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ABSTRACT

Motivation: A major goal in genomic research is to identify genes that

may jointly influence a biological response. From many years of inten-

sive biomedical research, a large body of biological knowledge, or

pathway information, has accumulated in available databases. There

is a strong interest in leveraging these pathways to improve the

statistical power and interpretability in studying gene networks asso-

ciated with complex phenotypes. This prior information is a valuable

complement to large-scale genomic data such as gene expression

data generated from microarrays. However, it is a non-trivial task to

effectively integrate available biological knowledge into gene expres-

sion data when reconstructing gene networks.

Results: In this article, we developed and applied a Lasso method

from a Bayesian perspective, a method we call prior Lasso (pLasso),

for the reconstruction of gene networks. In this method, we partition

edges between genes into two subsets: one subset of edges is pre-

sent in known pathways, whereas the other has no prior information

associated. Our method assigns different prior distributions to each

subset according to a modified Bayesian information criterion that

incorporates prior knowledge on both the network structure and the

pathway information. Simulation studies have indicated that the

method is more effective in recovering the underlying network than

a traditional Lasso method that does not use the prior information. We

applied pLasso to microarray gene expression datasets, where we

used information from the Pathway Commons (PC) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) as prior information

for the network reconstruction, and successfully identified network

hub genes associated with clinical outcome in cancer patients.

Availability: The source code is available at http://nba.uth.tmc.edu/

homepage/liu/pLasso.
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1 INTRODUCTION

A central research focus in genomics is to identify genes and gene
networks involved in variety of biological processes. Gaussian
graphical models are popular tools for the estimation of gene

association networks from microarray data (Dobra et al., 2004;
Lauritzen, 1996; Schafer and Strimmer, 2005). These models

assume that the available data are generated from a multivariate

Gaussian distribution (Whittaker, 1990). As a consequence, the

main task for inferring networks is to derive conditional inde-

pendencies in the joint probability distribution of expression data

for multiple genes. In the framework of undirected Gaussian

graphical models, conditional independence relationships can

be inferred from partial correlations, which are the correlations

between pairs of variables given the remaining observed ones.

Contrary to the marginal correlation, the partial correlation

measures the direct association between two genes in the gene

association network. Once a direct gene association network is

complete, the knowledge on indirect gene associations can be

easily obtained.

The standard estimation of partial correlations involves either

the inversion of the sample covariance matrix or the estimation of

least square regression problems. Unfortunately, microarray data

are typically characterized by a large number of variables with a

small number of samples, which makes these traditional

approaches inappropriate. To ensure proper estimation capabil-

ity, suitable alternatives based on regularized estimation of these

parameters by sparsity restriction have been proposed. The under-

lying assumption is the sparsity of biological networks: only a few

edges are supposed to be present in the gene regulatory network.

A well-known example of these regularization-based techniques is

the L1 penalized least square estimator, known as the Lasso tech-

nique. The method has been widely adapted to high-dimensional

model selection in linear and Gaussian graphical models

(Meinshausen and Buhlmann, 2006; Tibshirani, 1996).

One limitation of these approaches is that they focus on com-

putational or algorithmic aspects but neglect prior biological

knowledge or information. Many years of intensive biomedical

research has deposited a wealth of biological knowledge into

databases, including gene–gene regulatory pathway information.

One well-known example of these data resources is the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

(Kanehisa et al., 2010). It is a collection of comprehensive path-

way information derived from experimental results, literature

and other databases. Another rich resource is the Pathway

Commons (PC) that integrates biological pathway and

molecular interaction data from publicly available databases

including BioGRID, HPRD, Reactome and others (Cerami

et al., 2011). These pathways are often interconnected and can

be viewed as a graph of inter-gene regulatory relationships.

However, pathway databases represent only the static regulatory

relationships between genes or gene products. It is not clear yet

to what extent a network in a particular phenotype or cell type

aligns with interactions defined in these databases. A recent*To whom correspondence should be addressed.
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microarray data analysis of 20 genes involved with the human
cell cycle showed that as much as 60–70% of the identified gene

regulatory relationships were in agreement with known regula-

tions (Chen et al., 2010). It is expected that integrating a priori

pathway information in a gene expression analysis would

increase the power of the method to recover biological networks.

