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Abstract
Background—Targeted therapies are becoming increasingly important for the treatment of
various diseases. Biomarkers are a critical component of a targeted therapy as they can be used to
identify patients who are more likely to benefit from a treatment. Targeted therapies, however,
have created major challenges in the design, conduct, and analysis of clinical trials. In traditional
clinical trials, treatment effects for various biomarkers are typically evaluated in an exploratory
fashion and only limited information about the predictive values of biomarkers obtained.

Purpose—New study designs are required, which effectively evaluate both the diagnostic and
the therapeutic implication of biomarkers.

Methods—The Bayesian approach provides a useful framework for optimizing the clinical trial
design by directly integrating information about biomarkers and clinical outcomes as they become
available. We propose a Bayesian covariate-adjusted response-adaptive randomization design,
which utilizes individual biomarker profiles and patient's clinical outcomes as they become
available during the course of the trial, to assign the most efficacious treatment to individual
patients. Predictive biomarker subgroups are determined adaptively using a partial least squares
regression approach.

Results—A series of simulation studies were conducted to examine the operating characteristics
of the proposed study design. The simulation studies show that the proposed design efficiently
identifies patients who benefit most from a targeted therapy and that there are substantial savings
in the sample size requirements when compared to alternative designs.

Limitations—The design does not control for the type I error in the traditional sense and a
positive result should be confirmed by conducting an independent phase III study focusing on the
selected biomarker profile groups.

Conclusions—We conclude that the proposed design may serve a useful role in the early
efficacy phase of targeted therapy development.
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Introduction
With the availability of new genomic and proteomic technologies, biomarkers are becoming
increasingly important in both drug discovery and development. A biomarker is defined as a
characteristic that is objectively measured or evaluated as an indicator of a biological or
pharmacological response to a therapeutic intervention [1]. Biomarkers have the potential to
allow for the selection of patients who are more likely to benefit from a targeted therapy. For
example in cancer clinical trials, biomarkers can serve as a molecular indication of drug
efficacy or toxicity. This allows individual patients to be treated based on the molecular
determinants of their tumor cells. Biomarkers can be used to stratify patients, to make
diagnosis, and to guide treatment [2]. The development of biomarkers for diagnosis and
prognosis of personalized therapies allows the targeting of individualized treatments to
patients most likely to benefit. New molecular profiling technologies that allow
comprehensive analysis of single nucleotide polymorphisms, gene expression, and protein
profiles have resulted in a vast increase in the data available for biomarkers development
[3].

At the design stage of the early clinical trial phases, the treatment effect sizes for the general
patient population and the biomarker sub-populations are typically unknown. In traditional
early efficacy phase clinical trials, patients are treated with the new drug and outcomes in
patients with a positive biomarker are compared to outcomes in patients with a negative
biomarker in an exploratory fashion. These trials may provide limited prognostic
information of the biomarker; however, they do not provide any predictive information.

Several design strategies have been proposed for the prospective validation of biomarkers in
the phase III setting [4–7]. Sargent et al. [6] divided clinical trial designs for predictive
marker validation into two classes: biomarker-by-treatment interaction design and
biomarker-based-strategy design. In the biomarker-by-treatment interaction design, patients
are stratified according to their biomarker status, that is positive versus negative biomarker.
Patients in each stratum are randomized to receive either the experimental arm or control
arm. In the biomarker-based-strategy design, patients are randomized into a biomarker
based-strategy arm and a nonbiomarker-based strategy arm. In the biomarker-based-strategy
arm, patients with a positive biomarker are assigned to the experimental arm while patients
with a negative biomarker are assigned to the control arm. In the nonbiomarker-based
strategy arm, all patients are assigned to the control arm. In a modified version of the
biomarker-based-strategy design, patients in the nonbiomarker-based strategy arm undergo a
second randomization, which assigns them to the experimental or control arm. This
modification allows clarification of whether any finding regarding the efficacy of the
biomarker directed approach to therapy is due to a true effect of the biomarker status or to an
improved regimen regardless of biomarker status [6]. Moreover, this design may also allow
a retrospective assessment of an alternative classification for the biomarker. As pointed out
by Sargent et al. [6], the choice of the design for any particular trial depends on the nature of
the conclusion that one wishes to draw and the strength of the evidence desired at the trial's
conclusion. The advantage of the biomarker-based strategy design over the biomarker-by-
treatment interaction design is that it allows an assessment of the prognostic value of the
biomarker. However, biomarker-based-strategy design generally requires a larger sample
size than the biomarker-by-treatment interaction design.

