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Abstract

Identifying microRNA signatures for the different types and subtypes of cancer can result in improved detection,
characterization and understanding of cancer and move us towards more personalized treatment strategies. However, using
microRNA’s differential expression (tumour versus normal) to determine these signatures may lead to inaccurate predictions
and low interpretability because of the noisy nature of miRNA expression data. We present a method for the selection of
biologically active microRNAs using gene expression data and microRNA-to-gene interaction network. Our method is based
on a linear regression with an elastic net regularization. Our simulations show that, with our method, the active miRNAs can
be detected with high accuracy and our approach is robust to high levels of noise and missing information. Furthermore,
our results on real datasets for glioblastoma and prostate cancer are confirmed by microRNA expression measurements. Our
method leads to the selection of potentially functionally important microRNAs. The associations of some of our identified
miRNAs with cancer mechanisms are already confirmed in other studies (hypoxia related hsa-mir-210 and apoptosis-related
hsa-mir-296-5p). We have also identified additional miRNAs that were not previously studied in the context of cancer but
are coherently predicted as active by our method and may warrant further investigation. The code is available in Matlab and
R and can be downloaded on http://www.cs.toronto.edu/goldenberg/Anna_Goldenberg/Current_Research.html.
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Introduction

As a highly conserved major factor of post-transcriptional

regulation, microRNAs are believed to have a significant impact

on gene expression and therefore on most biological mechanisms

and functions. The link between miRNAs and cancer has been the

subject of several recent studies and reviews [1–4]. The belief that

miRNA’s profile change is not only a bystander consequence of

cancer but may also have an active role in it, is consolidated by

several observations. First, miRNA expression data shows

coherent and drastic changes in levels of expression between

tumor tissues and their healthy counterparts. Second, it has been

observed that many miRNAs are located on the genome in regions

that are prone to CNVs/deletions in cancer [5]. Finally and most

importantly, many miRNAs have been shown to have a direct

effect on cancer-related mechanisms such as apoptosis [6],

proliferation [7], angiogenesis [8] and metastasis [9].

Differential analysis of miRNA expression profiles in cancer vs

healthy tissue alone may lead to a large number of false positives

due to the noisy nature of miRNA expression data. Additionally,

we have poor knowledge of how much deviation in expression of a

particular miRNA can induce functionally relevant changes in

gene expression. It is possible that the gene expression profile is

highly sensitive to even small changes in some miRNAs’ quantities

while drastic changes in other miRNAs do not have significant

impact on it.

Previous methods for detecting important miRNAs in cancer

make a series of key assumptions. For example, RegulatorInfer-

ence [10] is a very recent method that aims to find the active

miRNAs via a regression approach. It implicitly assumes that all

genes are affected by copy number variations in the same linear

fashion and that the effect of a miRNA on a target gene is linear in

the number of binding sites. Additionally, RegulatorInference uses

miRNA expression data to preselect potentially active miRNAs,

though this step is optional. In [11], gene expression, miRNA

expression and the gene-gene interaction network are used to

construct a putative complex miRNA-target influence network

with miRNA influence coefficients that are computed based on

miRNA direct/indirect effect on genes and gene-gene annotated

interactions.

In this paper, we present a method for predicting functionally

relevant miRNAs from differential gene expression data using

miRNA-gene interaction information and mRNA expression only.

Contrary to previous methods, we do not use miRNA expression

data in our predictions and we make no assumptions on how

different miRNAs, CNVs or interactions may influence different

genes. The idea is to select a set of miRNAs responsible for most of

the changes observed in gene expression based on prior knowledge
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of existent miRNA-gene interactions with no additional assump-

tions on the strengths of these interactions. Our approach is based

on a regression model for the gene differential expression. We

added an elastic net regularization [12] to avoid overfitting the

high level of noise in the data and select a minimal set of active

miRNAs. The miRNAs differential expression data is only used for

validation purposes. To the extent of our knowledge, this is the

first approach to determine active miRNAs in cancer from gene

expression data only (no miRNA data) and therefore we can assess

our performance using differential miRNA expression data from

the same patients.

Our simulations show that our method is robust to several types

of noise and missing data and that it is able to predict the relevant

miRNAs as long as the input gene expression changes are, at least,

partially due to miRNAs. We used our data on 157 glioblastoma

patients and 111 prostate cancer patients and predicted several

relevant miRNAs effects which were confirmed by miRNA

expression measurements on these same patients.