Recently, several methods have been developed to use pathways
or network information, including network-constrained param-

eter estimation, in the framework of variable selection (Chen

et al., 2011; Li and Li, 2008; Tai and Pan, 2007a, b; Wei and

Pan, 2008). For example, the prior information was incorporated

into a spatially correlated mixture model for selecting targets of

one transcription factor (Wei and Pan, 2008). In addition, an

Ising model using network knowledge was used to identify dif-
ferentially expressed genes (Li et al., 2011; Wei and Li, 2007).

In this study, we developed a prior information-dependent

Lasso (pLasso) procedure for regularized estimation of large-
scale gene association networks. Specifically, we embedded

prior network information into the regularized regression, such

that it could specify preferences for particular sets of variables in

the model. The rationale is derived from a Bayesian perspective of

Lasso. Amixture of two Laplacian distributions was conceptually

proposed to represent different prior knowledge of two sets of
gene interactions: one set is present in known pathways, whereas

the other has no known prior information. We first explored the

effectiveness of the pLasso using simulation studies, and then

applied the pLasso to a breast cancer dataset and an ovarian

cancer dataset to evaluate the proposed method.We have demon-

strated the effectiveness and power of our pLasso procedure

through both simulation studies and real data analysis.

2 METHODS

2.1 Graphical Gaussian model of gene network

Graphical models are a class of statistical models that present direct

covariate interactions. These models can be described by means of a

graph G¼ (V, E), where V¼ {1,. . ..., p} is the vertex set representing

variables, and E¼ (eij) is the edge set representing conditional indepen-

dency relations between vertices. If eij¼ 0, there is no edge between two

vertices i and j. The lack of an edge between two vertices corresponds

to their conditional independence given all other vertices. Let

X¼ (X1,. . .., Xp) be a random vector of vertices states that are real

valued and follow a multivariate Gaussian distribution with mean 0

and covariance matrix �, so the inverse covariance matrix, V¼
P
�1
¼

{!ij} known as the precision matrix, describes the conditional independ-

ence structure of X. If eij¼ 0, then !ij¼ 0. Therefore, it can be easily

linked to the partial correlation � in the graphical model through

Equation (1).

�ij ¼ �
!ijffiffiffiffiffiffiffiffiffiffiffi
!ii!jj
p ð1Þ

�ij is the partial correlation between gene i and gene j conditioned on the

values of all the other genes. The pattern of zero entries in the inverse

covariance matrix corresponds to conditional independence restrictions

between variables.

2.2 Neighborhood selection with the Lasso

In general, a typical genomic dataset has a much smaller number of

observations (n arrays) than number of variables (p genes). Under these

conditions, inverting the sample covariance matrix as described is

inappropriate for estimating the partial correlations. A recent study

showed that suitable surrogates based on regularized estimation of the

covariance matrix or on regularized high-dimensional regression can lead

to practical solutions (Kramer et al., 2009; Meinshausen and Buhlmann,

2006; Parikh et al., 2011). In this study, we will use Meinshausen and

Buhlmann’s neighborhood selection method. Basically, Lasso regression

is applied to each node in the network, reducing the original problem to

multiple sparse linear regression problems.

Formally, let X\i indicate the p�1 vector of the values of all genes

except i. Similarly, let �ðiÞ ¼ ð�ðiÞ1 , :::, �ðiÞi�1, :::,�
ðiÞ
p Þ

T represent the regres-

sion coefficients where gene i is the response variable and all the other

genes are the covariates. The lasso-based estimate of regression coeffi-

cients is the solution of the optimization problem:

�̂ðiÞ ¼ arg min
�2Rp�1

jjXðiÞ � XðniÞ�jj2 þ pð�Þ ð2Þ

where pð�Þ ¼ �j�j ¼ �
P
j6¼i

j�jj

Here �40 is the regularization parameter. This optimization problem can

be easily solved by a coordinate descent algorithm (Friedman et al., 2010).

Then, the neighborhood estimation of node j is defined by Equation (3).

n̂ej ¼ fk 2 V; �̂ ðjÞk 6¼ 0g ð3Þ

Also, based on the relationship between partial correlation coefficients

and regression coefficients, the following equation can be derived

(Kramer et al., 2009).

