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Abstract

In case-control studies, exposure assessments are almost always error-prone. In the absence of a 

gold standard, two or more assessment approaches are often used to classify people with respect to 

exposure. Each imperfect assessment tool may lead to misclassification of exposure assignment; 

the exposure misclassification may be differential with respect to case status or not; and, the errors 

in exposure classification under the different approaches may be independent (conditional upon 

the true exposure status) or not. Although methods have been proposed to study diagnostic 

accuracy in the absence of a gold standard, these methods are infrequently used in case-control 

studies to correct exposure misclassification that is simultaneously differential and dependent. In 

this paper, we proposed a Bayesian method to estimate the measurement-error corrected exposure-

disease association, accounting for both differential and dependent misclassification. The 

performance of the proposed method is investigated using simulations, which show that the 

proposed approach works well, as well as an application to a case-control study assessing the 

association between asbestos exposure and mesothelioma.
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1. INTRODUCTION

Misclassification of exposure status is ubiquitous in case-control studies [1], which can bias 

the association between an exposure and a disease. Misclassification of people with respect 

to exposure can be either differential with respect to case status, or nondifferential. In many 

health studies, a gold standard exposure assessment may not exist or is too costly to obtain. 

In this situation, it is common to apply two or more imperfect assessments to evaluate 

exposure status. When multiple error-prone exposure assessments are used, misclassification 

can be conditionally independent or dependent given the latent exposure status, i.e., multiple 

exposure assessments are conditionally independent or dependent given the latent exposure 
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status, respectively. Misspecification of differential/nondifferential and/or dependent/

independent misclassification can lead to biased estimation of the exposure-disease 

association [2].

A considerable literature is available on statistical methods to assess the diagnostic accuracy 

of multiple binary disease measurements focusing on dependent/independent 

misclassification. For example, Hui and Walter [3] proposed a maximum likelihood-based 

method to estimate the sensitivities and specificities of two imperfect measurements with 

two populations under conditional independence assumption of test results given the 

underlying disease status. Vacek [4], Torrrance-Rynard and Walter [5] showed that 

parameter estimators can be biased when conditional independence is falsely assumed, and 

correlation between multiple measurements conditioning on the latent disease status may 

exist in practice. Several methods have been proposed to incorporate conditional 

dependence across multiple imperfect measurements. As examples, Espeland and 

Handelman [6] proposed a log-linear modeling approach; Qu, Tan, and Kutner [7] proposed 

a Gaussian random effects model (GRE); Yang and Becker [8] proposed a marginal 

approach; Albert and Dodd [9] proposed a finite mixture (FM) model; Xu and Craig [10] 

proposed a probit latent class model with general correlation structures.

Some authors have written about differential/nondifferential misclassification. When 

multiple or repeated imperfect measurements were used to assess exposure status in case-

control studies, non-differential misclassification was commonly assumed in previous 

studies [11, 12]. But in practice, differential misclassification may arise from sources such 

as exposure recall bias, interviewers who are not blinded to case status, or differences in 

completeness or quality of information used for exposure assessments when cases are sick or 

deceased while controls are not. Many existing studies have shown that differential 

misclassification may bias the magnitude of exposure-disease association and can 

substantially affect the power of statistical tests [13, 14].

However, to the best of our knowledge, few methods are available to simultaneously 

account for differential and conditionally dependent misclassification. Chu et al. [2] 

proposed a maximum likelihood-based frequentist approach accounting for both differential 

and conditionally dependent misclassification. However, when the number of exposure 

classification approaches is less than four, the approach proposed by Chu et al. can only 

allow a partially differential and constrained dependent model due to the issue of non-

identifiability [15], which will be described in details in Section 3. In this paper, we propose 

a Bayesian approach to simultaneously consider both differential and dependent 

misclassification. By using informative priors for select parameters, which are commonly 

available based on the literature or expert opinion, the proposed Bayesian methods allow us 

to simultaneously explore differential and dependent misclassification even when there are 

only two or three exposure assessment approaches. In addition, the Bayesian approach 

provides a natural way to combine prior information with current data to make posterior 

inferences that are “exact” without relying on asymptotic approximations [16, 17], and 

provides better small sample inference and direct construction of 100 (1–α)% equal tail 

and/or highest probability density (HPD) intervals on general functions of parameters. The 

remainder of this paper is organized as follows. In Section 2, we introduce an occupational 
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case-control study to evaluate the association between asbestos exposure and mesothelioma 