Our results on real data identified miRNAs whose roles were

previously validated in cancer such as mir-210 and mir-296-5p,

along with other potentially important miRNAs: mir-1, mir-154,

mir-339-3p, mir-539, mir-561, mir-607 in glioblastoma and mir-

143*, mir-30c-2*, mir-330-3p, mir-526b and mir-939 in prostate

cancer.

Methods

1 Data pre-processing
A large proportion of the variability in gene/miRNA expression

measurements across different tumour samples is due to the

different levels of contamination with healthy cells. Typically 30%
to 70% of a tumour tissue consists of healthy cells whose gene/

miRNA expression signal will perturb the cancer signal to a

different extent for the different samples (patients).

We use ISOpure [13] to extract the purified cancer signal for all

the patients. This gives a better coherence between cancer patients

and more accurate results for miRNA prediction.

2 Normalized differential expression computation
After we purify the tumour data, we take the log of the gene

measurements in patients and in controls. Then, for every patient

we compute the normalized differential expression for one gene or

one miRNA according to [14]:

Y~
E{Mean(Normals)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Normals)zVar(Tumors)
p :

1
n
z 1

m

nzm{2
ð1Þ

Where E and Y are respectively the original and the normalized

gene expression for the patient, n and m are respectively the

number of healthy controls and cancer patients, Mean(Normals)
and Var(Normals) are the average and the variance of expression

for that gene in the healthy controls. The term Var(Tumors)
penalizes the genes having high variance between cancer patients.

The same normalization is used for the miRNA data to obtain

differential miRNA expression for tumour vs healthy samples

when we use miRNA expression for validation purposes.

3 Selecting active miRNAs
We determine the list of active miRNAs by selecting miRNAs

that would have had to be active to observe the resulting mRNA

expression change pattern across the genome. More specifically,

we model the genome-wide change in mRNA expression levels Y
as a sum of unknown miRNA influences X . The influences have

non-zero contribution for all miRNAs that target a given gene. We

use the miRNA-to-gene network for gene target information and

represent it as a matrix W . We obtained the network from the

European Bioinformatics Institute (ww.ebi.ac.uk/enright-srv/mi-

crocosm/cgi-bin/targets/v5/download. pl) that provided a set of

target genes for every miRNA (711 miRNAs, 16799 genes and

470,000 edges). If there is no discernible effect of the miRNA

expression change on the targets’ expression change, the influence

is estimated to be zero. The miRNA influences X are estimated on

a per patient basis. If the predicted miRNA influence is non-zero

and has the same sign across majority of the patients, we presume

that the given miRNA is active and may be an important factor for

a given disease. The flow chart for our method is captured in

Figure 1 and the formulation is given below:

Y&W :X ð2Þ

Matrix W of microRNA-gene interactions is defined as follows:

Wij~

{1 2if 2gene �j 2is 2a 2target 2of 2miRNA �i

0 2if 2there 2is 2no 2known 2interaction

8>>>>>><
>>>>>>:

ð3Þ

The negative values in the W matrix indicate that the miRNAs

usually down-regulate gene expression. Since the information on

how much a particular miRNA affects a given gene is not

available, the coefficients in the solution X represent the

‘‘influence’’ of miRNAs on the gene expression profile rather

than miRNAs differential expression (i.e. how much of the change

in gene expression of miRNA targets can be attributed to that

particular miRNA). Xi indicates two things: 1) whether miRNA i

was active (Xi=0); and 2) in what way it influenced the expression,

i.e. whether the target genes are over-expressed in cancerous tissue

compared to normal tissue indicating that miRNA levels were

depleted (Xiv0) or under-expressed indicating the over-expres-

sion of the given miRNA (Xiw0).

If the influence Xi of an active miRNA is of the same sign with

the given patient’s observed miRNA differential expression, we say

that the ith miRNA prediction is validated by the miRNAs

measurements.

Since we want to avoid overfitting and encourage models with a

small number of active miRNAs (simpler models with only a few

active miRNAs are easier to interpret and are biologically more

relevant), we use an elastic net type penalty. The resulting

objective function to minimize is:

f (X )~EY{WXE2zl(aEXE1z(1{a)EXE2), ð4Þ

where l and a are the elastic net parameters, the choice of

parameters is discussed below. Elastic net penalty is chosen here

because it is able to avoid some of the limitations we may

encounter using a simple ‘1 penalty as in [10]. For example, when

we have highly correlated variables (miRNAs with a lot of targets

in common) an ‘1 penalty will tend to select one variable at

random and ignore the others, whereas elastic net will select all the

relevant variables.