�̂ij ¼ signð�̂ ðiÞj Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ ðiÞj �̂

ðjÞ
i

q
ð4Þ

With the L1 penalty, many estimated regression coefficients will shrink to

0. It is not guaranteed that the �̂ ðiÞj and �̂ ðjÞi always have the same sign for

finite sample sizes. In this situation, we applied the ‘max’ symmetrization

approach (Parikh et al., 2011), which is defined by Equation (5).

�̂symij ¼
�̂ ðiÞj : if j �̂ ðiÞj j � j �̂

ðjÞ
i j

�̂ ðjÞi : if j �̂ ðiÞj j 5 j �̂
ðjÞ
i j

(
ð5Þ

And now by replacing both the �̂ ðiÞj and �̂ðjÞi in Equation (4) with �̂symij , we

can define the estimate of the partial correlation coefficients as in

Equation (6).

�̂ij ¼ �̂
sym
ij ð6Þ

2.3 Prior dependent lasso estimation of neighborhood

The lasso estimate for linear regression has a Bayesian interpretation.

Tibshirani (1996) indicated that the lasso estimate can be viewed as the

model of the posterior distribution of � with a double exponential dis-

tributed prior (or Laplacian prior). Minimizing Equation (2) can be

regarded as maximizing the log posterior distribution of

pð�̂ jXÞ � C exp �
1

2
XðiÞ � XðniÞ�
�� ��2þ�X

j

�j
�� �� !( )

ð7Þ

where C is a constant in Equation (7). Thus, the lasso penalty can be

regarded as the logarithm of the prior distribution of the parameter

�¼ (�1,. . ., �p)
T, which is a Laplacian prior with mean equal to 0.

Because prior distributions model our prior knowledge of the data, the

known network structure can be introduced in a natural way in the form

of prior probabilities. A mixture of two Laplacian prior distributions for

the regression coefficients is proposed as in Equation (8) with different

parameters l1 and l2.

pð�j�1, �2Þ � exp ��1
X
j�non�priorj � �2

X
j�priorj

n o
ð8Þ
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Here l1 and l2 are regularization parameters. �non-prior and �prior represent

the regression coefficients corresponding to the edges absent and present

in the prior knowledge. The prior distribution of regression coefficients

for the edges not present in known databases is concentrated. Because of

the sparsity assumption, most of these regression coefficients shrink to 0.

On the other hand, the prior distribution of regression coefficients

corresponding to existing edges in the known databases is diffuse.

Their regression coefficient profile is scattered away from zero, as it is

preferable to include the regression coefficients representing the known

gene interactions from reliable data source. In our proposed pLasso

method, we selected different values of the regularized parameter l
(l1 and l2) in two lasso penalty terms, thus allowing the lasso regression

coefficients corresponding to the edges absent and present in the prior

knowledge to have different prior distributions.

2.4 A new criterion for regularization parameter selection

Asymptotically, Lasso guarantees both model estimation consistency and

selection consistency under certain conditions (Zhao and Yu, 2006). The

regularization parameter � controls the sparsity of the estimated network.

Large values of � lead to sparse networks, whereas small values of � result

in dense networks. Sparse networks have less number of degrees of

freedom, but lower log-likelihood. Bayesian information criterion (BIC)

is a well-known model selection criterion (Schwarz, 1978). We apply BIC

for choosing the regularization parameter � that is a tradeoff between the

data fitting and the model complexity. Taking into account the fact that

the degree of freedom of the Lasso equals the number of non-zero entries

in the coefficient matrix, we define an average of the BIC score for all

genes for neighborhood estimation.

BIC ¼ �2 log LðXj�Þ þ k log n� 2 logPðSÞ ð9Þ

Here, the first term L(X j �) represents the likelihood of the data. In the

second term, n is the sample size; k is the average node degree of the

network, calculated by the number of non-zero entries in the estimated

coefficient matrix. In the last term, logP(S) is the prior probability of the

network model S. A smaller BIC score implies a better model. Usually,

the prior probability logP(S) in the BIC score is chosen to be an unin-

formative uniform prior so that the same prior probability is assigned to

all considered models. In this study, we use an informative prior

incorporating both our knowledge on network sparsity and the prior

information in known databases, defined as the Equations (10) and

(11) below.