Simon et al. [8] evaluated the relative efficiency of a targeted versus an untargeted clinical
trial design for a randomized clinical trial design comparing a new treatment to a control.
The untargeted trial design is the standard approach where patients are randomized into the
treatment or control arm regardless of biomarker status. In the targeted trial design, only
those patients who are predicted to respond, based on their biomarker profile, are enrolled
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and randomized into the treatment or control arm. For example, the prediction of whether a
patient will respond to a treatment may be based on an assay that measures expression
levels, or a multivariate gene expression model derived from transcript profiling [9–11].
Simon et al. [8] compared the two designs with regard to the number of patients required to
achieve a fixed statistical power for detecting treatment effects. They showed that a targeted
clinical trial design often requires fewer randomized patients than the untargeted design. The
degree of reduction in sample size depends on the availability of the biomarker for
identifying patients who will benefit from the new treatment and the prevalence of such
patients. When the new treatment benefits only a subset of patients and those patients can be
accurately identified, then the targeted design requires fewer patients than the untargeted
design. However, targeted designs may lose some relative efficiency when there is a partial
treatment effect for biomarker negative patients, possibly because of multiple potential
mechanisms of action [8]. Therefore, while it is clear that a biomarker-based strategy can
increase the efficiency of the trial, much depends on the performance of the diagnostics, the
prevalence of the biomarker, and the size of the treatment effect for target negative patients.

An adaptive design is a design that allows modifications of some aspects of the trial after its
initiation without undermining the validity and integrity of the trial. It provides a mechanism
for incorporating biomarker information during clinical trials. Adaptive methods for clinical
trials have been studied extensively by many authors [12–16]. For example, in a response
adaptive clinical trial, patient outcomes can be used as they become available to adjust the
allocation ratio between patients. This allows one to improve expected patient outcomes
during the experiment, while still being able to reach good statistical decisions in a timely
fashion. As we enter the era of personalized medicine, the role of adaptive designs in drug
discovery and development has become increasingly important. Zhou et al. [17] recently
proposed a Bayesian adaptive design for targeted therapy using pre-defined biomarker
profile groups.

In this article, we propose a Bayesian covariate-adjusted response-adaptive (BCARA)
randomization design for targeted therapies, which utilizes individual patient's biomarker
profiles and clinical outcomes as they become available and which identifies subgroups of
patients who respond best to a targeted therapy. Predictive biomarker subgroups are
determined adaptively using a partial least squares logistic regression approach. The
remainder of this article is organized as follows. In the ‘Methods’ section, the study design
and computational aspects for implementing the design are described. The operating
characteristics based on simulation studies are examined in the ‘Simulation studies’ section.
Finally, a brief summary is given in the ‘Discussion’ section.

Methods
A clinical trial with biomarkers evaluations: Incorporating biomarker Information in
assessing treatment efficacy

In the following, we assume a clinical trial with J treatments where the primary outcome is a
dichotomous response variable, which can be measured within a short time period. For
example, in cancer clinical trials, pathologic response, defined as the absence of residual
tumors, can be typically measured via biopsy within 1 month after administrating treatment.
It is assumed that measurements from a set of K biomarkers are available where the
predictive or prognostic status of each biomarker is unknown. Let yt denote the outcome for
the t-th subject with
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Furthermore, let xt = (x1t, …, xKt)T denote a set of K biomarkers for subject t. It is assumed
that each subject's biomarker assessment is performed at or before study entry and that each
biomarker is measured on a quantitative scale. For example, pharmacogenomic biomarkers
are often measured quantitatively using immunohistochemistry staining with a scale ranging
from 0 to 3. The main objective is to develop an adaptive clinical trial design which
evaluates the therapeutic intervention of targeted therapy, identifies subset of subjects who
respond better to a targeted therapy, and optimize the treatment allocation by randomizing
more subjects to the superior treatment arm based on each subject's individual biomarker
profile.