[18], which was previously analyzed by Chu et al [2] using a frequentist approach. In 

Section 3, we present the Bayesian approach to simultaneously consider both differential 

and dependent mis-classification. This paper solely focuses on the situation in which the 

exposure classification is binary (i.e., assessment of whether or not the case/control was 

exposed to the hazard). Other situations including categorical, ordinal, and continuous 

exposure assessments will be considered in the future study. In Section 4, we present the 

results of the analysis for the study in section 2 using the proposed Bayesian approach. The 

performance of our proposed Bayesian method is investigated through a series of 

simulations in Section 5. Finally we conclude with a discussion in Section 6.

2. ASBESTOS EXPOSURE AND MESOTHELIOMA: A CASE STUDY

A population-based case-control study was conducted to assess the association between 

asbestos exposure and mesothelioma [18]. Cases were selected from 3 sources between 1975 

and 1980: the New York State Health Department Cancer Registry, the Los Angeles County 

Cancer Surveillance Program, and 39 Veterans Administration Hospitals. Controls were 

selected from the same geographical area (New York, Los Angeles) or the same hospital. 

Table 1 presents the frequency of the number of participants cross-tabulated by the three 

exposure assessments (i.e., by next-of-kin assessment, expert assessment by an industrial 

hygienist, and by use of a generic job-exposure matrix) as well as the case/control status. 

The odds ratios (OR) for the association between asbestos exposure and mesothelioma were 

estimated to be 10.74 (95% confidence limits: 7.27, 15.94), 4.65 (95% CL: 3.19, 6.77) and 

2.06 (95% CL: 1.48, 2.86) by these three methods respectively. However, each of these 

estimates likely suffers bias due to asbestos exposure that may be differential with respect to 

case status and that may be conditionally dependent given the latent exposure status. Using a 

frequentist maximum-likelihood based method, Chu et al. [2] estimated an OR of 16.12 

(95% confidence limits: 5.22, 27.03) using a partially differential and dependent 

misclassification model. However, due to non-identifiability issue when the number of 

binary exposure assessments is less than four, their analyses are restricted. In Section 4, we 

use the fully Bayesian approach described in next section with informative priors on select 

sensitivity and specificity parameters, estimated from literature, to explore a full differential 

and dependent model and make posterior inference.

3. STATISTICAL METHODS

3.1 The Likelihood and Full Posterior Distribution

Let Yij be the classification result (with value 1 indicating positive result and 0 indicating 

negative result) of the jth of J exposure assessments for individual i (i = 1, ..., N) and Di be 

the disease status (with value 1 indicating a case and 0 indicating a control) for individual i 

(i = 1, ..., N). Let the latent variable Ei denote the true exposure status with 1 representing 

exposed and 0 representing unexposed. Let πi denote the probability of being truly exposed 

for the ith subject. A logistic regression logit(πi) = logit(Pr(Ei = 1)) = η0 + η1Di was 

considered to model the probability of being truly exposed given the disease status. The 

odds ratio (OR) of exposure between diseased and non-diseased is thus OR = eη1. Because 

each subject is evaluated by 2 or more imperfect exposure assessments, a correlation in 
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exposure misclassification could be present. This correlation can be accommodated by a 

latent continuous variable Zi, which varies from subject to subject and has a Gaussian 

distribution with zero mean and unit variance. The positive result for the jth assessment is 

assumed to depend on both the latent true exposure status Ei of the ith subject and the 

Gaussian latent variable Zi, through a generalized linear mixed regression model, such as a 

probit model,

(3.1)

where ei = 0, 1, di = 0, 1, and Zi ~ N(0, 1) [7, 19]. Here the latent Gaussian random variable 

Zi is assumed to be independent to the disease status Di and the latent exposure status Ei. 