As an asymptotic result, the original BIC score definition is derived for

large samples. In a typical genomic dataset where n55p, we found the

original BIC definition often resulted in data underfitting and an over-

sparse network. To address this issue, we first define the prior probability

that favors the network with an optimal minimum number of edges. In

this modified BIC (mBIC) score, q represents the minimum average node

degree of the estimated network. When the estimated network has an

average node degree of k bigger than q, it has no effect on the score.

Otherwise, an extra penalty is imposed into the framework, defined as the

following:

mBIC ¼ �2 log LðXj�Þ þ k log nþ ðmaxðq� k, 0ÞÞ log n ð10Þ

where the third term depicts a form for the prior probability that favors

the network S with an average node degree above q.

We also define a second modified BIC (pBIC) score that takes into

account the prior pathway information for selecting the optimal value of

the regularization parameter l2. The rationale underlying the pBIC score

is, if the estimated edges are also present in the known databases, a fa-

vorable prior distribution will be assigned, leading to a lower BIC score.

In the pBIC, � is defined as the average number of estimated edges

included in prior information for each node and calculated as

�¼ j Ê \Epriorj=p, where p is the number of genes, E is the set of edges

in the inferred network and Eprior is the set of edges in the prior. We let �

represent the precision of the prior knowledge, indicating the proportion

of true edges in prior information. To further compensate the false-posi-

tive edges in E and Eprior, we use the multiplicity term �� to denote the

effective number of true prior edges recovered in the estimated network.

Therefore, the complexity of the model in BIC is balanced with respect to

the total number of possibly correct prior edges recovered in the esti-

mated network. We have found that this simple prior representation

could reflect the information within the prior knowledge, favoring the

estimated network models with a large number of edges included in prior

information.

pBIC ¼ �2 log LðXj�Þ þ k log nþ ðmaxðq� k, 0ÞÞ log n� �� log n

ð11Þ

2.5 Evaluate the inferred gene network hubs

To evaluate the performance of the pLasso method, we applied it to two

public datasets for network inference. The first dataset was a microarray

gene expression study of breast cancer (Wang et al., 2005), measuring

gene expression profiles of 286 lymph-node-negative breast cancer

patients. Among these patients, 107 patients have developed a distant

metastasis, whereas 179 patients are metastasis-free. The second dataset

was the serous ovarian cancer data by The Cancer Genome Atlas

Research Network (2011). It includes gene expression measurements for

436 patient samples, where 108 patients had remained disease-free and

328 patients experienced disease progression.

We tested whether the gene network hubs inferred from the proposed

pLasso method could be used to predict survival outcomes of cancer

patients. We also compared their performance with those obtained

from other methods that were based on genome-wide expression data

alone. The methods for comparison included the differential expression

analysis (Significant Analysis of Microarrays, known as SAM) (Storey

and Tibshirani, 2003), the partial correlation analysis (GeneNet) (Opgen-

Rhein and Strimmer, 2007) and the original Lasso method. The genes

were selected if they were among the top genes with most neighbors in the

inferred network for patients showing distant metastasis but not in the

network for the metastasis-free patients (based on pLasso, Lasso and

GeneNet methods) or the most significantly differentiated expressed

genes (SAM). We also compared the predictive power of the selected

genes with the gene signatures identified previously, including the 76

genes for breast cancer (Wang et al., 2005) and the 193 genes for ovarian

cancer (The Cancer Genome Atlas Research Network, 2011). To make a

fair comparison, we selected the same number of genes under different

methods (76 genes and 193 genes for breast cancer and ovarian cancer

analysis, respectively). For breast cancer analysis, we used the 214 pa-

tients’ samples from the Wang dataset for training and then applied an

independent dataset, including 165 patients who did not receive hormone

therapy or chemotherapy, for testing the predictive power of the selected

gene signature for survival outcome (van de Vijver et al., 2002). For

ovarian cancer analysis, we used a training set of 215 patients from

TCGA batches 11–15, and tested in an independent validation set con-

sisting of 253 samples from TCGA batches 17–24. We performed the

univariate Cox’s analysis on the selected genes in the training dataset,

and used the Cox’s regression coefficients for these genes to calculate the

risk score for each sample in the testing dataset as in Creighton et al.