Bayesian logistic regression model for predicting clinical outcome
We use a Bayesian logistic regression approach to predict response to a treatment of a newly
accrued subject. The Bayesian approach provides a powerful framework for optimizing the
clinical trial design by integrating information about biomarkers and clinical outcomes as
they become available during the trial. Bayesian logistic regression is a natural choice to this
problem as it can select predictive biomarkers among a large numbers of biomarkers without
loss of model performance. Let

denote the response vector of the first i subjects.

For subject t in treatment arm j, the probability of a response is modeled as

where θj = (θ1, …, θK)T has the prior distribution N(μj, Σj), that is, a multivariate normal
distribution, with mean μj and covariance matrix Σj.

Holmes and Held [18] proposed an auxiliary variable approach to generate samples from the
posterior distribution. Let

Where  where ωt has a Kolmogorov–Smirnov
distribution [19]. The error term εt has a scale mixture of normal form with a marginal
logistic distribution. Let
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(1)

denote the i-dimensional treatment assignment vector, which specifies that subject t has been
assigned to treatment jt ε(1, …, J). Therefore, the conditional distribution of y(i) given θj1,
…, θji follows an i-dimensional Bernoulli distribution with the means of

.

For subjects 1, …, i, let X(i) = (x1, …, xi)T, λ(i) = (λ1, …, λi)T and Z(i) = (z1, …, zi)T, where

 for t = 1, …, i. The conditional distribution of θj|z(i), λ(i), y(i) has a normal

distribution with mean  and covariance matrix  where

A straightforward Gibbs sampling strategy can be implemented where Zt is sampled from a
truncated normal distribution with

for t = 1, …, i. The conditional distribution p(λt|Zt, θjt) does not have a closed form.
However, samples can be conveniently generated from this conditional distribution using
standard rejection sampling [20]. Let

for subjects 1, …, i. Holmes and Held [18] proposed an efficient block Gibbs sampling
strategy using iterative updates, that is z(i), λ(i)|θji followed by θji|z

(i), λ(i). In this approach,
zt|θjt, yt follows a truncated logistic distribution, that is,

where logistic  denotes the density function of the logistic distribution with mean

 and scale 1.

The Gibbs sampling strategy described above can be conveniently implemented to generate
samples from the posterior distribution θji|z(i).
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Bayesian covariate-adjusted response-adaptive randomization
Response-adaptive randomization is a randomization technique in which the allocation of
patients to the study arms is based on the responses of the previous outcomes. Response
adaptive designs have been extensively studied [see, e.g., 12,21–23]. A covariate-adjusted
response-adaptive randomization design can be used to incorporate biomarker information,
as they become available during the conduct of the clinical trial, into a decision making
process to evaluate both the diagnostic and the therapeutic intervention using biomarkers.
One challenge involves the problem of how to incorporate information from multiple,
possibly correlated, biomarkers into the design. The Bayesian paradigm may provide an
ideal solution to both the diagnostic and the therapeutic intervention using multiple
biomarkers with a covariate-adjusted response-adaptive randomization design. A BCARA
randomization can be implemented using the following steps. For subject i + 1, we compute

with respect to the posterior distribution π(θji|y
(i); X(i)), that is the probability of a response

for patient i + 1 treated with treatment j. The index ji in the expectation and probability
above refers to the treatment assignment vector defined in (1). The posterior distribution
π(θji|y

(i); X(i)) can be computed using the Gibbs sampling strategy described in the section
‘Bayesian logistic regression model for predicting clinical outcome’. Furthermore, we
compute

(2)

for each j = 1, …, J. The probabilities in (2) can be used to calculate the randomization
allocation probabilities, that is, the probabilities of assigning subject i + 1 to treatment arms j
= 1, …, J. Specifically, the randomization rate for subject i +1 and treatment j is be
computed as

(3)

for a constant c > 0. Following the recommendations from Thall and Wathen [24] for
Bayesian response adaptive designs we set c = (i + 1)/(2Nmax) in (3) where Nmax is the trial's
maximum sample size.

