less angiogenic. Thus it has 
been proposed that additional and more distinctive MSCs markers, 
namely those indicating capacity to affect angiogenesis should be 
included [21]. The property of MSCs to induce angiogenesis is 
well-known, suggesting that their therapeutic efficacy in several 
diseases, including ischemia, can be attributed mostly to their angi-
ogenic potential [23, 24]. For these reasons, the evaluation of MSCs 
angiogenic capacity is not only important for a better functional 
characterization of these cells, but it could also be useful to predict 
their effectiveness in clinical applications in tissue regenerative 
therapies.  
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3. SOURCES OF ISOLATION
 Although BM is still the most common source of MSCs, in the 
last two decades there has been a continuous effort to identify alter-
native sources of MSCs, mainly driven by a constant quest for a 
“more convenient” source. Therefore, MSCs have been found par-
ticularly in tissues that are discarded, such as fat from liposuction, 
deciduous teeth, or placenta and umbilical cord. A second driving 
force for an alternative source to BM has been the quest for a “su-
perior” source of MSCs. However, MSCs isolated from BM, adi-
pose tissue and fetal annexes using standardized isolation and cul-
ture protocols, seem to show comparable features [25]. Thus today, 
it is still unclear which tissue source for MSCs recovery is optimal 
for a given clinical situation.  
 The question whether MSCs obtained from different sources are 
the same cells has long been debated and opinions are still 
conflicting. Several studies have investigated MSCs isolated from 
different sources in order to compare their morphology, frequency 
of colony formation, expansion characteristics, multilineage 
differentiation capacity, immunophenotype, and success rate of 
isolating the cells. It has been demonstrated that all cells isolated 
from adipose tissue, bone marrow and umbilical cord blood exhibit 
a similar fibroblastoid morphology, formation of CFU-F, multi-
potential differentiation capability and expression of a typical set of 
surface proteins, with the exception of CD105 and CD106, 
described to be associated with hematopoiesis and cell migration, 
which were differently expressed: a significant reduction was 
observed in umbilical cord cells and in adipose tissue, respectively 
[26]. In the same study the authors demonstrated that umbilical cord 
blood MSCs were not able to differentiate toward the adipogenic 
lineage. The debate on the differentiation ability of these types of 
MSCs continues and very conflicting data are published in the 
literature. [27-29]. Some studies show that adipose-derived MSCs 
are more angiogenic than bone marrow-derived cells (BMSCs) 
[30], display their proliferative capacity for long period [26, 31] and 
retain for longer time their adipogenic capacity [18, 32]. The immu-
nosuppressive properties of ASCs seem to be superior to BMSCs 
[33, 34]. Although the underlying mechanisms of all these 
differences are not known, several studies have shown that MSCs 
and ASCs exhibit differences in their proteomic and transcriptomic 
profile [18, 35, 36] that might justify the differences between MSC 
and ASC.  
 However, it is really difficult to make a comparison since there 
are several variables that may strongly influence MSCs in culture. 

3.1. Bone Marrow-derived MSCs 
 To date most knowledge on MSCs derives from studies per-
formed on bone marrow-derived MSCs (BMSCs). For this reason, 
very often BMSCs serve as a “positive control” for MSCs isolated 
from other tissues. 
 The number of MSCs that can be isolated from a tissue is vari-
able. From a clinical perspective it is relevant that a large number of 
cells are collected, in particular when unexpanded MSCs are util-
ized [37, 38]. A limited number of MSCs are contained in BM: 
according to Muschler [39] in humans an average of 1/18,000 
mononuclear cells are MSCs, therefore considering that there are 
about 65x106 mononuclear cells (MNCs) for every ml of BM, in 
whole bone marrow there are only 3555 MSCs/ml. Obviously, this 
is an approximate number: indeed, in addition to the large inter-
donor variability, the technique used to harvest BM and technique 
used to isolate the mononuclear fraction can greatly influence the 
number of MSCs that can be isolated from a sample. The aspiration 
technique and volume of BM harvested must be taken into account 
in order to reduce peripheral blood contamination. Several authors 
have evaluated the influence of BM volume aspiration on MNCs 
and BMSCs yield. It was already shown that the concentration of 
MNCs in peripheral blood is much lower than that in BM [40]. For 
this reason, some authors recommended collecting just 2 ml of BM 

before changing the harvest site in order to avoid dilution of BM 
with peripheral blood. Several methods have been described for 
isolating MSCs from BM, including immune-magnetic beads, den-
sity gradient separation and direct BM plating. Currently, the stan-
dard method for isolating BMSCs is based on density gradient cen-
trifugation. Several studies report comparisons between different 
density gradient media and demonstrate conflicting results. While 
some authors found no influence on composition and quality of the 
isolated BMSCs [41], others demonstrated that the choice of differ-
ent protocols affects cell yield and quality [42, 43]. In general, a 
valid cell separation process should guarantee a pure, highly viable 
population of MNCs with minimal contamination with red blood 
cells and granulocytes, while maintaining optimum functional ca-
pacity.  

3.2. Adipose-Tissue Derived MSCs  
 Like BM, adipose tissue derives from the mesenchyme and 
consists of a highly complex system containing different cell popu-
lations, including mature adipocytes, pre-adipocytes, fibroblasts, 
vascular smooth muscle cells, endothelial cells and adipose-derived 
stem cells (ASCs). Lipoaspirates from aesthetic surgery are usually 
discarded and for this reason, together with their large availability, 
accessibility, and ease of procurement with minimal discomfort for 
the patient under local anesthesia, adipose tissue could represent an 
ideal source of progenitor cells. ASCs are adult mesenchymal stro-
mal/stem cells that can be easily isolated by a simple collagenase I-
based isolation procedure which is able to digest the matrix and 
yields the so-called stromal vascular fraction (SVF) [44, 45]. It 
contains several cell populations, including ASCs, which are then 
usually further purified by plastic adherence. ASCs are similar to 
BMSCs regarding morphology, immunophenotype and colony fre-
quency [26]. Indeed they possess the ability to self-renew, express a 
very similar immunophenotypic pattern and are able to differentiate 
into several cell lineages of mesodermal origin, i.e. adipocytes, 
chondrocytes and osteoblasts [11, 44, 46, 47]. Moreover, it has been 
also shown that they are able to trans-differentiate into cells of en-
dodermic and ectodermic origins, such as neuronal-like cells, endo-
crine pancreatic cells, hepatocytes, epithelial cells and cardiomyo-
cytes [48-53]. However, ASCs and BMSCs show slight differences 
in their expression of particular markers: CD49d and CD34 are 
expressed on ASCs but not on BMSCs, whereas CD106 is ex-
pressed on BMSCs but not on ASCs. In BM, CD106 expression 
may be functionally associated with hematopoiesis, stem cell hom-
ing and proliferation, whereas adipose tissue-derived cells do not 
need this molecule since they belong to non hematopoietic tissue. 