Now let Sedj and Spdj denote the sensitivity and specificity for the jth assessment in the dth 

disease group, then

(3.2)

Formula (3.2) is based on the full model (3.1), which encompasses both fully differential 

(beij ≠ 0) and fully dependent (ceij ≠ 0) misclassification. If beij = 0 for all ei and j, it is called 

non-differential exposure misclassification; if beij = 0 for some ei and j, it is called partially 

differential exposure misclassification. If ceij = 0 for all ei and j, it is called conditionally 

independent; If ceij = 0 for some ei and j, it is called partially conditionally dependent.

Usually certain constraints are put on the parameters ceij [7]. For example, a very important 

“special” or “simplified” case is the model with equal variance components for the 

subgroups of the study population that are truly exposed and unexposed, which corresponds 

to ceij = cei for all j.

Assuming that the multiple exposure assessments are conditionally independent given the 

latent exposure status Eiand latent Gaussian random variable Zi, the probability of observing 

Yi = (yi1, yi2,..., yiJ) for the ith subject is

(3.3)

Let θ = (ηdi, aeij, beij, ceij) and let f(θ) be joint prior distribution, the joint posterior 

distribution of θ is proportional to .

In most instances, inferences obtained by Bayesian and frequentist methods agree when 

weak prior distributions are specified. The Bayesian framework is particularly attractive 
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when suitable proper prior distributions can be constructed to incorporate known constraints 

and subject-matter knowledge on model parameters [16, 17, 20].

3.2 The Identifiability of Proposed Models

Here, we briefly discuss the non-identifiability issue for the proposed models. If there are J 

binary exposure assessments that classify each participant with respect to exposure, then 

there are 2J possible combinations of classifications of exposure status. For a fixed number 

of participants, there are 2J+1 – 2 degrees of freedom in a case-control study (i.e. the 

maximum number of parameters that can be estimated). However, the full model (see 

equation 3.1) has 6J + 2 unknown parameters. Thus it inhibits us exploring differential and 

dependent misclassification simultaneously when J <4. For example, when J = 3, only 14 

parameters can be estimated, allowing for a full exploration of either differential or 

conditionally dependent misclassification, but not both, or an exploration of partial 

differential and partial conditionally dependent misclassification (Chu et al. 2009). Thus in 

the frequentist setting, the model in equation 3.1 is not identifiable when J <4. However, in 

the Bayesian setting, the model can still be identified by specifying informative priors on 

some of the parameters [15]. For example, the sensitivity and specificity parameters of 

different exposure assessments for the general population are commonly available from the 

literature of previous studies. With informative priors for at least the number of parameters 

that are unidentifiable in the frequentist setting, the proposed Bayesian methods allow us to 

simultaneously explore differential and dependent misclassification even when the number 

of binary exposure assessments J <4. In this situation, the posterior distributions are strongly 

dependent on the prior information [15, 21].

3.3 Posterior Computation using the Markov chain Monte Carlo method

Posterior computation was done using free downloadable software WinBUGS (http://

www.mrc-bsu.cam.ac.uk/bugs) and BRugs library in R (http://www.r-project.org/). Model 

code is available upon request. The burn-in consisted of 20,000 iterations, and 50,000 

subsequent iterations were used for posterior summaries. Convergence of Markov chain 

Monte Carlo (MCMC) was assessed using the Gelman and Rubin convergence statistic [22, 

23]. The posterior credible intervals for the sensitivities, specificities and odds ratio are 

directly available from the posterior distributions approximated by the posterior samples 

using the MCMC chains. Deviance Information Criterion (DIC) [24], was used as a guide to 

select the final model for posterior inference. The deviance, up to an additive quantity not 

depending upon θ, is D(θ) = –2log L(Data | θ), where L(Data | θ) is the likelihood for the 

respective model. The DIC is given by , where  is the 

Bayesian deviance, and  is the effective number of model parameters. It 

rewards better fitting models through the first term and penalizes more complex models 

through the second term. A model with smaller overall DIC value is preferred.