Before the BCARA randomization is implemented, a run-in phase is required. During the
run-in phase, the first n* subjects are randomized to the treatment arms using a standard
randomization procedure. A minimum of n* = J × (K + 1) subjects is required for the run-in
phase, where J denotes the number of treatment groups and K the number of biomarkers.

Adaptive determination of predictive biomarker profile groups
A major objective of the study design is to identify subgroups of subject who are likely to
respond better to a targeted therapy. We use a partial least squares regression (PLSR)
approach to identify predictive biomarker subgroups. PLSR has become a popular
dimension reduction tool that is based on a latent variables approach [25,26]. Contrary to
principal component analysis, which attempts to find linear combinations of the predictors
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that explain most of the variation in these predictors using a small number of components,
PLSR takes into account information about both the predictors and outcome variable in the
definition of scores and loadings. Specifically, PLSR finds linear combinations of the
predictors that, in addition to the maximal variance constraint, also best explain the
response. Originally, PLSR methods were developed for continuous response variables.
Bastien et al. [27] extended PLSR to partial least squares generalized linear regression
models.

We use a partial least squares logistic regression (PLSLR) approach to classify subjects into
biomarker profile groups which predict the clinical outcome. The biomarker profile groups
are determined iteratively, that is, after each new subject has entered the study. Let V(i) =
(V1, …, Vi)T where Vt = (vt1, …, vt,J-1)T denotes the vector of a dummy variables, that is vtj
= 1 if subject t(t = 1, …, i) is assigned to treatment j (j = 1, …, J–1) and zero otherwise.
Furthermore, let W(i) denote the i × (K + J-1) matrix which consists of the standardized
columns of X(i) and V(i). The PLSLR model of y(i) on W(i) with m components can be
written as

(4)

where ch and  are the parameters of the PLSLR model, g(·) is the canonical link function
for the binomial distribution and m ≤ K + J − 1.

The PLS components  of (4) can be computed iteratively, using the steps shown below.

The computation of the first PLS component  is performed as follows:

1. Compute the regression coefficients a1l of the logistic regression models of y(i) on

 for each l = 1, …, K + J −1, where  denotes column l of W(i).

2.
Compute 

3. Compute the first PLS component 

The h-th PLS component is computed using the following steps:

1. Fit the logistic regression model of y(i) on  and  for each l = 1, …,
K + J − 1 and compute the regression coefficient ahl, which corresponds to the

predictor  for each logistic regression model.

2.
Compute 

3. Compute the residual matrix  of the linear regression model of W(i) on

4. Compute the h-th PLS component 

The number m of PLS components to be retained can be chosen by evaluating the predictive
power of the current PLSLR model after each iteration using a cross-validation procedure
[27]. Specifically, the algorithm is terminated if the predictive power of the PLSLR model
does not increase after adding a new PLS component.

Eickhoff et al. Page 7

Clin Trials. Author manuscript; available in PMC 2013 October 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The number of biomarker subgroups can be determined after the run-in phase of the trial
when the first n* subjects are randomized to the treatment arms using a standard equal
randomization procedure. In the simplest scenario, subjects can be divided into two
biomarker profile groups. For example, if after the run-in phase of the trial it is concluded

that the PLSLR model with the first PLS component  has a sufficiently high predictive
power, the two biomarker subgroups can be defined as follows:

A larger number of biomarker profile groups can be defined in a similar fashion.

Stopping rule
It is assumed that g = 1, …, G different biomarker profile groups have been identified after
the run-in phase. Let

(5)

where index ji refers to the treatment assignment vector defined in (1). The probability
above can be conveniently computed using Gibbs sampling techniques described in the
section ‘Bayesian Logistic regression model for predicting clinical outcome’.