3.3. Placenta-derived MSCs 
 Besides its fundamental functions in nutrition and protection of 
the developing fetus in the womb and its role in fetomaternal toler-
ance, human placenta has recently attracted wide attention also as a 
valuable source of stem/progenitor cells. A significant advantage of 
placenta as stem/progenitor cell source is its readly availability. 
Indeed this organ is easily procured without invasive procedures at 
delivery and its use is free of ethical concerns, considering that it 
would normally be discarded as biological waste. 
 The placenta is an organ consisting of a fetal (fetal membranes, 
chorionic plate and umbilical cord) and a maternal component (de-
cidua). MSCs have been isolated from both fetal and maternal tis-
sues, and in particular: i) from amnio chorionic fetal membranes 
[54-57]; ii) from the chorionic villous stroma of first-trimester pla-
centa [58] and term placenta [55, 59], although isolation of these 
cells might be affected by contamination with maternal cells [60], 
so that the fetal origin has to be demonstrated with methods sensi-
tive enough to detect less than 1% maternal cells [57]; iii) from at 
least five compartments of the umbilical cord: the umbilical cord 
blood, the umbilical vein subendothelium, and three regions of 
Wharton’s jelly, i.e. the perivascular zone, the intervascular zone, 
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and the subamnion [61]; iv) from different regions of the decidua 
[55]. Placental MSCs meet all the ISCT basic criteria, since they are 
plastic adherent, they show a specific MSCs pattern of surface anti-
gens [57, 58, 61, 62], and under specific culture conditions in vitro,
placental MSCs exhibit multilineage differentiation capacity [58, 
59, 63]. 
 Placental MSCs have been reported to grow faster and more 
robustly, and have greater long-term growth ability than BMSCs
[64]. Some differences between placental MSCs and BMSCs were 
also found in the expression of chemokine receptors and other sur-
face molecules. Brooke and colleagues [65] revealed that although 
these cells display a similar pattern for these molecules, the placen-
tal cells express a much higher level of VCAM-1 ligand VLA-4 
(CD49d) and a lower level of CCR1 and CXCR6. Other molecules 
such as CD56, CD10 and CD49d have been shown to be more 
highly expressed on placental MSCs [66].  
 MSCs from placental regions, like human BMSCs, are poor 
antigen-presenting cells due to their low or limited expression of 
MHC class II and costimulatory molecules [57]. It has been demon-
strated that placenta-derived MSCs fail to induce an allogeneic T-
cell response and inhibit lymphocyte proliferation induced by allo-
antigens or via T cell receptor cross-linking, likely through mecha-
nisms based on secretion of soluble factors [54, 67] and in a dose-
dependent way [68].  
 Furthermore, amniotic membrane MSCs block differentiation 
and maturation of monocytes into dendritic cells, with a reduction 
in the production of inflammatory cytokines and production of high 
levels of Th2-related cytokines [69].With the same mechanism of 
cell cycle arrest in the G0/G1 phase, amniotic membrane-derived 
MSCs also exert an anti-proliferative effect on cancer cell lines 
[69]. 

3.4. Synovial Fluid-derived MSCs 
 Synovium-derived mesenchymal stem cells (SMSCs) are a 
good candidate for a cell-based product particularly intended to 
treat cartilage defects because they have superior chondrogenic 
differentiation properties compared with other cell types [70,71]. 
SMSCs can be easily harvested by arthroscopy with minimal pain 
and complication; in addition synovial tissue and synovial fluid can 
be easily regenerated because the synovial membrane possesses a 
high regenerative capability [72].  
 In particular, synovial fluid contains a population of MSCs that 
are consistently more chondrogenic in vitro, in comparison to BM- 
and adipose tissue-derived MSCs [73]. Although their exact role in 
homeostasis and repair of joint structures needs to be established, 
these cells have been demonstrated to contribute to the healing of 
ligament injury in a rabbit experimental model [74]. 
 In general several joint structures (subchondral bone, synovium, 
cartilage, infrapatellar fat pad) have been shown to host resident 
MSCs [70, 73, 75]. 

3.5. Other MSCs Sources 
 Several other sources of MSCs have been identified in the last 
two decades. Although some of these sources seem promising for 
obtaining MSCs for clinical use, most, due to the low MSC yield 
and/or invasiveness of the harvesting procedure, do not encourage 
further investigation (Table 2).

4. IN VITRO MSCs EXPANSION: ALTERNATIVE METH-
ODS
 Due to the low frequency of mesenchymal progenitors in hu-
man tissues, MSCs in vivo use requires that the cells be extensively 
ex vivo manipulated to achieve numbers that are necessary for their 
clinical application [87]. MSCs are generally cultured, both under 
experimental and clinical grade conditions, in the presence of fetal. 

Table 2. Other Human MSCs Tissue Sources 

Tissue Reference 

Periostium [76] 

Pericytes [77] 

Dental pulp [10] 

Peripheral blood [78] 

Dermis [79] 

Trabecular bone [80] 

Infrapatellar pad [75] 

Muscle [81] 

Pancreas [82] 

Peridontal ligaments [83] 

Mestrual blood [84] 

Milk [85] 

Urinary tract [86] 

calf serum (FCS) [88]. Nonetheless, the use of FCS raises concerns 
when utilized in clinical grade preparations, because of the theoreti-
cal risk of transmission of prions and agents responsible for still 
unidentified zoonoses, as well as the risk in causing immune reac-
tions in the host with consequent rejection of the transplanted cells 
[89].  
 In view of these considerations, animal serum-free media have 
been investigated. Both autologous and allogeneic human serum 
have been tested for in vitro expansion of MSCs, and one group 
showed that autologous serum was superior to both FCS and allo-
geneic human serum in terms of proliferative capacity [90]. To 
reduce the amount of bovine antigens, a final 48-hour incubation 
with medium supplemented with 20% human serum, has been 
evaluated [89]. Several serum-free media, based on the use of cyto-
kines and growth factors, such as basic fibroblast growth factor (b-
FGF) and transforming growth factor beta (TGF-�), have also been 
tested under experimental conditions [91]. 
 Platelet lysate (PL) has been demonstrated to be a powerful 
substitute for FCS in MSCs expansion, thanks to its high concentra-
tion of natural growth factors (GFs) [92, 93]. Lucarelli et al. and 
Doucet et al. first demonstrated that growth factors contained in PL 
are able to promote MSCs expansion in a dose-dependent manner 
[92, 94]. Bernardo et al. showed that a culture medium supple-
mented with 5% PL is superior to 10% FCS in terms of clonogenic 
efficiency and proliferative capacity of MSCs, therefore providing 
more efficient expansion, together with significant time savings 
[95]. Moreover, the in vitro immune regulatory properties of PL-
expanded MSCs resulted to be comparable with those of MSCs 
cultured in the presence of FCS in terms of capacity to decrease 
alloantigen-induced cytotoxic activity, to promote differentiation of 
CD4+ T cell subsets expressing a Treg (regulatory T cells) pheno-
type, and to increase IL-6 production in culture supernatant [95]. 
Gene expression changes in long-term cultured PL-expanded MSCs 
resulted similar to those of MSCs expanded in the presence of FCS, 
suggesting that replicative senescence modifications develop in 
both cases, in the absence of malignant transformation [96]. Al-
though PL seems to be a suitable substitute for FCS in the expan-
sion of MSCs, further studies are needed to better understand the 
biological and functional properties, in vitro and in vivo, of PL-