Zhang et al. Page 5

Stat Med. Author manuscript; available in PMC 2014 November 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.mrc-bsu.cam.ac.uk/bugs
http://www.mrc-bsu.cam.ac.uk/bugs
http://www.r-project.org/


4. RESULTS FOR THE CASE STUDY

4.1 Selection of Prior Distributions

We analyze the case-control study described in Section 2 using Bayesian methods proposed 

in Section 3. In this case-control study with J = 3 exposure assessments, only 14 parameters 

can be estimated. However, for the fully differential and fully dependent misclassification 

model, 20 independent parameters needed to be estimated. Thus, informative priors are 

needed for at least 6 parameters such that the full model can be identified. In the following, 

we will describe the choice of prior distributions for aeij, beij, ηei and ceij (ei = 0, 1, and j = 

1, 2, 3) in order.

Firstly, we elicited 95% prior probability intervals for sensitivities and specificities for 

controls for aeij (ei = 0, 1, and j = 1, 2, 3) based on published literature [25-31]. Assuming a 

normal prior distribution  for each component of aeij (ei = 0, 1, and j = 1, 2, 3), 

we obtained estimates of μeij and  by solving the two equations that set the center value 

of the elicited 95% probability intervals to be equal to μeij, and a quarter of the 95% prior 

probability interval to be equal to  [21]. The result is presented in Table 2.

Secondly, vague and independent priors of N(0, 1.1) were assumed for the parameters beij (ei 

= 0, 1, and j = 1, 2, 3) such that the 95% prior credible intervals for the sensitivities and 

specificities range from 0.02 to 0.98 for the cases if there is no informative priors for 

controls. We assumed N(0, 22) for η0 and η1 such that the 95% prior credible intervals for 

the probability of truly exposed ranges from 0.02 to 0.98, and the corresponding OR ranges 

from 0.02 to 50. We selected the above non-diffuse (or weakly informative) priors instead of 

diffuse priors since the latter can lead to inaccurate posterior estimates [32].

Lastly, we discuss the prior choice of ceij (ei = 0, 1, and j = 1, 2, 3). The conditional 

dependence or the positive correlation in either the exposed or the unexposed population 

arises because of the similarities among multiple measurements, which can be caused by 

subject-specific characteristics other than the exposure status. These characteristics are 

summarized by the latent continuous variable Zi, which varies from subject to subject, and 

the positive correlations are captured by ceij (ei = 0, 1, and j = 1, 2, 3). As ceij is considered 

as a scale factor for the standard deviation of the latent continuous variable, it must be 

positive. An exponential prior distribution of EXP(1) is used for ceij (e = 0, 1, and j = 1, 2, 

3), which corresponds to the standard deviation of the latent continuous variable Zi ranging 

from 0.03 to 3.0.

4.2 Summary of Posterior Results

Table 3 presents the posterior medians and the 95% equal tailed credible intervals for 9 

models. We can see that ORs estimated from the following 9 models, which consider three 

assessments simultaneously, are quite different from the ORs from analyses based upon any 

single assessment. Association estimates obtained by combining results from several 

mismeasured assessments often will be more accurate than estimates derived from 

individual assessments because combined results can simultaneously use information from 
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all assessments in a unified manner. Specifically, models 1, 4 and 7 assume nondifferential 

misclassification (i.e., sensitivities and specificities of exposure classification are the same 

for cases and controls); models 2, 5, and 8 assume fully differential misclassification (i.e., 

sensitivities and specificities of the case and control groups are different); and models 3, 6, 

and 9 assume partially differential misclassification (i.e., only sensitivity of next-of-kin 

respondents method and sensitivity of job exposure matrix method in the case group are 

different from the control group). Models 1-3 are the independent models, in which ceij = 0 

