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Abstract

Objective: The current study aimed to develop a reliable targeted array comparative genomic hybridization (aCGH)
to detect microdeletions and microduplications in congenital conotruncal defects (CTDs), especially on 22q11.2
region, and for some other chromosomal aberrations, such as 5p15-5p, 7q11.23 and 4p16.3.
Methods: Twenty-seven patients with CTDs, including 12 pulmonary atresia (PA), 10 double-outlet right ventricle
(DORV), 3 transposition of great arteries (TGA), 1 tetralogy of Fallot (TOF) and one ventricular septal defect (VSD),
were enrolled in this study and screened for pathogenic copy number variations (CNVs), using Agilent 8 x 15K
targeted aCGH. Real-time quantitative polymerase chain reaction (qPCR) was performed to test the molecular
results of targeted aCGH.
Results: Four of 27 patients (14.8%) had 22q11.2 CNVs, 1 microdeletion and 3 microduplications. qPCR test
confirmed the microdeletion and microduplication detected by the targeted aCGH.
Conclusion: Chromosomal abnormalities were a well-known cause of multiple congenital anomalies (MCA). This
aCGH using arrays with high-density coverage in the targeted regions can detect genomic imbalances including
22q11.2 and other 10 kinds CNVs effectively and quickly. This approach has the potential to be applied to detect
aneuploidy and common microdeletion/microduplication syndromes on a single microarray.
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Introduction

Congenital heart diseases (CHDs) was one of the most
common congenital malformation types, occurring in 5.7-7.8‰
of live births and 12.5‰ of preterm fetus [1,2]. A number of
complex, multifactorial genetic and environmental influences
have been cited as the causes of CHDs [3]. Copy number
variations (CNVs) of chromosomal region 22q11.2 are

associated with a portion of patients with CHDs. This deletion
of the long arm of chromosome 22 has been found to result in
DiGeorge syndrome (DGS) or Velo-cardio-facial syndrome
(VCFS). There are numerous reports suggesting that 75-85%
of patients suffering from the 22q11.2 deletion syndrome
present CHDs; most of them are congenital conotruncal
defects (CTDs) [4]. On the other hand, a substantial number of
patients with CTDs have a 22q11.2 deletion [5]. Moreover, a
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duplication of 22q11.2 region can also lead to 22q11.2
microduplication syndrome which has features overlapping
22q11.2 deletion syndrome [6,7]. Recent evidence have
suggested that infant mortality associated with CHDs has
improved considerably over recent decades [8–10]. Increasing
sensitivity of diagnosis means that early preparation can be
made for termination, surgery therapy and psychology, with the
potential to improve survival [11].

To date, various methods, including multiplex ligation-
dependent probe amplification (MLPA), restriction fragment
analysis on Southern blots, fluorescence in situ hybridization
(FISH) and quantitative PCR (qPCR), have been used to detect
disease-related genomic deletions or duplications. However,
these are only capable of testing a small number of specific
genes or regions [7], and occasionally may give false-positive
and false-negative results.

Nowadays, comparative genomic hybridization (CGH) using
oligonucleotide arrays has been implemented in cytogenetic
and molecular diagnostic laboratories as a robust, rapid,
sensitive, and relatively inexpensive assay for detecting various
known and new gene microdeletion or microduplication
[12–14]. It was first used for detecting large CNVs at the scale
of multiple contiguous genes in whole genome analysis [15].
But now, more and more studies have applied targeted
oligonucleotide CGH arrays because of the high-resolution and
flexibility provided by these target designs [16]. We developed
a targeted aCGH that permits a high-resolution analysis on
Agilent platform for detecting 11 common congenital diseases,
such as DiGeorge syndrome, cri du chat syndrome, Prader-
Willi syndrome and so on (Table 1). Our targeted aCGH also
included diseases that CNVs are rare, such as Kallma
syndrome and chondrodysplasia punctata. The array was
developed to detect pathogenetic microdeletions and
microduplications for all the 11 congenital diseases, which are
common among Chinese population, to meet our goal of
offering truly comprehensive molecular testing.

Here we described the development, validation, and
implementation of a targeted, high-density oligonucleotide CGH

Table 1. List of diseases diagnosed by the targeted made
oligonucelotide array design.

Syndrome
Number of
Probes

Chromosomal
location

22q11 microdeletion/microduplication
syndrome

411 22q11.2

X-Linked ichthyosis 106 Xp22.3
cri du chat syndrome 946 5p15-5p
Angelman syndrome 470 15q11-13
Miller-Dieker syndrome 302 17p13.3
Prader-Willi syndrome 470 15q11-13
Smith-Magenis syndrome 327 17p11.2
Williams syndrome 199 7q11.23
Wolf-Hirschhorn syndrome 229 4p16.3
Kallman syndrome 105 8p11.2-p12
Chondrodysplasia Punctata Type 1 200 Xp22.3

doi: 10.1371/journal.pone.0076314.t001

microarray. After examining the feasibility of targeted aCGH
using known cases, we tested the CNVs in postnatal patients
with CTDs. In order to better understand, qPCR was used in
order to confirm of CGH results.