Active miRNAs in Cancer from Gene Expression Data
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4 Choice of parameters (cross validation)
The parameters of the elastic net define the sparsity of the

solution: the number of miRNAs that are predicted to be actively

driving the genes differential expression. To determine l, we used
the cross validation framework proposed in [12] (Implementation

is available in R glmnet package). Acceptable results are obtained

with l corresponding to the minimal predictive error using 10-fold

cross validation. Choosing the highest l corresponding to a

prediction error of 1 standard error plus the minimal predictive

error can lead to more accurate results in simulations with lower

levels of noise. However, it often gives overly sparse solutions when

the prediction error has high variance and therefore we use the

minimal prediction error convention in those cases. In our results,

we fix the same l for all patients to be the average selected value

across patients. For the choice of a we repeated the whole

experiment (simulation and real data) with different values (0.1,

0.25, 0.5) and no major difference was observed for the final

predicted miRNAs, so we set our a to 0.25 for all experiments.

Results

1 Simulations and robustness to noise
First, we tested the ability of our method to select the correct

subset of gene-expression-driving miRNAs among the set of all

miRNAs, and the ability to determine the correct influences for

the selected miRNAs (sign of Xi in (2)). To do that, we randomly

selected 30 miRNAs to be the active miRNAs driving the gene

expression changes and we assigned large positive or negative

mean expression values to them (absolute value uniformly selected

from ½1,4� and sign obtained by unbiased coin tossing). We

assigned zero mean values to all other miRNAs that are not

simulated as active. We then simulated 100 patients with miRNA

differential expression profiles centred around those mean values

(Gaussian distribution with given mean and standard deviation

0.5). As a result, we obtain for every patient a set of miRNA

differential expression measurements in which the 30 miRNAs

simulated as active will be consistently differentially expressed and

all other miRNAs will represents a background noise. Finally, for

every patient we multiply the miRNA simulated differential

expression measures by the miRNA-gene interaction network (W
matrix in Equation 2) to obtain simulated gene differential

expression measures (This step will be later referred to as the

gene differential expression simulation step). The network used

here is the same as the one mentioned in Section 2.3 and produced

by the European Bioinformatics Institute capturing interactions

between 711 miRNAs and 16799 genes, the median miRNA

having around 650 potential target genes.

The goal of this experiment is to test if the problem can be

solved despite the fact that the miRNAs often have hundreds of

overlapping potential targets and that multiple miRNAs may have

opposite effects on gene expression levels.

We ran one thousand simulations generating data as described

above. We found that in 100% of the cases, we were able to

identify the exact randomly selected subset of miRNAs driving the

changes in the gene expression and correctly predict all influence

signs. In practice, this means that our method works correctly for

any sample in real data where miRNAs’ differential expression is

responsible for a relatively high proportion of the differential

expression of mRNAs. This also means that the consistency in

which groups of genes are over/under expressed is a strong

enough signal for detecting active miRNAs even though different

miRNAs may have opposite effects on common target genes.

Figure 1. Flow chart of the active miRNAs prediction approach. We can predict the active miRNAs for each individual patient, then we
investigate the coherence of the active miRNAs across patients.
doi:10.1371/journal.pone.0073168.g001
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Next we tested the robustness of our methods to the different

types of noise. We examined the effect of four types of noise that

could make this problem harder to solve:

N We accounted for structural noise (false negative interactions)

in the miRNA-gene network by adding random edges prior to

gene differential expression simulation and then using the

original miRNA-gene network for the predictions, resulting

some of the miRNA influence information used to generate the

data was missing at the prediction stage.

N We accounted for incorrect edges (false positive interactions) in

the miRNA-gene network by removing random edges prior to

gene differential expression simulation. The original miRNA-

gene network is still used in predictions.

N We simulated the effect of unobserved gene-gene interactions

on the genes expression (we use the protein-protein interaction

network).

N We increase the levels of noise in the expression data (by

adding Gaussian noise with 0-mean and variance proportional

to the expression levels) to account for other mechanisms

altering gene-expression in cancer such as copy number

variations.