(ei = 0, 1, and j = 1, 2, 3); models 4-6 are the “simplified” or “special” dependent models, in 

which cei1 = cei2 = cei3 (ei = 0, 1); models 7-9 are the “general” dependent models, in which 

c01 ≠ c02 ≠ c03 ≠ c11 ≠ c12 ≠ c13. From Table 3, we see that the “general” dependent models 

7-9 show much smaller DIC in general than independent models and “special” dependent 

models. The model 8, conditionally dependent and differential misclassification model, has 

the smallest DIC and thus is chosen as our final model. The final model gives a posterior 

median OR of 15.46 with a 95% credible interval of (7.88, 52.03).

Several figures are plotted in support of our results. Figure 1 shows the posterior 

distributions of the sensitivities and specificities of three measurements in the final model 

based on the kernel smoothed density estimation of 50,000 Monte Carlo posterior. Figure 2 

displays prior and kernel smoothed posterior distributions of OR, and parameters ceij. For 

comparison, Figure 3 shows the medians of OR with 95% credible intervals obtained from 

our 9 models and individual measurements.

4.3 Sensitivity Analysis to Prior Distributions

How sensitive are the posterior results to variations in the priors of ceij? We approached this 

question by using several different prior distributions: exponential distribution EXP(1), and 

the heavy-tailed log-normal distributions LN(0, 1), LN(0, 22) and Weibull(0.5, 1). The results 

are presented in Table 4, which shows that the posterior medians and the 95% credible 

intervals are quite similar using different priors. In summary, for the priors considered, 

results are consistent.

5. SIMULATION STUDIES

5.1 Simulated Data and Analysis Methods

Six sets of simulations (labeled as A1, A2, A3, B1, B2, and B3) with different levels of 

differential/nondifferential misclassification and conditional dependence/independence were 

performed to evaluate the impact of potential misspecification of misclassification of on the 

estimation of exposure-disease association. For each set of simulations, 1000 replications 

were used. Note that while using only 1000 replications leaves some non-negligible 

simulation error, it was not possible to conduct many more replications given the 

computational complexity of the Markov chain Monte Carlo method used for the proposed 

method. To reflect the case study presented in Section 2, 250 cases and 500 controls were 

generated for each simulated case-control study. Furthermore, the probabilities of true 

exposure were set to be 0.269 and 0.731 for the controls and cases, respectively, which 

corresponded to a log odds-ratio of 2.0 for the exposure-disease association.
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In set A1-A3, the sensitivities and specificities, i.e., (Se01, Se11, Se02, Se12, Se03, Se13, Sp01, 

Sp11, Sp02, Sp12, Sp03, Sp13), were set to be conditionally independent with increased levels 

of differential misclassifications: A1 (0.70, 0.70, 0.90, 0.90, 0.80, 0.80, 0.85, 0.85, 0.80, 

0.80, 0.75, 0.75) is nondifferential; A2 (0.80, 0.90, 0.85, 0.95, 0.70, 0.90, 0.85, 0.85, 0.80, 

0.80, 0.75, 0.75) is partially differential; A3 (0.80, 0.90, 0.85, 0.95, 0.70, 0.90, 0.85, 0.90, 

0.80, 0.90, 0.75, 0.90) is fully differential. In set B1-B3, the sensitivities and the specificities 

were set to be conditionally dependent with increased levels of differential 

misclassifications: B1 (0.70, 0.70, 0.90, 0.90, 0.80, 0.80, 0.85, 0.85, 0.80, 0.80, 0.75, 0.75); 