Materials and Methods

Subjects
Ten cases who were already known of VCFS and 2 cases of

cri du chat syndrome which deletion or duplication were
confirmed by MLPA P250 kit, were tested by targeted aCGH in
order to compare results of aCGH and MLPA.

Twenty-seven CTD sporadic cases (13 females and 14
males) were selected from Pediatric Hospital of Fudan
University from May 2010 to June 2011. All patients had
isolated CTD, the phenotypes of their parents were normal.
Among the patients, there were twelve PA, ten DORV, three D-
TGA, one TOF and one VSD. We chose them according to the
cardiac diagnosis consistency of clinical features,
echocardiography and confirmed open-heart surgery.
Peripheral blood samples were obtained from these patients for
analysis according to procedures approved by the Ethics
Committee at Pediatric Hospital of Fudan University. In each
case, the parents signed consent for our later genetic testing.

DNA extraction
The peripheral blood samples of 27 cases and 30 healthy

controls were obtained, and DNA was extracted using DNeasy
Blood & Tissue Kit (Qiagen). DNAs from 30 controls were
pooled and used as the control sample for aCGH and qPCR.

aCGH protocol and data analysis
We developed a high-resolution targeted made 8x15K CGH

array (Agilent customer design ID028328, Bio-X Center of
Shanghai Jiao Tong University, China), which targeted known
CNV regions on human chromosomes associated with 11 kinds
of major genetic diseases using Agilent E-Array web tool
service (https://earray.chem.agilent.com/earray/). The list of the
11 diseases was shown in Table 1. The genes that covered the
22q11 region were listed in table 2, based on the human
genome release version, hg19. For oligonucleotide selection
we used the probe pool provided by Agilent following
recommended selection criteria for probe length, GC content
and melting temperature. Sample preparation, labeling of the
DNA samples, array hybridizations, scanning, image and data
processing were performed according to standard protocols
recommended by Agilent (Agilent, Amstelveen, Netherlands).
One chip can test 8 patients one time.

Microarray images were processed by Agilent Feature
Extraction software (Agilent), and the raw data were analyzed
by Agilent Genomic Workbench Lite Edition 6 5 software
(Agilent). Copy number variants were identified using the
aberration detection method 2 (ADM-2) statistical algorithms
with a threshold of 6.0 [17,18]. ADM-2 used an iterative
procedure to identify all genomic intervals with a score above a
user-specified statistical threshold value (e.g., a minimum of 6
with the minimum number of probes required in a region of 3
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and the minimum absolute average log ratio of 0.25). The
score represented the deviation of the weighted average of the
normalized log ratios from its expected value of zero and
incorporates quality information about each probe
measurement.

Confirmatory test
For the deletions and duplications detected with targeted

aCGH, we confirmed the breakpoints by hybridizing the DNA of
the affected individuals, including 10 cases of VCFS and 2
cases of cri du chat syndrome which were diagnosised by
clinical features, imageological examination or surgery and
confirmed by MLPA [19].

Real-Time PCR
Our primers were designed to lie within the exonic or

intervening regions from known or putative genes using the
Primer Express 3.0 software. We used the ViiA 7 Real-Time
PCR System (Applied Biosystems, Darmstadt, Germany) and
384-well plates (Axygen, Union City, CA, US) for real time
PCR. Reactions contained 0.25 mM each primer and 5µl Fast
Start Universal SYBR Master (Roche, Basel, Switzerland) in a
total of 10µl. Assays included DNA standards in a final
concentration of 10.0, 2.5, 0.625, 0.15625, 0.03906 ng/µl, a no-
template control, and 5 ng/µl of the patient DNA in replicates
(n=3). Cycling conditions were 50°C for 2 min, 95°C for 15 min,
and 40 cycles of 94°C for 15 sec, 60°C for 15 sec, and 72°C for
1 min. In order to avoid the generation of unspecific products, a
melting curve analysis of products was performed routinely

following the amplification. A standard curve was constructed
for each amplicon by plotting the cycle number (ct) and the
quantitative data were further processed to calculate the ratio
relatively to the average amount of reference amplicons for
each amplicons in the patients as previous described [20]. In
this manner, ratio-values of 1.0 indicated diploid situation,
values of 0.4-0.6 or 1.4-1.6 indicated partial haploid or partial
triploid, respectively.

Results

Comparison of MLPA and targeted aCGH
The performance of our targeted aCGH was validated by 12

known cases, including 10 cases of VCFS and 2 cases of cri
du chat syndrome, which had been initially characterized by
MLPA. The aCGH results were concordant with the MLPA in all
12 cases, only two cases of VCFS were shown in Figure 1.