(2008). Specifically, the genes with positive Cox’s regression coefficients

were considered to be ‘poor prognosis’ genes, whereas others were con-

sidered as the ‘good prognosis’ genes. The risk score for each patient in

the testing datasets was defined as the t-statistics comparing the average

of the poor prognosis genes with the average of the good prognosis genes.

Patient samples with risk scores above 0 were predicted to be in the ‘high-

risk group’, whereas others were classified in the ‘low-risk group’. The

sensitivity and specificity of prediction results based on selected genes

from different methods were then compared.
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3 SIMULATION RESULTS

To demonstrate the performance of the proposed pLasso

method, we conducted simulation studies to empirically compare

our method with the traditional Lasso method (Meinshausen

and Buhlmann, 2006). In the experiment, we designed two simu-

lation scenarios on different network scales. The first simulated

network is a small network with 40 nodes, an average node

degree of 4, a maximum degree of 6. The 80 (40*4/2) edges

were randomly assigned to the 780 (40*39/2) node pairs with

the limit that the maximum node degree is not exceeded.

According to this network structure, we simulate its associated

gene-expression datasets similar to others (Kramer et al., 2009;

Parikh et al., 2011).
Basically, we first constructed a positive definite partial cor-

relation matrix P based on the simulated network. Then the

microarray gene expression data were simulated from a standard

multivariate normal distribution with correlation structure

derived from P with each gene having 10, 100 and 200 replicates

so that we could further investigate the effect of sample size on

the performance of our method. Our second simulation scenario

has a larger network with 300 nodes and 900 edges, an average

degree of 6, a maximum degree of 12. Each gene was simulated

with 10, 100 and 200 replicates. We first screened the optimal

value of �1 using both BIC and mBIC criteria to compare their

effectiveness on the original Lasso performance. To accommo-

date the model complexity at different network scales, we set the

q value of mBIC score to 2 and 4 in the small and large network

scenarios, respectively, and evaluated these estimation

results using an F-score, where F¼ 2*Precision*Recall/

(PrecisionþRecall). Here precision is the proportion of predic-

tion results that are true positives, and recall is the proportion of

true positives that are predicted, also known as the true positive

rate. The F-score can be interpreted as a weighted average of the

precision and recall, and reaches its best value at 1 and worst

score at 0. We reported its average and standard error based on

100 simulated datasets for each scenario. As shown in Table 1, if

the simulation scenario was in the n4p setting (e.g. p¼ 40,

n¼ 100 and 200), it possessed the same optimal �1 values

based on BIC and mBIC screening, and their performance eval-

uated by the F-score was identical. However, in the p4n setting,

Lasso with BIC reached its optimal �1 value with severe network

sparsity, whereas Lasso with mBIC led to a larger number of true

edges in the identified network and a higher F-score. The results

demonstrated the effectiveness of our mBIC in addressing the

problem of data underfitting, especially in the scenarios of

larger networks with smaller sample sizes.
In real situations, the true underlying network is only partially

known in our prior knowledge and is mixed with spurious edges.

To investigate the performance of our pLasso method with im-

perfect prior information, we have simulated prior information

with different precision levels varying from 0.1 to 1.0. The total

number of edges in the prior data was set equal to the number of

edges in the true underlying network. Therefore, a precision level

of 0.1 indicates that 10% of the edges in prior are true edges,

whereas the other 90% are spurious ones, and a precision level of

1.0 indicates a perfect prior with all true edges included. To in-

corporate the prior information, the network recovery method

pLasso was implemented to search over a sequence of m from 0

to 1.2 with an increment of 0.1 to get the optimal �2, where
�2¼�*�1. The optimal �2 value was obtained when the min-

imum pBIC score was achieved. The parameter �1 used in

pLasso was set the same as that in the original Lasso approach

based on the mBIC criterion.