B2 (0.80, 0.90, 0.85, 0.95, 0.70, 0.90, 0.85, 0.85, 0.80, 0.80, 0.75, 0.75); B3 (0.80, 0.90, 

0.85, 0.95, 0.70, 0.90, 0.85, 0.90, 0.80, 0.90, 0.75, 0.90). For the conditionally dependent 

models, we assumed that they were homogeneously dependent with coj = c1j = 0.5 (j = 1, 2, 

3) for simplicity. Of each set, we fit 7 models: 1) an independent non-differential 

misclassification model; 2) an independent partially differential misclassification model; 3) 

an independent differential misclassification model; 4) a dependent nondifferential 

misclassification model where coj = c1j = 0.5; 5) a dependent partially differential model 

where coj = c1j = 0.5; 6) a dependent differential misclassification model where coj = c1j = 

0.5; 7) a dependent differential misclassification model where c01 ≠ c02 ≠ c03 ≠ c11 ≠ c12 ≠ 

c13.

5.2 Simulation Results Using the Bayesian Approach

We used the same prior distributions as 4.1 for beij, ceij (ei = 0, 1, and j = 1, 2, 3), η0 and η1. 

But different from 4.1, vague priors N(0, 1.1) were assumed for the parameters aeij (ei = 0, 

1, and j = 1, 2, 3) such that the 95% prior credible intervals for the sensitivities and 

specificities range from 0.02 to 0.98 for controls, except that a11 was endowed with 

informative prior N(0.52, 0.12) in model 6. Using 20,000 post-burn-in iterations with 10,000 

burn-in, Table 5 summarized the posterior medians and the 95% credible intervals of log 

OR, and also 95% credible interval coverage probability (CICP). It suggests that 

misspecification of differential/nondifferential misclassification and dependent/independent 

misclassification can lead to a substantial bias on the estimation of exposure-disease 

association in an unknown direction when the model is over-specified or under-specified. In 

addition, a simple simulation is done under the condition that there is no association between 

exposure and disease. It turns out that our model is robust under this condition and provides 

less-biased estimates than individual measurements, as is shown in appendix.

5.3 General Guidance for the Practitioners

Misspecification of differential/nondifferential and dependent/independent misclassification 

can lead to a substantial bias on the estimation of exposure-disease association in an 

unknown direction when the model is over-specified or under-specified. Thus we suggest 

fitting all models as is done in Table 3 for the future data analysis and selecting the model 

with the smallest DIC as the final model.

6. DISCUSSION

In this paper, we proposed a Bayesian approach to show that misspecification of dependent/

independent and/or differential/nondifferential misclassification can lead to substantial bias 
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in the estimation of exposure-disease association. In our application presented in Section 4, 

the measurement error-corrected OR was 15.46 (95% CL: 7.88, 52.03) under dependent and 

differential misclassification assumption. Our proposed approach can also be used to 

estimate the accuracy of imperfect measurements and to test whether the misclassification is 

likely to be differential or non-differential incorporating conditional dependence, when 

multiple non-gold standard exposure assessments are used in case-control studies.

In the Chu et al. likelihood-based approach [2], a model with full differential and full 

conditional dependent misclassification was not identifiable with only three error-prone 

measurements. Thus, they used a somewhat ad hoc approach to select a “final” partial 

differential and constrained conditional dependent model. Specifically, they first selected a 

“partially differential independent misclassification model” among the 3 conditional 

independent models based on a likelihood ratio test. Then, they assumed a homogeneous 

conditional dependence on specificities to find the final model. However, their approaches 

may not guarantee the best-fit model due to identifiability issues, e.g., their approach is 

incapable to consider heterogeneous dependence on sensitivities and specificities (i.e., c01 ≠ 

c02 ≠ c03 ≠ c04 ≠ c05 ≠ c06) corresponding to model 7-9 in Table 3. With informative priors 

constructed from the literature, our Bayesian approach overcomes the identifiability issues 

[21], and can provide an useful alternative in practice.