Comparison of targeted aCGH and qPCR
We analyzed 27 subjects with CTDs using the Agilent 8x15K

targeted CGH microarrays. It showed a heterozygous deletion
of 2.6Mb on 22q11.2 region in the patient B338, and a same
3.8 Mb duplication in the patient B279, B320, B288 (Figure 2).
Table 3 showed the targeted aCGH deletion and duplication
results for positive samples, including size and location. aCGH
results are confirmed by the qPCR (Table 4).

Table 2. List of genes mapped on 22q11 region and covered by oligonucleotides designed in the targeted aCGH.

Position (HG19) GeneSymbol GeneName
chr22:016942359-016951255 PEX26 Homo sapiens peroxisome biogenesis factor 26
chr22:016957285-016972272 CR621131 full-length cDNA clone CS0DF030YD12 of Fetal brain of Homo sapiens
chr22:016977225-016990019 TUBA8 Homo sapiens tubulin, alpha 8
chr22:016997040-017008078 CR620426 full-length cDNA clone CS0DN004YA15 of Adult brain of Homo sapiens
chr22:017015797-017021773 USP18 Homo sapiens ubiquitin specific peptidase 18
chr22:017041724-017041773 AK129567 Homo sapiens cDNA FLJ26056 fis, clone PRS03239
chr22:017274835-017274894 DGCR6 Homo sapiens DiGeorge syndrome critical region gene 6
chr22:017280446-017304059 PRODH Homo sapiens proline dehydrogenase (oxidase) 1
chr22:017343306-017356958 AB051434 Homo sapiens mRNA for KIAA1647 protein, partial cds
chr22:017364460-017390508 X91348 H. sapiens predicted noncoding cDNA (DGCR5)
chr22:017403824-017482073 DGCR2 Homo sapiens DiGeorge syndrome critical region gene 2
chr22:017493359-017493418 U84517 Human velo-cardio-facial syndrome 22q11 region mRNA sequence
chr22:017500055-017500143 DGCR13 Homo sapiens DiGeorge syndrome critical region gene 13
chr22:017503122-017510950 DGCR14 Homo sapiens DiGeorge syndrome critical region gene 14
chr22:017540285-017540342 CR593487 full-length cDNA clone CS0DF020YC06 of Fetal brain of Homo sapiens
chr22:017544957-017545016 SLC25A1 Homo sapiens solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1
chr22:017551588-017654656 CLTCL1 Homo sapiens clathrin, heavy chain-like 1
chr22:017698213-017797435 HIRA Homo sapiens HIR histone cell cycle regulation defective homolog A (S. cerevisiae)
chr22:017801221-017801280 MRPL40 Homo sapiens mitochondrial ribosomal protein L40
chr22:017809644-017809703 BC030758 Homo sapiens hypothetical protein LOC128977, mRNA (cDNA clone IMAGE: 4797610)
chr22:017813834-017813893 LOC128977 Homo sapiens hypothetical protein LOC128977 (LOC128977), mRNA
chr22:017818736-017839351 UFD1L Homo sapiens ubiquitin fusion degradation 1 like (yeast) (UFD1L), transcript variant 2, mRNA

doi: 10.1371/journal.pone.0076314.t002
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Discussion

aCGH have been widely used to detect submicroscopic
chromosomal changes, including microdeletions and
microduplications across the human genome [21,22], and
mitochondrial disorders [23]. Based on similar approaches, we
designed, validated, and implemented a targeted aCGH
analysis as an experimental molecular testing tool to
simultaneously screen for deletions and duplications of eleven
diseases. Targeted aCGH analysis confirmed previously
characterized deletion and duplication in 12 cases with a 100%
concordance. Hence, we inferred that targeted aCGH analysis
can determine deletion and duplication disorders designed in
the list, which some of them have CHDs.

In general, CHDs were to some extent associated with the
22q11.2 deletion and duplication [24,25]. Most kind of CHDs in
patients of 22q11.2 CNVs was CTDs, about 4–6.13% of which
had 22q11.2 deletion [26,27], while 0.3–0.9% of which had
22q11.2 duplication [28]. In our study the incidence of 22q11.2

CNVs was 14.8% (4/27), including 3.7% (1/27) deletion and
11.1% (3/27) duplication. We evaluated the hypothesis which
suggested that 22q11.2 CNVs, may be relatively common in
patients with CTDs and probably had been under-diagnosed in
routine analyses, such as FISH, PCR, MLPA [29,30]. For
example, FISH assay had probe for TUPLE1 or N25
on 22q11.2, but it failed to detect deletions that were either
proximal or distal to the probes. These uncommon deletions
were estimated to occur in 2% of 22q11.2 cases, besides,
standard FISH did not provide any information about the length
of the deletion. Commercially available MLPA kits was a
suitable del22q11.2 screening method, but the cost and time
would not meet the criteria for a population-based, primary
screening tool specifically targeting patients [29]. qPCR assays
depended only on several probes for each targeted region, so
the efforts to examine multiple genes simultaneously have
been very limited. In contrast, the availability of well-
characterized targeted aCGH covering known genomic regions
from established databases reduced the time to create and