MSCs in Cell Therapy Current Pharmaceutical Design, 2013, Vol. 19, No. 13    2463

expanded MSCs, as compared with those cultured in the presence 
of FCS. Once these studies are successfully completed, PL might be 
introduced in routine preparation of MSCs to be employed for 
clinical application.  
 In the context of clinical use of MSCs, further issues related to 
the isolation/expansion protocols for cells to be utilized in different 
clinical situations should be taken into account. For example, 
recently, the importance of host factors, which seem to be capable 
of activating MSCs in order to mediate their immunomodulatory 
effects, has been underlined [97]. Along these lines, MSCs would 
not be constitutively inhibitory, but they could acquire their immu-
nosuppressive functions after being exposed to an inflammatory 
environment [97]. The culture of cells in the presence of IFN-�
and/or other inflammatory cytokines, such as TNF-� and IL-1ß, 
could therefore be of value in some clinical contexts where a potent 
immunosuppressive effect of MSCs is desirable [98, 99].  
 MSCs also express a large number of toll-like receptors (TLRs) 
and their stimulation has been shown to affect MSCs immuno-
modulatory properties [100]. Analogously with the functional status 
of monocytes/macrophages, two functionally different MSCs popu-
lations have been identified: the TLR4-primed MSCs population 
which exhibits a pro-inflammatory profile (MSC1) and the TLR3-
primed MSCs population which delivers immunosuppressive sig-
nals (MSC2). In accordance with this theory, T cell inhibition or 
activation could be obtained in different clinical situations thanks to 
the stimulation of specific TLR during ex vivo culture [101]. 

5. EVALUATION OF THE RISK OF MALIGNANT TRANS-
FORMATION OF IN VITRO EXPANDED MSCs 
  Cells propagated in vitro are in a proliferative state under non-
physiologic conditions; this may cause accumulation of DNA dam-
age, resulting in an increased risk for malignant transformation 
[102]. Moreover, after a variable number of cell divisions, in vitro
expanded MSCs, like every normal somatic cell, enter a senescent 
state and ultimately stop proliferating. Several molecular pathways 
have been implicated in senescence, including DNA damage and 
progressive shortening of telomeres. It is well known that somatic 
cells may activate molecular mechanisms in an attempt to circum-
vent senescence. Remarkably, it has been hypothesized that escape 
from senescence, for instance by means of telomerase activity that 
counteracts telomere shortening, is a crucial step in malignant trans-
formation [102]. 
 In vitro and in vivo experimental studies have documented that 
murine MSCs are prone to malignant transformation [103]; moreo-
ver they may support tumor growth and metastatic spread [104]. On 
the contrary, spontaneous malignant transformation appears to be a 
rather exceptional event for human MSCs [105, 106]. Indeed, Ru-
bio and co-workers [107] and Rosland and co-workers [108] have 
documented spontaneous malignant transformation in human MSCs 
expanded in vitro, but the results reported by both groups have 
subsequently been withdrawn, since it was demonstrated that spon-
taneous transformation reflected cross-contamination with estab-
lished human immortalized cell lines [109, 110]. 
 So far, tumor formation has not been reported in ongoing clini-
cal trials using MSCs; however, it is worth considering that for 
many therapeutic applications, the use of allogeneic MSCs might 
promote effective elimination of transformed cells by the immune 
system, while an autologous setting might increase the risk of tumor 
formation [102]. It is also worth considering that a very recent sys-
tematic review of current clinical trials documented that MSCs 
therapy appears safe [111]. Nonetheless, the authors emphasize that 
further larger scale controlled clinical trials with rigorous reporting 
of adverse events are required to further define the safety profile of 
MSCs [111]. Consequently, MSCs expanded in vitro for clinical 
use have to be rigorously evaluated for the risk of malignant trans-
formation. In our opinion, the appropriate quality control procedure 
to investigate this important issue should at least include: (i) release 

of MSCs expanded in a low number of passages (< 4), in an attempt 
to minimize the administration of senescent cells, (ii) careful 
evaluation of the morphology and proliferation pattern at each cul-
ture passage, and the phenotype of the final product (iii), demon-
stration of absence of genetic instability by molecular and conven-
tional karyotyping, (iv) assessment of telomerase activity on the 
final product, considering that it has been documented that non-
malignant human MSCs display a low/undetectable level of this 
enzymatic activity [112], (v) DNA fingerprinting by analysis of 
short tandem repeats to assess the donor identity of the final prod-
uct, (vi) whenever feasible, expansion of a sizable aliquot of the 
MSCs lot cryopreserved for release for further 4-5 passages, in 
order to demonstrate the absence of transformed MSCs which could 
have been present at undetectable levels in earlier passages. 