Figure 2 shows the effect of modelling missing/incorrect

information in the miRNA-gene network. We notice that the

method is able to approximately detect the correct subset of

miRNAs even when we suppose 20% of the miRNA-gene

annotated interactions are wrong (we remove 20% of the edges

in the network graph during the gene expression simulation step)

or when we suppose the annotations contain only half of the real

miRNA-gene interactions (we add edges during the gene

expression simulation step). There is evidence that the method is

more robust to missing information (False negative edges) than to

incorrect information (False positive edges) which means it is

preferable to use conservative networks in this context. Figure 3,

shows the robustness of the method to high levels of noise in gene

expression. The gene expression noise is parametrized by the

variable k controlling the strength of the noise: for every gene, the

variance of the last type of noise is k=10 multiplied by the average

level of expression (k~10 gives a Poisson type variance). Finally,

the gene-gene interaction noise is controlled by the diffusion

variable d as follows:

E/EzdM1
:Ezd2M2

:E ð5Þ

Where E is the gene differential expression vector, M1 is the

gene-gene direct interaction matrix and M2 is the matrix with

second order gene-gene interactions (second order neighbours in

the gene-gene interactions network representation). This means a

gene expression affects to a certain degree the expression of

interacting genes (direct neighbours) and to a smaller degree the

genes interacting with the direct neighbours (second order

neighbours). The gene-gene interaction network we used here is

a subset of the combined human network downloaded from

Biogrid website. It captures information for the 16,799 genes that

are present in our miRNA-gene network and contains 85,590

edges. Figure 3 shows that the ability of our method to recover the

true miRNAs is high even in the presence of other influences, such

as affects of interacting genes, which our model does not account

for. Our simulation results indicate that our method is robust to

different kinds of noise.

2 Analysis of cancer data
2.1 Evaluation criteria. Using our method, we predicted the

functionally relevant miRNAs and their influence on gene

expression from the differential gene expression data for glioblas-

toma multiforme and prostate cancers. Since our predictions are

on a per-patient basis, we select those miRNAs that were predicted

active (Xi=0) with the same direction of influence in more than

75% of the patients. These miRNAs are more likely to reflect a

real biological mechanism common to the cancer since they were

consistently predicted as active by our method in a large number

of independent patients. Then we look at miRNAs’ expression

measurements for the same patients. If the active miRNAs’

differential expressions have the same signs as their predicted

influences in more than 75% of the patients, we consider them

validated by miRNA measurements.

In the miRNA differential expression data, some miRNAs are

coherently over- or under-expressed across patients and some are

not. We estimate the significance of our active miRNA set by

computing the p-value: the probability of having as good or better

validation results than our method if the miRNAs predictions were

random.

We compute that p-value by first selecting a random subset of

miRNAs from the data, with the set size equal to the number of

miRNAs predicted as active by our method. Then, we randomly

assign the direction of influence (signs) to these selected miRNAs.

Finally, we estimate the proportion of these random predictions

that are validated by miRNA measurements using the miRNA

data corresponding to the same studied patients (a miRNA is

validated if it is coherently over-expressed/under-expressed when

its impact sign is respectively positive/negative). We repeat this

experiment 10,000 times. The p-value is the proportion of random

experiments with higher validation rate than our method’s

prediction. A small enough p-value indicates that the miRNAs

selected by our method were not random and that there likely is a

functional importance in relation to the cancer indicated by the

coherence in miRNA/gene expression across patients.

2.2 Glioblastoma. The glioblastoma gene expression data

was produced by Broad Institute using the Affymetrix HT_HG-

U133A experimental design. It contains 157 tumor cases and 10

controls. This data along with the miRNA expression we use for

validation are available on the TCGA website.

After purifying the gene expression data (See Section 2.1) and

transforming it to normalized differential expression (See Section

2.2), we predicted 11 miRNAs active across more than 80% of the

patients. Out of these 11 miRNAs predictions, 7 were validated by

the available miRNA expression (verified in more than 80% of the

cases) and 2 others were verified in more than 70% of the cases.

These results correspond to a p-value of 0.0005 (see Section 3.2.1

for more details). Figure 4 shows the miRNAs coherently predicted

across patients. Among the miRNAs that were predicted and

confirmed, we found mir-210, mir-339-3p, mir-561, mir-1, mir-

154, mir-539, mir-607.

miR-210 is inducible by hypoxia and was previously identified

as an independent marker for several cancers (breast [15],

pancreas [16], head and neck [17]). It is also cited as a regulator

for Normoxic gene expression which is involved in tumour

initiation [18]. We predicted it as active and confirmed its over-

expression activity using observed data in glioblastoma.