The following stopping rule will be employed after the i-th subject has been enrolled and
evaluated for response:

1. If maxj=1, …, J{Pjg(y(i))} > δ, for a pre-specified stopping criterion δ, for example,
0.99 or 0.999, the trial is stopped after subject i has been evaluated for response. In
this case, treatment j* = argmaxj = 1, …, J{pjg(y(i))} for the biomarker profile group
g is declared as superior over all other treatment-biomarker group combinations.

2. If a pre-specified maximum sample size Nmax is reached and Pjg(y(Nmax)) ≤ δ for all
biomarker groups g = 1, …, G and treatments j = 1, …, J, then the trial is declared
as inconclusive.

Step-by-step implementation
This section summarizes the steps for implementing the proposed study design:

Step 1: Run-in phase: The first n* ≥ J × (K + 1) subjects are randomized to the
treatment arms using a standard randomization procedure, where J denotes the number
of treatment groups and K the number of biomarkers. It is required that at least one
response is observed in each of the J treatment groups before proceeding to the
Bayesian response adaptive randomization.

Step 2: Adaptive determination of the predictive biomarker profile groups: Predictive
biomarker profile groups are determined adaptively after each new patient has entered
the trial. The biomarker status is determined before the randomization. The PLSLR

Eickhoff et al. Page 8

Clin Trials. Author manuscript; available in PMC 2013 October 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



approach is used to determine the predictive biomarker profile groups as described in
the section ‘Adaptive determination of predictive biomarker profile groups’.

Step 3: Bayesian covariate-adjusted response-adaptive randomization: After the
biomarker status and biomarker profile groups of a newly accrued subject have been
determined, the subject is randomized into one of the treatment arms using a BCARA
randomization (3).

Step 4: Decision:

a. Stop the trial, if for a pre-specified stopping criterion δ, maxj=1, …, J {Pjg(y(i))}
> δ where maxj=1, …, J {Pjg(y(i))} is defined in (5). In this case, treatment j* =
argmaxj=1, …, J{Pjg(y(i))} for the biomarker profile group g is declared as
superior over all other treatment-biomarker group combinations.

b. Continue the trial, if maxj=1, …, J {Pjg(y(i))} ≤ δ.

c. Stop the trial, if a pre-specified maximum sample size Nmax is reached and

for all biomarker groups g = 1, …, G and treatments j = 1, …,
J. In this case the trial is declared as inconclusive.

Simulation studies
Simulation study I

We performed a series of simulation studies to evaluate the operating characteristics of the
proposed BCARA randomization design where subject's memberships in biomarker
subgroups were determined adaptively using the PLSLR approach. In the first simulation
study, the basic scenario was a three-arm study with treatments A, B, and C. A set of K = 5
biomarker measurements were generated from a multivariate normal distribution with means
0, variances 1 and correlations ρ = 0.50. For the targeted therapy (treatment A), various
levels of predictive power of the five biomarkers were assumed. Specifically, four different
scenarios were considered. In the first scenario, it was assumed that the biomarkers were not
predictive with a polyserial correlation of ρps = 0 between each of the biomarkers and
response. In the second scenario, a weak association between each of the five biomarkers
and treatment response to the targeted therapy, that is, treatment A, was assumed with a
polyserial correlation of ρps = 0.1. In the third scenario, a moderately strong association
between each of the five biomarkers and treatment response was assumed with a polyserial
correlation of ρps = 0.5. In the last scenario, a strong association was assumed with a
polyserial correlation of ρps = 0.8. Furthermore, it was assumed that the biomarkers were
uncorrelated with treatment response for treatment B and C. The overall response rates for
the targeted therapy, that is treatment A, were assumed to be 0.5, 0.6, and 0.7. The overall
response rates for treatments B and C were assumed to be 0.4. The stopping criterion
parameter for terminating the trial was fixed at 0.99 and 0.999, respectively. A maximum
sample size of Nmax = 200 was used for each hypothetical trial. The run-in phase, during
which subjects were randomized to one of the three treatment arms using equal
randomization, consisted of the first 24 subjects. Afterward, the BCARA randomization
design described in the section ‘Bayesian covariate-adjusted response-adaptive
randomization’ was used to randomize subjects into the three treatment arms where the prior
distribution for θj was assumed to be normally distributed with mean zero and Σj = 100 I5
for j = 1, 2, 3. Biomarker groups were determined using the PLSLR approach as described in
the section ‘Adaptive determination of predictive biomarker profile groups’. Subjects were
adaptively classified in biomarker positive or biomarker negative groups according the sign