6. INSIGHTS INTO TISSUE REGENERATION MEDIATED 
BY MSCs 
 One of the features that makes the use of MSCs interesting in 
the clinical setting, is their ability to migrate to the damaged tissue 
or toward inflammatory sites after intravenous administration. Al-
though the mechanism by which MSCs are able to migrate and 
home to sites of injury has not yet been elucidated, it is reasonable 
to assume that an increase in inflammatory chemokine concentra-
tion at the site of inflammation is the first key mediator of MSCs 
trafficking to the injury site. Since chemokine receptors and essen-
tial molecules for the transmigration of leukocytes from blood to 
tissue, such as integrins and selectins, are strongly expressed by 
MSCs, this could explain the MSCs mechanism of transport, hom-
ing, adhesion and transmigration across the endothelium [17, 113]. 
 Although traditionally the MSCs regenerative capacity was 
associated with their presumptive plasticity, their therapeutic effects 
seem to be particularly due to their paracrine function through the 
secretion of a broad range of bioactive molecules. Their potential 
has been exploited in immunomodulation, angiogenesis, support of 
growth and differentiation of local stem and progenitor cells, 
chemo-attraction and anti-scarring and anti-apoptosis effects [16]. 
This points to MSCs as therapeutic agents even if they do not en-
graft or differentiate into tissue-speci�c cells, thus signi�cantly 
increasing the range of MSCs therapeutic applications.  
 The number of molecules known to mediate the paracrine ac-
tion of cultured MSCs is very high and new molecules involved in 
these processes are discovered every day. Anti-apoptosis is the �rst 
expected effect when MSCs are used to treat acute lesions; the prin-
cipal bioactive molecules responsible for the anti-apoptotic effect 
are VEGF, HGF, IGF-I, stanniocalcin-1, TGF� and GM-CSF [114]. 
The same molecules, in addition to PIGF, MCP-1, bFGF and IL-6 
also stimulate local angiogenesis, which is particularly relevant 
during tissue re-organization [115]. Mitosis of tissue-intrinsic pro-
genitors or resident stem cells has been demonstrated to be acti-
vated by the secretion of SCF, LIF, M-CSF, SDF-1 and angio-
poietin-1 [116]. 
 Adult human MSCs express intermediate levels of major histo-
compatibility complex (MHC) class I and are negative for human 
leukocyte antigen (HLA) class II antigens, although its expression 
can be induced by treating cells with interferon-�. The expression of 
HLA class I on human fetal MSCs is lower than that on adult cells 
[117-119]. For these reasons, for several years, MSCs have been 
considered immune privileged cells, unable to induce alloreactivity 
in humans. However, more recently it has been demonstrated that 
donor-derived MSCs are immunogenic in an allogeneic host and 
stimulate donor graft rejection in a murine model of submyeloabla-
tive allogeneic BM transplantation [120]. Moreover, it has been 
documented that both autologous and allogeneic activated natural 
killer (NK) lymphocytes are able to mediate MSCs cytolysis, even 
though MSCs can inhibit interleukin-2 (IL-2)-induced NK-cell 
proliferation and effector functions [121]. 
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 MSCs modulate different aspects of both innate and adaptive 
immunity, exerting immune regulatory functions, both in in vivo
and in vitro, in a wide range of immunocompetent cells, including 
antigen presenting cells, T, B and NK lymphocytes [122, 123]. In 
particular, it has been recently demonstrated that MSCs suppress 
dendritic cell activation in vivo, resulting in the inhibition of cyto-
kine secretion, down-regulation of molecules involved in lymphoid 
organ homing with subsequent impairment of T-cell priming. MSCs 
may also affect neutrophil and macrophage functions, by inhibiting 
apoptosis of resting and activated cells [124]. The capacity of 
MSCs to modulate T cell responses is well documented; in particu-
lar they may inhibit T cell proliferation induced by different stimuli 
or direct T cells towards regulatory patterns [123, 125]. Controver-
sial results have been described on the immomodulatory role of 
MSCs on B lymphocyte function, with some studies documenting 
MSCs inhibitory effect on B cell proliferation, differentiation and 
immunoglobulin secretion, and other studies demonstrating that 
under certain experimental conditions MSCs exert a stimulatory 
effects on B lymphocytes [126, 127].  
 The immunomodulatory properties of MSCs require cell-to-cell 
contact, as well as release of soluble factors, including IL-6, IL10, 
TGF�, prostaglandin (PGE)-2, indolamine 2,3 dioxygenase (IDO) 
and soluble HLA-G [93, 123]. Recently it has also been demon-
strated that MSCs may release microvesicles transporting functional 
mRNA and microRNA, a newly described mechanism of cell 
communication with tissue-injured cells [128], opening a new per-
spective on the MSCs action during the regenerative process. 
 All these properties and characteristics underscore the remark-
able therapeutic options MSCs offer in several clinical settings. 

7. MSCs AND AGING 
 The relation between aging and MSCs is complex because it 
includes the effect of aging on MSCs themselves and the contribu-
tion of MSCs to the aging of the organism [129]. However aging 
affects MSCs potential and consequently impairs homeostasis and 
organ function. In particular, over time, in rodents, monkeys and 
human BMSCs show a decline in terms of differentiation proper-
ties, and the same impairment was demonstrated also for ASCs 
[130]. Even though debate continues, it is accepted that the differ-
ence in MSCs during aging is due to both extrinsic and intrinsic 
factors, such as genetic background and epigenetic changes [131]. 
Mansilla et al. [132] proposed that some clinical situations like 
lipodystrophic syndromes, progeria, and more generally aging 
could be the consequence of a progressive and persistent stem cell 
exhaustion syndrome. The main consequence of this syndrome is an 
irreversible loss of the effective regenerative MSCs pool and thus a 
new strategy for the treatment of aging and age-related disorders 
could be the use of “younger” allogeneic mesenchymal progenitor 
cells. 
 Moreover, in older age and in the presence of osteoporosis, 
mesenchymal precursors tend to follow the adipogenic pathway 
instead of the osteogenic one [131]. Furthermore the reduction in 
BMSCs with aging leads to impaired osteogenesis and bone forma-
tion. In order to fight this situation, Guan et al. [133] used MSCs on 
the bone surface, where osteogenic differentiation could take place. 
The method applied was based on the attachment of a synthetic 
high-affinity peptidomimetic ligand on the MSCc surface. The re-
sults open the way to the use of this strategy for new bone forma-
tion and bone strength increase in elderly patients [133].  
 Regardings cardiovascular diseases, aging is now considered to 
be a risk factor. BMSCs play a role both in cardiac cell maintenance 
[134] and in cardiac repair, thanks to their ability to home to injured 
myocardium [135]. Phase-II clinical trials are ongoing to test the 
long-term safety and efficacy of allogeneic MSC-based therapies 
for cardiac repair [136]. 

 Aging also affects wound healing. In particular the incidence of 
chronic wounds increases over 60 years of age [137]. In this case an 
impaired macrophage function is noted and MSCs are able to re-
store macrophage phagocytic properties in aged mouse [137]. 
 All together these first results encourage the employment of 
MSCs in aging-related diseases. In particular, MSCs from young 
donors could be administered to elderly patients to supplement their 
MSCs deficiency. 