In this article, we implemented a retrospective logistic regression model to estimate the 

exposure-disease association by logit(Pr(Ei = 1) = η0 + η1Di as this parameterization 

facilitates the specification of the distribution of Y|E through a mixture. As shown in 

Seaman and Richardson[33, 34], for the Bayesian analysis using suitable priors as well as 

the classical frequentist analysis, with any number of categorical or discretized continuous 

exposure and confounding variables, the “prospective” likelihood (i.e., the likelihood of 

disease give exposure), and the “retrospective” likelihood (i.e., the likelihood of exposure 

given disease) lead to the same odds-ratio estimator. In general, the introduction of a few 

other categorical covariates or discretized continuous covariates will alleviate the 

identifiability issue because we will gain more degrees of freedom than the number of 

additional parameters to estimate. Note that the definition of degrees of freedom here is 

different from what it is defined in a linear regression with continuous outcome, where it is 

determined by the sample size and number of parameters and will be decreased by adjusting 

additional covariates. However, in the categorical data analysis, the total degrees of freedom 

equals the number of populations times the number of categories minus 1. Suppose J 

diagnostic tests are applied simultaneously to individuals drawn independently from M 

populations, the total degrees of freedom in the data is M(2J –1)[15]. If there is only one 

binary covariate D, the number of populations M equals to 2 and thus the total degree of 

freedom equals 2×(2J –1). If there are P binary covariates in addition to D to be adjusted, the 

degrees of freedom will be enlarged to 2P+1×(2J –1). Of course, one cannot increase degrees 

of freedom to be larger than the sample size by adding covariates. On the other hand, the 

number of additional parameters to estimate equals to the number of additional covariates if 

we assume the error-prone exposure measurements do not depend on the additional 

covariates given the true underlying exposure and disease status (corresponding to formula 

3.1), which is quite reasonable in practice. In general, the identifiability issue is alleviated by 
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adding additional covariates. One drawback of our approach is that we only considered a 

binary status for both the underlying true exposure and the error-prone exposure 

measurements. Extending the proposed methods to categorical exposures should be straight 

forward, e.g., by using a generalized logit model to model P(E|D) and P(Y|D, E). However, 

it may be difficult in practice to solicit informative priors for the misclassification 

parameters. This extension as well as ordinal exposures awaits further development.

In summary, misclassification of exposure status is very common in case-control studies. 

Estimates obtained by combining multiple exposure assessments are more accurate than 

estimates derived from a single individual exposure assessment. Misspecification of 

differential/nondifferential misclassification and conditional dependence/independence can 

lead to noticeable bias in exposure-disease association in an unpredictable direction. Thus 

careful attention should be paid to competing misclassification models when conducting 

analysis involving multiple error-prone exposure measurements in case-control studies.
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Appendix

Appendix

We generated data with no association between the exposures and the disease. More 

specifically, we let the probabilities of being exposed in both case and control to be 0.4, thus 

the OR of exposure comparing cases and controls are 1. Sensitivities are set to be 0.60, 0.65, 

and 0.55 for controls; while 0.65, 0.70, and 0.60 for cases. Specificities are set to be 0.85, 

0.80, and 0.75 for controls; while 0.90, 0.90, and 0.90 for cases. The following results show 

that our approach provided less-biased estimate than individual measurements.

True OR Our method OR Next-of-kin OR Expert OR JEM OR

1.00 1.05 0.95 0.85 0.73
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Figure 1. 
Posterior Density Distributions of the sensitivities and the specificities of the final model 