of first PLS component, that is subjects were classified as biomarker positive if  for t =
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1, …, i and i = n* + 1, …, Nmax and as biomarker negative otherwise. Each scenario was
simulated M = 500 times. The results are summarized in Table 1.

The mean total sample size for the first scenario with ρps = 0 and δ = 0.99 ranged from 90 to
149 and approximately 40% of the subjects with a positive biomarker profile were
randomized to treatment arm A. For the second scenario with ρps = 0.1 and δ = 0.99, the
mean total sample size ranged from 86 to 145. As expected, more subjects from the
biomarker positive group were randomized to the targeted treatment arm, that is 51% of the
subjects with a positive biomarker profile were randomized to the targeted therapy arm
when the overall response rate was 50%, and 46% of the subjects with a positive biomarker
profile were randomized to that arm when the overall response rate was 70%. When the
overall response of the targeted therapy was 50%, the probability that the targeted therapy in
subjects with a positive biomarker profile was declared as superior over all other treatment-
biomarker group combinations was 25%. There was a 51% probability that the maximum
sample size Nmax = 200 was reached without declaring one of the treatment-biomarker
groups as superior when the overall response rate of the targeted therapy was 50%.
However, this probability decreased to 29% and 20% when the overall response rate of the
targeted therapy increased to 60% and 70%, respectively. Changing the stopping criterion
parameter δ from 0.99 to 0.999 resulted in a substantial increase in the mean total sample
size. For example, when the overall response rate of the targeted therapy was 50%, the mean
total sample size increased from 145 to 190. Furthermore, changing the stopping criterion
parameter δ from 0.99 to 0.999 resulted in a increase in the probability of an inconclusive
result.

Under the third and fourth scenarios, that is, assuming a moderately strong and strong
association between biomarkers and response to the targeted therapy, the mean total sample
sizes were substantially less. For example, assuming a strong association between
biomarkers and treatment response and using a stopping criterion parameter δ = 0.99, the
mean total sample sizes ranged from 66 to 86. There were no changes in the treatment
allocations. However, there was a substantial increase in the sensitivity for the fourth
scenario when compared to the first and second scenarios. Specifically, assuming an overall
response rate for the targeted therapy of 50% and a stopping criterion of δ = 0.99, the
probability of declaring the targeted therapy as superior in subjects with a positive
biomarker profile increased from 25% under the second scenario to 57% under the third
scenario and to 82% under the fourth scenario.

Simulation study II
We conducted a second simulation study to evaluate the performance of the design under
various scenarios regarding the predictive or prognostic status of biomarkers. For each
simulated hypothetical clinical trial, a study with two treatment arms (A and B) and a set of
K = 4, quantitatively measured biomarkers. The biomarker observations were simulated
from a multivariate normal distribution with means of zero and a covariance matrix of

 Furthermore, it was assumed that there are two biomarker groups.
Specifically, the true biomarker group status was classified as ‘+’ if at least two of four
biomarkers have values greater or equal to 0, otherwise the biomarker group was classified
as ‘−’. We considered four different scenarios. In the first scenario, it was assumed that the
biomarker group status is neither predictive nor prognostic. In the second scenario, it was
assumed that the biomarker group status is prognostic while in the third scenario it was
assumed that it is predictive. Finally, in fourth scenario, it was assumed that the biomarker
group status is both predictive and prognostic. The true response rates for the four scenarios
are shown in Table 2.
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The maximum sample size for each trial was Nmax = 200. Hypothetical trials were simulated
M = 500 times. A standard 1:1 randomization was used for the first n* = 12 subjects during
the run-in phase. The biomarker groups status was determined using the PLSLR approach as
described in the section ‘Adaptive determination of predictive biomarker profile groups’ that
is the biomarker status was determined based on the sign of the first PLS component.
Specifically, subjects were classified in biomarker positive or biomarker negative groups
according the sign of first PLS component. The stopping criterion parameter δ was fixed at
0.99 and 0.999. The results are summarized in Table 3.