8. CLINICAL APPLICATIONS 
 Although MSCs were discovered in the ’60s, their widespread 
use in clinical applications is recent and is due to the discovery of 
their properties of self-renewal and differentiation into different cell 
types when placed in culture [138]. The basic clinical characteristic 
of MSCs depends on their differentiation towards cells of meso-
dermal origin, like bone, cartilage and adipose tissue, cells of ecto-
dermal origin, like neurons, or finally cells of endodermal origin, 
like kidney, liver and colon [139] as well as their strong immuno-
modulatory properties, which results in the inhibition of prolifera-
tion and function of T, B and natural killer cells, and that can be 
successfully employed to facilitate BM and solid-organ transplanta-
tion, preventing rejection and improving the function of the graft. 
These observations are the starting point for clinical trials that aim 
to treat several diseases such as myocardial infarction, multiple 
sclerosis, amyotrophic lateral sclerosis and leukemia [140, 141]. 
The best administration technique is one that guarantees the highest 
regenerative benefit with the lowest degree of side effects. Besides 
tissue engineered products, which requires a MSCs-scaffold con-
struct to be directly implanted at the lesion site, the most studied 
methods for MSCs transplantation are based on intravenous (i.v.) or 
intra-arterial infusion and direct injection into the target tissue 
[142]. (Fig. 1) shows the different vehicles for each way of admini-
stration. 
  Among the different MSCs administration routes, i.v. is the 
most convenient because it allows for the distribution of MSCs to 
many organs i.e. lungs, spleen, liver, BM, thymus, kidney, skin and 
tumor tissues. Dissemination occurs quickly, which could have both 
positive and negative effects. Among the latter there is the first 
passage effect with risk of embolism in the lung. On the contrary, 
entrapment in the spleen or liver is associated with upregulation of 
CD3 lymphocytes [142]. This route has been employed in animal 
studies carried out to treat acute kidney injury, infarcted heart, type 
I diabetes mellitus, GvHD, systemic lupus erythematosus, acute 
disseminated encephalomyelitis (multiple sclerosis) and pulmonary 
fibrosis (reviewed in [143]).  
 Recently, the intraoperative use of MSCs has been proposed. In 
this type of application, usually bone marrow is either centrifuged 
or filtered to separate the MNCs population including MSCs. In this 
way, MSCs do not undergo extensive manipulation under GMP 
conditions and thus their use can be extended to a larger number of 
clinical settings.  
 However, the number of MSCs which are obtained with this 
technique is low and the population is not homogeneous; for this 
reason this approach is used for local application of MSCs, with or 
without a scaffold.  
 Regarding humans, up to 289 MSCs clinical trials are currently 
registered (http://clinicaltrials.gov, last access 2012, October 08) 
[143] and MSCs have already been granted expanded access for use 
in pediatric steroid-refractory acute GvHD by the United States 
Food and Drug Administration [144]. In the following subsections 
the clinical studies in which MSCs are being investigated will be 
briefly reviewed. 
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Fig. (1). Schematic representation of the most common strategies for the 
MSCs administration in clinical settings. Bioptic tissues from donors (allo-
geneic use) or from the patient (autologous use) are used to isolate MSCs. 
The cell suspension can be administrated by intravenous or intra-arterial 
infusion (blue ring), or vehiculated on injectable products, as hydrogels or 
microcapsules, and injected into the target tissue (orange ring), or loaded on 
solid implantable scaffolds and transplanted during surgery (purple ring). 
(The color version of the figure is available in the electronic copy of the 
article). 

 When considering the use of ex vivo expanded MSCs for clini-
cal application, some potential risks should be considered: the im-
munogenicity of the cells, the biosafety of medium components, the 
risk of ectopic tissue formation, and the potential in vitro transfor-
mation of the cells during expansion.  
 Concerning the immunogenicity of MSCs, some authors have 
shown that MSCs are not intrinsically immunoprivileged; indeed 
the infusion of allogeneic MSCs into immunocompetent and MHC-
mismatched mice may induce an immune response, resulting in 
their rejection [120]. Moreover, when gene-marked MSCs were 
employed in the treatment of Osteogenesis Imperfecta, the cells 
were not detected in the treated patients, indicating their potential 
recognition and rejection by the host immune system [145]. Despite 
this, the majority of clinical trials for MSCs therapeutic application 
have reported so far the low immunogenicity of MSCs in humans 
[88, 146-148]. In view of these considerations, the state of immune 
competence of the patient at the time of infusion, the number of 
infusions needed to treat the patient and the donor origin of MSCs 
(autologous or allogeneic) should be taken into consideration. 
 The second potential side-effect relates to the use of FCS for ex
vivo expansion of MSCs which might be associated with the risk of 
transmission of zoonoses and with potential immune reactions in 
the host, resulting in rejection of the cells especially after repeated 
treatments [89, 149]. For these reasons, animal-free additives are 
being considered for clinical-grade expansion of MSCs (see chapter 
4). 
 A further potential risk of MSCs treatment involves the forma-
tion of mesenchymal tissues at ectopic sites. In a rat myocardial 
infarction model, it has been reported that MSCs may form bone 
following local injection into the myocardium [150]. Similarly, 
formation of adipose tissue in kidneys has been observed in a rat 

model of experimental glomerulonephritis [151]. Despite these 
experimental findings, in clinical trials, thus far, no ectopic tissue or 
tumor formation in vivo has been observed. A strict and long-term 
follow-up of patients treated with MSCs is recommended. For the 
potential in vitro transformation of MSCs during ex vivo expansion, 
see chapter 5.  

8.1. MSCs for Treatment of Graft-versus-Host-Disease (GvHD) 
 The immunomodulatory properties of MSCs have been success-
fully employed to treat severe, steroid-resistant acute GvHD, devel-
oping after either allogeneic hematopoietic stem cell transplantation 
(HSCT) or donor lymphocyte infusion. Le Blanc et al. [152] first 
reported on a pediatric patient experiencing grade-IV refractory 
acute GvHD who was rescued with i.v. infusions of HLA-
haploidentical MSCs [152]. Following this study, 55 adult and pe-
diatric patients with steroid-resistant GvHD were enrolled in a mul-
ticenter phase I/II study, whose primary endpoints where both 
safety and efficacy in terms of improvement of survival and de-
creased trasplanted-related mortality (TRM). Patients were treated 
with i.v. infusions of allogeneic MSCs. No adverse events were 
recorded and a clinical response was noted in the majority of pa-
tients with a significant advantage in terms of survival for complete 
responders, as compared with partial/non-responding patients [88], 
with significantly decreased TRM.  
 These results were confirmed in a pediatric study including 37 
children with grade III-IV aGvHD, showing complete response in 
59% of the patients after i.v. MSCs treatment [153]. A significantly 
better overall survival (OS) was observed in children treated who 
had received a reduced 2nd line immune suppressive treatment and 
were given MSCs earlier after GvHD onset. Also in this context, 
despite very promising preliminary results, the real efficacy of 
MSCs therapy needs to be further evaluated in prospective, ran-
domized trials. 
 In the USA the largest, prospective, open-labeled multicentric 
phase-II study was run in 16 Centers between 2005 and 2006 and 
the results were published in 2009 [154]. This study randomized 31 
adult patients (median age 52 years) with acute grade II-IV GvHD 
to receive i.v. MSCs infusions at two different concentrations along 
with corticosteroid as first line treatment. MSCs were isolated from 
BM aspirates of third party donors, cultured in FBS, and frozen 
until infusion. All patients received their first MSCs infusion within 
48 hours from appearance of signs of GvHD and a second infusion 
3 days later. The primary endpoint was evaluation of toxicity. No 
adverse events were documented. The secondary endpoint was 
evaluation of efficacy. Response rate was 94% with 77% complete 
responses and 16% partial response. No differences in terms of 
efficacy and safety were observed between the high- and low-dose 
MSCs group. Patients who achieved complete response to treatment 
had significantly improved survival compared with non-responder 
patients (88% vs 14%, p = 0.0008). The higher response rate in this 
study, compared with the European study [88], was thought to be 
due to a higher percentage of patients exhibiting a milder degree of 
GvHD when enrolled in the US-trial. 
 To better understand if the precocious use of MSCs in milder 
forms of steroid-resistant GvHD was one of the determining factors 
for an improved response rate, successive trials were aimed at 
evaluating this issue. After demonstration of feasibility and safety 
of treatment by Lucchini et al. [155], the same group in a phase I-II 
study (EudraCT 2008-007869-23) treated, as second-line therapy, 
both adult and pediatric patients developing acute or chronic 
GvHD, infusing MSCs immediately after steroid failure, to evaluate 
if earlier MSCs administration would allow better responses (at 
least 3 MSCs infusions, 1x106/kg cell dose for each infusion to each 
patient). The primary endpoint of this study was safety. The secon-
dary endpoints were the response of GvHD (evaluated 28 days after 
the last MSCs infusion), as well as the overall survival and trans-
plant-related deaths. Preliminary data from 47 analyzed patients 
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[156] support previous findings. No side effects or infusion-related 
toxicities were observed, no ectopic tissue formation or increased 
relapse incidence were documented. To reiterate, patients affected 
by acute GvHD have a greater chance to respond to MSCs admini-
stration, and these findings seem to be in line with immunobiologi-
cal observations which indicate chronic GvHD as a disease in 
which acute inflammation no longer plays an active role [157]. 
Moreover, patients affected by grade II-III GvHD seem to respond 
better than grade IV, thus suggesting a possible limitation in the 
treatment of very severe cases with this type of immunotherapy. 
Moreover, pediatric patients respond generally better than adults. 
Of note, treatment of GvHD with MSCs as the 2nd line therapy 
after steroid failure helped to avoid additional delivering of immu-
nosuppressive lines in a consistent number of patients, thus allow-
ing a better and more prompt immune reconstitution. In summary, 
response was significantly more likely in patients exhibiting grade 
II GvHD versus those exhibiting more severe gradings (87.5% vs. 
51.6%, p = 0.02) and in patients receiving MSCs in a time frame of 
30 days from the onset of GvHD (75.9% vs. 43.7%, p= 0.05). The 
current median follow up for this cohort is 250 days (range 30-
1066). Responders showed a significantly lower transplant-related 
mortality (10.0% vs. 88.2%, p <0.05) and a better overall survival 
probability than non responders (23.3% vs. 88.2%, p <0.05). 
Moreover, biological and immunological analyses of blood samples 
collected after infusions demonstrated, for the first time, that clini-
cal response paralleled decreased percentages of proinflammatory 
Th17 cells and increased T-reg circulating cells, and was accompa-
nied by plasmatic reduction in well-known pro-inflammatory mole-
cules, recognized as specific markers of active GvHD [158].  