Results in Figure 1 demonstrated that in all simulation scen-

arios, combining prior knowledge with higher precision in

pLasso led to a higher F-score. Nevertheless, we found

F-scores from pLasso were consistently higher than those from

a traditional Lasso method. Even when the precision of the prior

was as low as 0.1, pLasso achieved an F-score comparable with

or slightly higher than the Lasso method for all the simulation

scenarios. Obviously, the precision of prior knowledge is import-

ant in determining the optimal value of �2, as defined in the

Equation (11), and thus affects the performance of pLasso. As

shown in the Supplementary Table S1, the lower precision of

prior knowledge, the larger value of �2 will be obtained, indicat-
ing the penalty on the prior is large. Particularly, when only 10%

of edges in the prior were true edges (precision level is 0.1), the

optimal m based on pBIC was close to 1.0 for the simulated

network, leading to a large �2. This suggested the edges in the

prior information get a large penalty, thus reducing the likeli-

hood of including low quality prior knowledge in the network

inference process. On the other hand, if the precision of the prior

information was high, the corresponding optimal l2 (m) value

would be low, indicating that the penalty on the prior knowledge

was small. Therefore, even though we often cannot obtain per-

fect prior information, our approach helps to distinguish the true

edges from the spurious ones, and outperforms a traditional

Lasso method that neglects prior information.
Figure 1 also demonstrated pLasso performance under differ-

ent simulation scenarios, including different network sizes (p)

and sample sizes (n). Performance is affected by both factors.

In the simulation scenarios where n4p, the traditional Lasso

itself was able to achieve an optimal performance with a high

F-score (0.69 and 0.80 for p¼ 40, n¼ 100 and 200, respectively).

Table 1. Lasso performance with optimal �1 value determined by BIC

and mBIC criteria

Nodes Sample

size

Criteria �1 F-score Recovered

edges

40 10 BIC 0.51 (0.07) 0.16 (0.05) 10 (3)

mBIC 0.41 (0.07) 0.19 (0.05) 14 (4)

100 BIC 0.21 (0.02) 0.69 (0.04) 58 (4)

mBIC 0.21 (0.01) 0.69 (0.04) 58 (4)

200 BIC 0.14 (0.01) 0.80 (0.03) 72 (3)

mBIC 0.14 (0.01) 0.80 (0.03) 72 (3)

300 10 BIC 0.49 (0.07) 0.003 (0.001) 2 (1)

mBIC 0.39 (0.02) 0.04 (0.01) 33 (5)

100 BIC 0.46 (0.04) 0.13 (0.02) 90 (5)

mBIC 0.25 (0.02) 0.30 (0.01) 234 (9)

200 BIC 0.24 (0.02) 0.39 (0.07) 237 (9)

mBIC 0.20 (0.01) 0.52 (0.02) 391 (9)

Note: The standard errors in parenthesis are calculated based on 100 simulated

datasets. Recovered edges represent the total number of true edges recovered by

the method.
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With the pLasso method, a relatively large value of l2 (m) was
selected, which restricted the addition of edges present in the

prior, and the overall performance did not significantly improve

unless the precision of the prior was high (Supplementary

Table S1). On the other hand, in the simulation scenarios

where p4n, the original Lasso without incorporating prior in-

formation performed poorly because of the small sample size

effect. In this setting, the advantage of our pLasso method is

most obvious, as demonstrated by the performance improvement

when the prior information was incorporated even if the prior

precision level was low (Fig. 1).

In our simulation studies, the precision (�) of prior used in

pBIC score calculation was provided. However, this is often not

the case in real data application. Therefore, we can only use an

estimated � value in the Equation (9) for choosing the optimal

regularization parameter l2 and inferring the network. To inves-

tigate the effects of � on the performance of our method, we

varied the estimated value of � between 0 to 1 for each true

value of � (0.1, 0.3, 0.6 and 0.9). It was demonstrated that in

the large network of 300 genes with each gene having 100

samples, the performance was affected in the extreme case, if

we estimated the precision � to be 1 while the true precision

was only 0.1. However, if the estimated � was within a reason-

able small range of the true � values, our method performance

was relatively robust to the selection of estimated � (Table 2).

This conclusion was demonstrated to be valid in other simulation

scenarios as well (Supplementary Tables S2 and S3).

4 APPLICATION TO ANALYSIS OF CANCER GENE
EXPRESSION DATA

4.1 Breast cancer data

In the analysis of breast cancer data, our interest is to investigate

the gene regulatory networks of two types of breast cancer pa-

tients, the metastasis-free group and the group with metastases.