We also predicted and confirmed the over-expression of mir-

339-3p, and the under-expression of mir-1, mir-154, mir-539, mir-

561 and mir-607. At present there is no knowledge about the

functional roles of these miRNAs in cancer. Further validation

experiments are required for a better understanding of the

function of these miRNA in glioblastoma. mir-548b-5p, mir-

Active miRNAs in Cancer from Gene Expression Data

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e73168



548c-3p, mir-548c-5p were also predicted in almost all patients

even though their target gene sets were very different, but they

were only validated in respectively 63%, 70%, 70% of the cases.

2.3 Prostate cancer. The prostate cancer data was produced

by Memorial Sloan-Kettering Cancer Center (MSKCC) and is

available from GEO under the accession number GSE21032. The

data contains information about 111 patients and 28 controls for

which both gene and miRNA expression data are available.

After preprocessing the gene expression data to obtain the

purified normalized differential expression and using our method

to predict sets of active miRNAs for every patient, we selected 10

miRNAs: 7 of these miRNAs were validated using the observed

miRNA expression data in more than 85% patients, confirming

the direction of miRNA influence. Another miRNA: mir-574-5p

was validated in 74% of the patients. These results correspond to a

statistically significant p-value of 0:0087.
Among the miRNAs that were predicted and confirmed, mir-

210 was over-expressed similarly to our findings in the glioblas-

toma data, and mir-296-5p (over-expressed) was previously

associated with apoptosis of androgen-independent prostate

Figure 2. Robustness to network noise. (A) Sensitivity and (B) precision of the method in predicting the gene-expression-driving miRNAs when
we varying the proportions of incorrect edges and missing edges in the miRNA-Gene interactions network (delete edges/insert new edges). All
miRNA were also predicted to have the correct direction of influence (suppressor vs oncogene effect).
doi:10.1371/journal.pone.0073168.g002

Figure 3. Robustness to expression noise. (A) Sensitivity and (B) precision of the method in predicting the gene-expression-driving miRNAs
when varying the level of gene-interactions noise (via the diffusion parameter d) and the intensity of the noise in the differential gene expression
level (via the variable k). All predicted miRNAs have the correct influence signs.
doi:10.1371/journal.pone.0073168.g003
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cancer cells [19] mir-143* was predicted and confirmed by the

observed data as under-expressed in all patients but was not

previously mentioned as a cancer marker in the literature.

Similarly mir-30c-2*, mir-526b, mir-330-3p and mir-939 (all

predicted and confirmed as over-expressed) were sporadically

mentioned as differentially expressed miRNAs in cancer literature

but with no solid experimental evidence to characterize their exact

roles in cancers yet.

Finally, mir-569 and mir-607 were predicted in the majority of

both prostate cancer and glioblastoma patients but were only

validated in glioblastoma because they were not measured in

prostate cancer data. Similarly, mir-574-5p was predicted in both

datasets but its measurements were unavailable for the glioblas-

toma patients, therefore it was only confirmed in prostate cancer.

The overall summary of our results with highest validation rates

in prostate cancer and glioblastoma are described in Figure 4.

Discussion

In this paper we presented the first method that predicts active

miRNAs in cancer from the miRNA-gene regulatory network and

mRNA expression data without relying on the miRNA expression

itself. We use elastic-net-regularized regression framework to make

those predictions robustly. Since mRNA expression data is often

readily available, our method can be used to guide the analysis of

miRNAs by prioritizing them for future experiments. We validated

our method using both simulation and real data coupled with

miRNA expression measurements to confirm our findings. Our

simulations have indicated that our method robustly identifies

active miRNAs and the direction of their influence (suppressors or

oncogenes) on the global gene expression patterns. Our results on

real data indicated potentially important miRNAs in glioblastoma

and prostate cancer, some of which were already validated in

previous studies (The hypoxia related mir-210 and the prostate

cancer cell apoptosis related mir-296-5p) and others for which the

exact role in cancer remains to be determined.

Future improvements of our method are closely linked to better

modelling of the noise in the data. For example, taking into

account the expression changes that are induced by karyotypic

variations or copy number variations in cancer would help isolate

the effect of functionally relevant miRNAs, especially if the impact

of these variations on gene expression is accurately understood and

modelled in the future. Better results can also be achieved if we

have a solid model of the gene-gene interactions that can alter

expression independently of the miRNAs.
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