8.2. MSCs for Crohn’s Disease 
 Due to the relapsing/refractory nature of the disease, alternative 
therapeutic strategies are warranted to increase remission and to 
improve quality of life in Crohn’s Disease (CD) patients [159].  
 Based on encouraging experimental results obtained in animal 
models of colitis [160, 161], phase I/II clinical trials have been 
conducted. Ten patients with refractory luminal CD have been 
treated with i.v. infusion of autologous BMSCs, demonstrating the 
feasibility and safety of the approach [147]. Clinical response was 
observed in three patients, together with an increase in 
CD4+CD127+ Tregs in mucosal biopsies. With regard to fistulizing 
CD, five patients were treated with locally administered autologous 
MSCs, obtaining healing of fistulas [162]. In a subsequent phase 
I/II study, ten CD patients with refractory complex perianal fistulas 
were given intrafistular injections of autologous BMSCs; complete 
fistula healing in seven patients and a partial response in the re-
maining three were observed [148]. The healing of fistula was 
accompanied by a decrease in the CD and perianal disease activity 
index. Also in this study, an increase in the percentage of mucosal, 
as well as circulating, Tregs was noted after MSCs treatment, sug-
gesting the possible role played by Tregs in MSC-mediated repair 
of inflamed tissues.
 Altogether, these studies demonstrate the feasibility and safety 
of MSCs treatment in refractory CD, however efficacy needs to be 
proven in large randomized clinical trials. 

8.3. MSCs as Support for Hematopoietic Stem Cell Recov-
ery/Engraftment  
 MSCs co-infusion was first demonstrated to enhance engraft-
ment of hematopoietic stem cells (HSCs) in NOD/SCID mice 
[163]. Subsequently, MSCs were employed to accelerate haema-
tological recovery in 28 breast cancer patients given a co-infusion 
of autologous peripheral blood HSCs and MSCs after high-dose 
chemotherapy. All patients had a rapid hematopoietic recovery in 
the absence of toxicity [164]. These results were confirmed in a 
multicenter, phase I/II trial enrolling 46 patients with haematologi-
cal malignancies who received allogeneic HSCs co-infused with 

MSCs [165]. In a subsequent phase I/II, multicenter clinical study 
enrolling 14 children given a T-cell depleted HLA-disparate al-
lograft proved to be safe and all patients showed sustained hema-
topoietic engraftment, as compared with 20% graft failure rate in 
historical controls [146]. The safety of co-transplantation of paren-
tal MSCs was also demonstrated in 13 pediatric patients given an 
umbilical cord blood transplantation [166]. While no advantage in 
terms of engraftment rate and speed of haematological recovery 
was observed, patients given MSCs had a lower incidence of grade 
II-IV acute GvHD as compared with historical controls [166]. 

8.4. MSCs in the Orthopaedic Practice  
 MSCs therapeutic potential has been observed in bone and car-
tilage disease, and promising approaches have also been attempted 
in the repair of meniscus, tendons, muscles and ligaments. 
 To date, there are approximately 15 clinical trials concerning 
the use of MSCs in orthopaedic practice [143]. Most of the cell-
based approachs are based on autologous MSCs, even if allogeneic 
MSCs were the first to be investigated. Systemic infusion of alloge-
neic MSCs was successfully used in the 90’s to treat osteogenesis 
imperfecta [149], a genetic disorder in which osteoblasts produce 
defective type I collagen, leading to osteopenia, multiple fractures, 
severe bone deformities and impaired stature. Allogeneic HSCT led 
to engraftment of functional mesenchymal progenitor cells, with 
relevant benefit for children with this disease [167]. 
 In bone diseases, MSCs are usually delivered or applied locally, 
often in combination with suitable scaffolds when it is necessary to 
provide mechanical stabilization or support as in osteosynthesized 
fractures of long bones [168] and in atrophic nonunions. Although 
controversial, MSCs seeded on hydroxyapatite scaffolds have also 
been used to heal defects derived from curettage of a bone tumor as 
an alternative to autologous bone grafting [169]. In an attempt to 
improve the outcome in total ankle replacement, expanded BMSCs 
have been applied to ceramic ankle prosthesis [170]; good results 
have been achived in terms of bone formation around the cell-
seeded areas of the prostheses and implant stability. MSCs can also 
be utilized in bone regeneration as a fresh product, without in vitro
expansion. The most common variation of this approach is the use 
of concentrated BM, which are obtained directly in the operating 
room by centrifugation or close system filtration resulting in con-
centrated mononuclear cells, including mesenchymal progenitor 
cells. Of course this represents a compromise between the cost re-
duction and time savings and the “quality” of the cell population 
that is obtained, since the cell population is not homogeneous and 
also contains hematopoietic cells, platelets and leucocytes, with a 
lower concentration of progenitor cells. Connolly [171] was the 
first to demonstrate the efficacy of percutaneous injection of 
autologous BM in a series of delayed unions, non-unions, arthrode-
sis and bone defects. Autologous concentrated BM has also been 
successfully used for the treatment of idiopathic osteonecrosis of 
the femoral head with very satisfactory results also at medium-long 
follow up [172, 173] as well as for the treatment of unicameral bone 
cysts [174]. 
 To date there have been only limited reports on human autolo-
gous BMSCs implantation for cartilage repair, but several clinical 
trials are in progress, thus demonstrating the wide interest in this 
kind of treatment. Wakitani reported successful results on cultured 
MSCs embedded in a collagen gel and delivered to the knee joint 
covered with autologous periosteum in 41 patients. Patients 
achieved good functional recovery and no adverse reactions, tumors 
or infections were observed at a mean follow up of about six years 
[175].  
 A pilot clinical study recently demonstrated that the combina-
tion of MSCs, platelet-rich plasma gel and fibrin was able to induce 
relevant improvement of chondral defects, with formation of simil-
hyaline tissue [176]. Another innovative and promising approach 
derives from the synergistic effect between expanded chondrocytes 
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and expanded MSCs: chondrocytes seem to be able to induce the 
chondrogenic differentiation of MSCs, while the latter seem to 
promote chondrocyte proliferation [177-180].  
 As well as for bone regeneration, the convenience of using 
fresh MSCs directly obtained in the operating room has led to a 
recent significant increase in clinical studies, showing favorable 
results in the treatment of both knee and ankle chondral or osteo-
chondral lesions [181-183]. Even if still at an experimental stage, 
TGF�1, FGF-2 (fibroblast growth factor 2) and CDMP-1 (cartilage-
derived morphogenetic protein-1) gene modified MSCs have been 
demonstrated to enhance the repair of full-thickness articular carti-
lage defects in allogeneic rabbits [184, 185].  