Because the performance of Lasso and pLasso are sensitive to the

sample size, we only used 107 of 179 metastasis-free patients so

that the sample size of themetastasis-free group is the same as that

of the patients with metastases. We used a prior gene network

compiled from the KEGG database and the PC web resource,
which yielded a network with 11 211 genes and 97128 edges. To
make the computation less intensive, we only applied our method

to the set of genes included in our prior knowledge. In the experi-
ment, mBIC with a q value of 5 was used to search over the op-
timal �1 value based on the observation that the node degree is on

the order of 2 to 10 edges per node (Alon, 2006). With traditional
Lassomethod, the inferred network frompatients withmetastases
had 21 360 edges. For the pLasso setting, we set the precision of

the prior knowledge to 0.6, as we expect that 60–70% of the edges
present in the prior knowledge would align with the interactions in
the true network corresponding to breast cancer samples (Chen

et al., 2010). Both patient groups resulted in networks with similar
number of edges. In the groups of patients with metastases, we
inferred a network with 5187 genes and 29821 edges, whereas the

metastasis-free patient group yielded a network with 5106 genes
and 29 364 edges.
Figure 2 gives an example showing the difference between the

inferred networks from the Lasso and pLasso approaches in pa-

tients with metastases. The metastatic progression of breast
cancer is directly caused by the disregulation of numerous cellu-
lar signaling pathways. The mitotic checkpoint serine/threonine

protein kinase BUB1 beta (BUB1B), has been known to be es-
sential in the mitotic checkpoint during normal mitosis progres-
sion. Recently, an analysis on multiple public datasets of gene

expression discovered that BUB1B is associated with early dis-
tant metastases in breast cancer (Gusev et al., 2013). Here we
took BUB1B and its neighbors to exemplify the inferred network

structure difference in breast cancer patients with metastases
(Fig. 2). In this group of patients, BUB1B possessed a higher
node degree in the pLasso-inferred network (34) than that in the

Lasso-inferred network (19). We found 26 of 42 edges present in
the prior knowledge were included in the pLasso-inferred net-
work, whereas only 7 edges in the prior were recovered in the

Lasso-inferred network. As expected, one effect of incorporating
prior knowledge is the inclusion of more edges from the prior. In
addition to this effect, because of the nature of Lasso’s linear

regression, addition of edges from the prior will yield informa-
tion on the conditional independence between other edges. This
could trigger the elimination of spurious edges in the estimated

network, as seen in this application, where we found 4 edges
inferred by the Lasso method were not present in the network
inferred by the pLasso (Fig. 2).

To evaluate the performance of our method, we examined the
100 hub genes having most neighbors in the inferred network of
patients showing distant metastasis, but not in the other group of

metastasis-free patients. Among the 214 lymph–node-negative
breast cancer patients we used to construct the gene networks,
107 showed evidence of distant metastasis and were considered

as failure in our distant-metastasis-free survival analysis. For
each of the hub genes we investigated, we divided the patients
into two equal groups based on their expression values of the

hub genes: the high-expression group and the low-expression
group. We expected that for some of these hubs, the two
groups would exhibit significant differences in their distant me-

tastasis-free survival outcome. To test this hypothesis, we used
the ‘Survival’ package in R to calculate the Kaplan–Meier sur-
vival curves. For each hub, its statistical significance was deter-

mined by controlling the false discovery rate at 0.2 with the

Fig. 1. Performance of pLasso with prior information provided at differ-

ent precision levels
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Benjamini and Hochberg multiple testing procedure for the P-

values obtained from log-rank tests (Benjamini and Hochberg,

1995). Based on this significance criterion, we found that the

gene expression values of 18% of hubs were significantly asso-

ciated with breast cancer patient outcomes. For the networks

inferred from original Lasso method, the expression values of

13% of hubs showed significant association with breast cancer

outcome. As the control, only 8� 2% of 100 randomly selected

genes demonstrated the significant association between their ex-

pression values and the breast cancer patient outcome.

4.2 Ovarian cancer data

As we did with the breast cancer data, we used a prior gene

network compiled from the KEGG database and the PC as

prior knowledge in our network inference. For the pLasso set-

ting, we also set the precision of the prior knowledge to 0.6. We

investigated the gene networks of patients with progressed

disease and the disease/progression-free patients. In the group

of patients with progressed disease, the inferred network had

4636 genes and 25836 edges, whereas the disease-free patient

group yielded a network with 4630 genes and 25 673 edges.