(i.e., model 8 in Table 3). Note: SE11 and SP11 refer to the sensitivity and specificity of the 

next-of-kin respondents method in the case group respectively; SE01 and SP01 refer to the 

sensitivity and specificity of the next-of-kin respondents method in the control group 

respectively. Others are in the same manner.
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Figure 2. 
Prior and Posterior distributions for c parameters and OR. Note all c parameters have the 

same exponential prior distribution.
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Figure 3. 
ORs and 95% Credible Intervals. Model1-Model9 refer to the 9 models in Table 3 (Each 

vertical line presents the posterior median with 95% credible intervals). Blues lines represent 

individual measurements; Red lines represent independent models (cej = 0); Green lines 

represent dependent models in the special case (ceij = cei where ei = 1, 0); purple lines 

represent dependent models in the general case (c01 ≠ c02 ≠ c03 ≠ c11 ≠ c12 ≠ c13).
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Table 1

A case-control study of asbestos and mesothelioma from the National Occupational Hazard Survey

Exposure test positive (+) or negative (–) Number of subjects

Next-of-kin respondents (Y1) Expert assessment (Y2) Job-exposure matrix (Y3) Cases (D = 1) Controls (D = 0)

+ + + 69 36

+ + – 47 14

+ – + 0 4

+ – – 1 3

– + + 22 82

– + – 28 113

– – + 7 39

– – – 34 242

Total 208 533
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Table 2

Elicited 95% probability intervals for the sensitivities and specificities of the three exposure measurements, 

and the corresponding prior distributions

Elicited 95% prior PI Prior parameters

Next-of-kin respondents Sensitivity (a11) 0.75-0.98 N (1.36, 0.352)

Specificity (a01) 0.96-0.99 N(–2.04, 0.152)

Expert assessments Sensitivity (a12) 0.85-0.99 N(1.68, 0.332)

Specificity (a02) 0.91-0.98 N(–1.70, 0.182)

Job exposure matrix Sensitivity (a13) 0.45-0.80 N(0.36, 0.252)

Specificity (a03) 0.80-0.90 N(–1.06, 0.112)

Note: PI refers to probability interval.
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Table 4

Sensitivity analyses using different prior distributions

c priors Exponential (1) Log-normal (0,1) Log-normal (0,4) Weibull (0.5,1)

Se01 0.74 (0.59,0.93) 0.73 (0.58,0.93) 0.72 (0.56,0.94) 0.74 (0.57, 0.95)

Se11 0.81 (0.61,0.97) 0.80 (0.58,0.97) 0.79 (0.57,0.98) 0.81 (0.59,0.99)

Sp01 0.98 (0.95,0.99) 0.97 (0.94,0.99) 0.98 (0.95,0.99) 0.98 (0.95,0.99)

Sp11 0.99 (0.88,1.00) 0.98 (0.84,1.00) 0.99 (0.85,1.00) 0.99 (0.87,1.00)

Se02 0.91 (0.72,0.98) 0.88 (0.68, 0.97) 0.89 (0.66,0.98) 0.91 (0.68,0.98)

Se12 0.99 (0.84,1.00) 0.98 (0.81,1.00) 0.98 (0.80,1.00) 0.99 (0.82,1.00)

Sp02 0.62 (0.58,0.66) 0.60 (0.56,0.65) 0.60 (0.54,0.65) 0.60 (0.55,0.65)

Sp12 0.60 (0.47,0.76) 0.58 (0.47,0.73) 0.58 (0.50,0.73) 0.58 (0.47,0.73)

Se03 0.67 (0.53,0.79) 0.66 (0.52,0.79) 0.67 (0.51,0.79) 0.68 (0.51,0.80)

Se13 0.55 (0.45,0.65) 0.54 (0.44,0.64) 0.55 (0.44,0.66) 0.56 (0.45,0.66)

Sp03 0.77 (0.74,0.81) 0.77 (0.73,0.80) 0.77 (0.73,0.81) 0.77 (0.73,0.81)

Sp13 0.72 (0.54,0.94) 0.70 (0.51,0.95) 0.73 (0.53,0.97) 0.74 (0.55,0.97)

OR 15.46 (7.88,52.03) 16.22 (8.51,89.59) 16.33 (5.53,80.44) 15.32 (8.02,61.49)
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