8.5. MSCs for Skin Regeneration and Plastic Surgery 
 Burns and chronic ulcers are cutaneous wounds that share 
common problems, i.e. the loss of both superficial epidermis and 
dermis, abnormal and incorrect wound healing [186]. In adult skin, 
stem cells are mainly located in the hair follicle bulge. It has been 
demonstrated that follicular cells can in vitro recreate the epidermis 
[187] so in vivo they can improve re-epithelization. When there is 
deep injury, hair follicles are disrupted and skin grafting is recom-
mended [188]. Starting from Rheinwald and Green [189] who in 
1975 proposed the first cellular treatment, nowadays researchers 
affirms that MSCs modulate systemic effects of burn trauma: 
hypermetabolic response, inflammation and immunosuppression. In 
particular, the therapeutic effect of MSCs seems to be due more to 
paracrine mechanisms and growth factor secretion than post-
engraftment differentiation and proliferation [188]. At first, MSCs 
were employed in burns caused by ionizing radiation, because of 
the lack of a therapeutic alternative for this type of burn: the results 
suggested that MSCs controlled local inflammation. The rationale 
of their employment in this setting is provided by the studies on 
MSCs in chronic wound treatment. Chronic wounds are character-
ized by an incorrect wound healing process, with a prolonged in-
flammatory phase which prevents or retards subsequent events 
[190]. When a skin wound extends to the dermis and is larger than 
1cm in diameter, the healing process may be impossible or may 
lead to extensive scarring and a specialized treatment, such as skin 
grafting, is required [191]. During the wound healing process stem 
cells are inactive players particularly during the inflammatory 
phase. Leucocytes, which migrate to the site of injury in the early 
inflammatory phase, derive from HSCs; MSCs direct hematopoietic 
progenitor stem cells to differentiate into dendritic cells; and MSCs 
are mobilized in the peripheral circulation and engraft near adnexal 
structures in the skin [192]. MSCs can act as wound healing agents 
by paracrine communication with resident wound cells, infiltrating 
inflammatory cells and antigen presenting cells or by their differen-
tiation into resident cells or both mechanisms. MSCs can be admi-
nistered topically: cells can be placed directly on the wound, in-
jected into neighboring tissue or included into skin substitutes. Be-
sides the good results obtained by different studies, several issues 
must be considered, such as their long-term fate [193] and different 
results due to the age of the subject [192]. When a wound is com-
pletely healed, the new tissue results in scar formation, which is 
characterized by disorganized collagen formation [194]. The use of 
fat grafting may improve scar formation as recently demonstrated 
by Guisantes et al. in [195]. In this setting the attention was focused 
on cells of the stromal vascular fraction (SVF), such as mesenchy-
mal stem cells and progenitors. Coleman, who developed his lipos-
tructure technique in the early 1980s, and, subsequently, other 
authors [196, 197] suggested that the long-term remodeling effects 
observed after adipose tissue grafting may be due to the presence of 
mesenchymal stem cells and progenitors [198]. 

8.6. Neurodegenerative Disease  
 Stem-cell-based therapies represent a new approach for neu-
rodegenerative diseases. MSCs have the ability to differentiate into 

all mature neural cell types. They have been suggested to adopt 
“astrocytic ” and “neuronal like” cell fates. In particular, in neural 
progenitor maintenance medium, MSCs acquire new morphological 
characteristics, neural markers, and electrophysiological properties, 
which are suggestive of neural differentiation [199]. In animals, 
MSCs seem to limit damage to, or mediate repair of, CNS tissue via 
mechanisms other than cell replacement or trans-differentiation, 
probably via their paracrine functions. Several studies have re-
vealed that the therapeutic action of MSCs is related to the release, 
even far from the site of injection, of protective factors rather than 
to replacement of degenerating neurons. Such a therapeutic effect 
may be provided by different classes of molecules, including tro-
phic factors, anti-inflammatory cytokines and immuno-modulatory 
chemokines released from transplanted cells. Although the adult 
brain contains a small number of stem cells in restricted areas, the 
central nervous system exhibits only a limited capacity for regener-
ating lost tissue. Therefore, cell replacement therapies of damaged 
brain have provided the basis for the development of potentially 
powerful new therapeutic strategies for a broad spectrum of human 
neurological diseases, such as Parkinson’s disease (PD), 
Huntington’s disease, Amyotrophic Lateral Sclerosis (ALS), Alz-
heimer’s disease (AD) [200]. 
 MSCs derived from PD patients are similar to normal MSCs in 
phenotype, morphology, and differentiation capacity. Moreover, 
PD-derived MSCs are able to differentiate into neurons in a specific 
medium with up to 30% of cells exhibiting the characteristics of 
dopamine cells. PD-derived MSCs could inhibit T-lymphocyte 
proliferation induced by mitogens. These findings suggest that 
BMSCs obtained from PD patients may be a promising cell type for 
cellular therapy and somatic gene therapy applications [201]. 
 MSCs therapy might also represent a promising new therapeutic 
strategy for ALS that could support or restore motoneuron function. 
It has been demonstrated that expanded MSCs can survive and 
migrate after transplantation in the lumbar spinal cord of 
SOD1G93A mice, where they prevent astrogliosis and microglial 
activation and delay ALS-related decrease in the number of moto-
neurons, thus resulting in amelioration of motor performance [202]. 
 BMSCs from ALS patients maintain their peculiar characteris-
tics when expanded in vitro and do not display chromosomal altera-
tions or cellular senescence, while they acquire, under specific con-
ditions, new morphological characteristics and neural markers 
which are suggestive of neural differentiation like those seen in 
cells obtained from healthy donors [203]. 
 In two phase I trials, Mazzini et al. showed the feasibility and 
safety of transplantation with autologous MSCs into the spinal cord 
of ALS patients. Nineteen patients with ALS were treated with 
autologous BMSCs implanted into the dorsal spinal cord. Eight 
patients died after a mean survival time of 31.6 months from sur-
gery for reasons unassociated with the experimental treatment. The 
most important results were the neuro-radiological demonstration of 
the lack of tumor formation or abnormal cell growth, the absence of 
significant effects associated with the procedure and the absence of 
deterioration in psychosocial status during a follow-up of nearly 
nine years [204].  
 Preclinical studies suggested that MSCs represent also an effec-
tive therapy in animal models of myelin disease, such as multiple 
sclerosis, where MSCs might contribute to re-myelination and mye-
lin recovery. 