Under the four scenarios, the total sample size ranged from 65 to 98. Under scenario one,
where the true response rate for all treatment-biomarker group combinations is 0.3, the mean
total sample was 84 and the probability of an inconclusive result was 57% for the stopping
criterion δ = 0.99 and 89% for the stopping criterion δ = 0.999. When the biomarker group
was prognostic (scenario two), the probabilties of declaring treatment A in the biomarker
positive group as superior over all other treatment-biomarker group combination were 0.27
and 0.08 for δ = 0.99 and 0.999, respectively. As expected, similar values were observed for
the corresponding probabilities for treatment B (results not shown). When the biomarker
groups was predictive (scenario three), the probability of correctly identifying treatment A in
the biomarker positive group as superior over all other treatment-biomarker group was 74%
for δ = 0.99. Finally, under scenario four, where the biomarker status was both predictive
and prognostic and where the overall response rate of treatment B in the unselected
population was higher than in treatment A, but the response rate in tretment A in the
biomarker positive group was higher than in all other treatment-biomarker group
combinations, the probability of correctly identifying treatment A in the biomarker positive
group as superior over all other treatment-biomarker group was 49% for δ = 0.99.

Simulation study III
In a third simulation study, the operating characteristic of the proposed BCARA
randomization design where biomarker subgroups are determined using the PLSLR
approach was compared to the operating characteristic of a marker-by-treatment interaction
design [6] with a Bayesian response adaptive randomization [24]. In the following, we will
denote the first design as BCARA-PLSLR and the second design as MBTID-BRA. In the
MBTID-BRA design, instead of a standard randomization, a response adaptive
randomization with a Beta(1,1) prior distribution is used to randomize patients into the
treatment arms. The response rate of a targeted therapy (treatment A) was compared to the
response rate of an untargeted therapy (treatment B). The response rate of the untargeted
therapy was 0.5 while the overall response rates for the targeted therapy were 0.6, 0.7, and
0.8. A set of K = 3 correlated (ρ = 0.3) biomarker measurements were generated from a
multivariate multinomial distribution with a scale ranging from 0 to 3. This is a standard
scale used for quantifying molecular markers based on immunohistochemistry (IHC)
staining with 0 (none), 1 (low), 2 (medium), or 3 (high). The frequency for each of the four
categories was assumed to be 25%. Various levels of predictive power of the three
biomarkers on the probability of response for the targeted therapy were assumed, with
polyserial correlations ranging from 0.1 to 0.8. Furthermore, it was assumed that there were
no associations between biomarker measurements and response for the untargeted therapy.
The maximum sample size for each trial was Nmax = 200. Hypothetical trials were simulated
M = 500 times. For the BCARA-PLSLR design, equal randomization was used for the first
n* = 10 subjects during the run-in phase. Biomarker subgroups were determined based on
the sign of the first PLS component. The stopping criterion parameter δ was fixed at 0.99.

For the MBTID-BRA, a Beta(1,1) distribution was assumed as a prior distribution for the
success probabilities for both treatment A and treatment B. The biomarker groups are
defined as positive if at least one of the three biomarker has a value of 2 or higher and as
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negative if all values are 0 or 1, that is, ‘none’ or ‘low’ category on the standard IHC scale.
The randomization ratios for this design were computed in the same fashion as in the
BCARA-PLSLR design, that is, subject i + 1 was randomized to treatment A with

probability  Where c = (i + 1)/2Nmax and 
denotes the probability that the response rate in treatment A is greater than in treatment B
given the observed responses in group g for subjects 1, …, i. The same stopping rule as for
the BCARA-PLSLR design was employed to terminate the trial with δ = 0.99. The results of
this simulation study are summarized in Table 4.