Figure 1.  Dosage assessment of 22q11 by MLPA eletropherograms of two VCFS samples.  The MLPA data was presented in
a ratio analysis format where the x axes represented fragment size in bp, and the y axes represented probe-height ratios. Squares
indicated either deleted probes (height ratio <0.65) or duplicated probes (height ratio>1.35). Squares located between 0.65 and 1.35
on the y axis indicated non-deleted, non-duplicated probes. Two panels showed patients’ data as follow: A represent 3 Mb 22q11.2
deletion: B represent 3 Mb 22q11.2 duplication.
They were all confirmed by aCGH: gene views of 22q11 produced by the Agilent CGH Analytics software and showed the aberrant
region, which was highlighted in color. The dots corresponded to the array targets, arranged on the y axes represented genomic
position and on the x axes represented log2 intensity ratio value. C was the same case as A, D was the same case as B.
doi: 10.1371/journal.pone.0076314.g001
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validate probes, and turned out to be a rapid, comprehensive,
relatively inexpensive, highly sensitive, and accurate method
for detecting deletions and duplications in many prenatal and
postnatal malformations simultaneously on a common platform,
such as 22q11 deletion and duplication syndrome [18,30], cri
du chat syndrome [31] and Prader-Willi syndrome.

Because the incidences of most syndromes was low, we only
found 22q11 disorder by 37 patients. Besides aneuploidy,
22q11.2 deletion is one of the most recognizable chromosomal
abnormalities causing CHDs and other malformations,
suggesting that prenatal genetic detection should be performed
routinely for their adequate management and genetic
counseling [32]. There is a similar study by Syrmou A, et al.
[33] which identified submicroscopic genomic rearrangements
associated with congenital heart disease (CHD) with 1x244K or

1x180K array-CGH Agilent arrays (average resolution 7-13kb).
In their study, CNVs were detected in 37 of 55 CHD patients,
and all the patients were reported to have at least one
additional phenotypic abnormality. Moreover, unexpected
genomic rearrangements in relation to CHD were identified in
their study. In contrast, we performed the CGH experiments
using 27 subjects with CTDs without other phenotypic features.
And, we did not identify other CNVs, besides the typical
22q11.2 deletion or duplication. It may be due to that the
targeted arrays are not able to identify CNVs outside the
targeted regions. However, compared with the 1x244K and 4x
180K Agilent arrays, our new design can provide much higher
resolution detection for these targeted regions with the average
resolution of 3kb. Therefore, our study provided new evidence

Figure 2.  The targeted aCGH results of patient B338, B279, B320, B288.  The left panel showed a whole-chromosome view of
data from chromosome 22q. The Right panel showed the clustered oligonucleotide probe coverage at 22q11 genes of interest. The
y axis represented genomic position of 22 chromosomes and the x axis showed the normalized log ratios. Results for
oligonucleotides showing the typical copy number (log2 ratio=0±0.25) were shown in the middle, whereas those in green or red
represent log ratios outside this range indicating copy number loss or gain, respectively.
doi: 10.1371/journal.pone.0076314.g002

Table 3. Deletions and Duplications of 22q11.2 detected by targeted aCGH.

Patient Gain or Loss Location on genome (HG19) size (bp)
B338 Loss 18894835-21505417 2,610,582
B279 Gain 18546548-22336327 3,789,779
B320 Gain 18546548-22336327 3,789,779
B288 Gain 18546548-22336327 3,789,779

doi: 10.1371/journal.pone.0076314.t003
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that targeted aCGH may appear as a promising high-resolution
diagnostic tool.

In addition to its efficiency and sensitivity, this targeted CGH
array is a powerful tool as it allows simultaneous analysis of
several congenital disorders. Therefore, this targeted aCGH
array maybe become a valuable tool for a new diagnostic
approach of CNVs and could facilitate the molecular diagnosis
of heterogeneous groups of diseases such as Kallman
syndrome, chondrodysplasia punctata. However, we still need
more clinical high index of suspected cases to test and verify
other 9 kinds of diseases using our targeted aCGH.

In conclusion, the targeted aCGH is a powerful, cost-
effective and fast tool for detecting pathogenetic copy number

variations such as microdeletions and microduplications in
known genomic region. The method can easily be used also for
prenatal and postnatal diagnosis. Further more detailed study
of these known regions associated with the 11 syndromes is
warranted to verify our results.
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