8.7. Future Perspectives for Using MSCs in Cancer Therapy 
 The best cancer chemotherapy approach is to deliver the drug to 
the tumor microenvironment in order to kill tumor cells while pro-
ducing the lowest collateral toxicity. With this aim, many ap-
proaches have been proposed including the genetic manipulation of 
stem cells. Among them, MSCs represent an optimal choice to de-
liver anti-tumor agents due to their adaptability to culture condi-
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tions necessary for in vitro manipulation and their capacity for 
homing to pathological tissues when systemically administrated in 
vivo [205-211]. MSCs have been genetically modified to over-
express several different anti-tumor molecules including interleu-
kins, interferons, prodrugs, oncolytic viruses, anti-angiogenic 
agents, pro-apoptotic proteins and growth factor inhibitors, and they 
have been shown to be effective in killing tumor cells both in vitro
and in vivo (reviewed in [212]). However, MSCs genetic manipula-
tion is not free from risks when clinically applied [213].  
 Besides the possibility of introducing genes into MSCs that 
may affect tumor growth, it has been shown that MSCs isolated 
from bone marrow possess drug metabolizing activity. In particular, 
these cells are able to incorporate anti-cancer drugs, such as 
doxorubicin, that can be subsequently released affecting the prolif-
eration of neighbouring cells [214, 215]. More recent studies have 
demonstrated that human MSCs exposed to a very high concentra-
tion of paclitaxel in vitro, rapidly incorporated the drug and slowly 
released it in the culture medium in a time dependent manner. In 
addition PTX primed MSCs acquired potent anti-tumor and anti-
angiogenic activity when co-cultured with cancer cells or endothe-
lial cells respectively. In vivo, the co-injection of PTX primed 
MSCs with different types of human cancer cells in immunodefi-
cient mice significantly delayed tumor development and inhibited 
tumor growth [216, 217]. These results highlight a completely 
novel manner to apply MSCs in cancer therapy. Moreover, since 
MSCs can be loaded with drugs without any genetic manipulation, 
this may reduce the risk of cell transformation, thus enhancing the 
safety for their eventual use in the treatment of some human can-
cers.  

9. REGULATORY DIRECTIVES FOR MSC-BASED THER-
APY: “CELLS AS DRUGS” 
 From a regulatory point of view, since 2001 every product for 
advanced therapy is considered a drug [218]. Any new drug, before 
commercialization, must be subjected to pre-clinical and clinical 
trials. The pre-clinical phase is intended to guarantee the essential 
characteristics of safety and efficacy of the new drug, and to deter-
mine its pharmacokinetic profile. This is a complicated process for 
a chemical or biotechnological drug, and even more demanding in 
the case of MSCs for clinical use. As a matter of fact, the main 
problem is to define which is the real drug: is it the total cell popu-
lation or its metabolites? Another problem is to determine the re-
quired/recommended dose, considering the great variability be-
tween cells from different donors and also from the same donor but 
from different sites of collection. Finally, there are no specific 
markers to unequivocally identify MSCs [219]. Moreover, preclini-
cal studies for MSCs advanced therapies do not always reflect sub-
sequent activity in humans [220]. Regulatory directives postulate 
that the clinical phase must start after the pre-clinical phase is com-
pleted; however, this sequence has not always been respected. After 
completion of clinical trials and formal marketing authorization 
from Authorities for a specific pharmaceutical dosage form, large-
scale production is started according to GMP protocols. In the case 
of MSCs this involves the use of adequate instrumentation and the 
adoption of appropriate procedures by trained personnel, with a 
consequent high unitary cost of production. Furthermore, each 
batch should have the same characteristics and this is not always 
feasible with MSCs, considering the above-mentioned problems of 
dose definition and characteristics for the standardization of the 
product [221]. Cooperation between institutions is essential: regula-
tory organs and researchers should work together to find an accept-
able compromise between the requirements for the marketing 
authorization of a chemical or biotechnological drug with the those 
for MSCs advanced therapies.  

10. CONCLUSION AND FUTURE PERSPECTIVES 
 MSCs are among the most promising candidates for future re-
generative medicine regimens. They can be obtained from many 

different adult tissue sources, are easy to isolate readily adapt to 
culture conditions, and undergo to rapid in vitro expansion. Besides 
their multipotency, MSCs possess strong paracrine activity; they 
release a broad spectrum of molecules that affect angiogenesis, 
inflammation and immunity. Thus they appear to play a central role 
in controlling tissue homeostasis and in participating in tissue re-
generation. For these reasons MSCs offer a large number of possi-
ble applications for the treatment of many diseases. Since they have 
been included among AMT products, they are subjected to the same 
conditions that govern the production and use of drugs. While fur-
ther studies will provide new insights into their characteristics, this 
review is intended as a background source for clinical trials focused 
on the clinical application of MSCs.  
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AMSCs = Amniotic mesenchymal stem/stromal cells 
AMT = Advance medicinal therapy 
ASCs = Adipose-derived stem/stromal cells 
BM = Bone marrow 
BMSCs = Bone marrow stem/stromal cells 
CMSCs = Chorionic mesenchymal stem/stromal cells 
FCS = Fetal calf serum 
GMP = Good Manufacturing Practice  
GvHD = Graft versus-host disease 
HSCs = Hematopoietic stem cells  
HSCT = Hematopoietic stem cell transplantation 
ISCT = International Society for Cellular Therapy 
MNCs = Mononuclear cells 
MSCs = Mesenchymal stem/stromal cells 
PD = Parkinson’s disease 
PL = Platelet lysate 
SMSCs = Synovium-derived mesenchymal 

stem/stromal cells 
SVF = Stromal vascular fraction 
TRegs = Regulatory T cells  
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