As expected, the operating characteristics of the BCARA-PLSLR and the MBTID-BRA
design were similar when the biomarkers are nonpredictive and when the difference in
response rates between the two arms is small. For example, in the scenario where the overall
response rate of treatment A is 0.6 and the polyserial correlations between the three
biomarkers and response are 0.1, the mean total sample size for the BCARA-PLSLR design
was 92 while that for the MBTID-BRA design was 82. Under both designs, the probability
that treatment A was declared as superior in the biomarker positive group was
approximately 50%. There were substantial differences in the operating characteristics
between the two designs when the levels of predictive power varied between the three
biomarkers. For example, when the overall response rate for the targeted therapy was 0.7
and the polyserial correlations for the three biomarkers were 0.5, 0.1, and 0.1, respectively,
the mean total sample size for the MBTID-BRA design was 76 while that for the BCARA-
PLSLR design was 61. The probability that the targeted therapy was declared as superior in
the biomarker positive group over all other treatment-biomarker group combinations was
0.69 for the BCARA-PLSLR design and 0.50 for the MBTID-BRA design.

When the overall response rate for the targeted therapy was 0.8 and there were substantial
differences in the level of predictive power between the three biomarkers, with polyserial
correlations of 0.8, 0.1, and 0.1, the mean total sample size for the MBTID-BRA design was
80 with a 38% probability that the targeted therapy was declared as superior in the
biomarker positive group was 38% while the mean total sample size for the BCARA-PLSLR
design was only 30 with a 90% probability that the targeted therapy was declared as superior
in the biomarker positive group. Since in the MBTID-BRA design the biomarker groups are
determined before the study is conducted, this design may not accurately capture the true
predictive value of the marker in relation to the outcome of the treatments. In summary, the
simulation studies show that the proposed BCARA-PLSLR design effectively identifies
subjects who benefit most from a targeted therapy and that there may be substantial savings
in the sample size requirements when compared to the MBTID-BRA design.

Discussion
In this article, we proposed a BCARA design that utilizes information about individual
subject's biomarker profiles and clinical outcomes as they become available during the
conduct of the trial. A computationally efficient algorithm using block Gibbs sampling
techniques is implemented to predict patient's responses to treatment and to compute
allocation probabilities adaptively. Predictive biomarker subgroups are also determined
adaptively using a PLSLR approach.

Simulation studies were conducted to examine the operating characteristics. The simulation
studies showed that the proposed design effectively identifies subjects who benefit most
from a targeted therapy and that there may be substantial savings in the sample size
requirements when compared to alternative designs.
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The proposed combination of an adaptive design strategy, Bayesian approach, and
biomarker classification is not meant to replace the traditional paradigm for drug
development. The design does not control for the type I error in the traditional sense and a
positive result should be confirmed by conducting an independent phase III study focusing
on the selected biomarker profile groups. We conclude, however, that it may serve a useful
role in the early efficacy phase (phase II) of targeted therapy development.
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Table 3
Results of simulation study II – operating characteristics BCARA randomization design
under various scenarios regarding the predictive or prognostic status of biomarkers

Scenario δ Na ProbA+
b Probl

c

Scenario 1: Not predictive or prognostic 0.99 84 0.19 0.57

0.999 98 0.03 0.89

Scenario 2: Prognostic 0.99 77 0.27 0.42

0.999 96 0.08 0.85

Scenario 3: Predictive 0.99 65 0.74 0.11

0.999 85 0.39 0.43

Scenario 4: Prognostic and predictive 0.99 72 0.49 0.44

0.999 89 0.18 0.79

a
Mean total sample size across 500 replications profile randomized to treatment A.

b
Probability of declaring treatment A in subjects with positive biomarker status superior.

c
Probability of inconclusive result.
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