Disease-free survival analysis on the hub genes from the inferred

networks was performed. We found 22% of hubs were signifi-

cantly associated with ovarian cancer disease-free survival out-

come (FDR correct q50.2). As a comparison, only 18% the

hubs obtained from the original Lasso method and 5� 2%

random genes demonstrated significant association between

their expression values and the ovarian cancer survival outcome.

4.3 Comparison with other methods

Given the clear association between a subset of inferred network

hubs with prognosis for both breast cancer patients and ovarian

cancer patients, we further determined if a list of selected gene

hubs can be used to predict survival outcome and compared

their performance with those obtained from other methods that

were based on genome-wide expression data alone. As described

in Section 2.5, we calculated the risk score for each patient based

on the selected genes. The patients were then divided into two

groups based on their risk scores. Kaplan–Meier survival analyses

on two patient groups were performed and showed the selected

genes from the breast cancer and the ovarian cancer networks

inferred by the pLasso method were significantly associated

Fig. 2. BUB1B and its neighbor genes inferred from pLasso (left) and Lasso (right) methods in patients with metastases. Dark color circles indicated the

inferred neighbor genes existed in the prior databases. The edges in bold marked difference between Lasso- and pLasso-inferred networks

Table 2. The effects of estimated precision level (�) on the method performance

F-score Estimated precision (�)

0.1 0.3 0.5 0.6 0.9 1.0

True precision

0.1 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.28 (0.02) 0.26 (0.01) 0.26 (0.01)

0.3 0.36 (0.02) 0.39 (0.01) 0.39 (0.01) 0.40 (0.01) 0.38 (0.01) 0.38 (0.01)

0.6 0.52 (0.03) 0.55 (0.03) 0.56 (0.01) 0.56 (0.01) 0.56 (0.01) 0.56 (0.01)

0.9 0.73 (0.02) 0.75 (0.02) 0.76 (0.05) 0.77 (0.01) 0.78 (0.01) 0.78 (0.01)

Note: The entries in bold represent the F-scores based on the true precision value.
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with survival outcome in their corresponding validation datasets

(Fig. 3).

The univariate Cox proportional analysis of the gene signa-

tures identified from different methods for survival outcome and

the predictive power of these genes in the validation dataset were

compared and summarized in Table 3. It was demonstrated that

the genes selected from our pLasso method yielded the highest

sensitivity (0.81 and 0.69 for breast cancer and ovarian cancer

analysis, respectively) among others at a comparable specificity

level. We should also note that, whereas the pLasso method

effectively identified individual genes with significant predictive

power for survival outcome, it also provided information on

gene network topology and the relationship among genes. Our

pLasso method is effective in inferring clinically significant net-

works, as demonstrated by the predictive power of the network

hubs and their significant association with patients’ prognosis.

We also investigated the overlap between the gene signatures

from pLasso with those previously identified. We found only 4

and 5 genes overlapped with the 76-gene signature and the
193-gene signature corresponding to breast cancer and ovarian
cancer, respectively. It indicated that the pLasso method was

effective in identifying novel genes that can serve as potential
markers for prognosis prediction.

5 DISCUSSION AND CONCLUSION

Inferring gene networks in a high-dimensional data framework is

never a trivial problem. Particularly, the noise inherent in the
measurements always dampens the power of making inferences
on a genome scale. Therefore, using only gene expression data

will not likely be sufficient. Recent techniques attempt to inte-
grate additional data sources or introduce constraints to help
guide the inference procedure. Motivated by the application of

incorporating prior pathway and network structure information
into the analysis of genomic data, we have taken advantage of
the Lasso method and its apparent Bayesian perspective in the

Gaussian graphic framework. Taking into account that validated
gene interactions in prior should occur at a much higher fre-

quency compared with undocumented interactions in real
networks, we partition edges in a graphical model into two sub-
sets—a known gene interaction group and an unknown gene

interaction group, and then assign the former group with a smal-
ler regularization parameter in Lasso regression compared with
the other group. Implemented in neighborhood selection with

Lasso, the proposed method was shown to have better perform-
ance in recovering network structures compared with the
traditional Lasso in our simulated studies and real data analysis.

Lasso is a model selection method shown to be consistent in
variable selection under certain conditions (Zhao and Yu, 2006).
Its consistency is highly dependent on the right choice of the

penalty parameter. In practical implementation, the penalty par-
ameter is typically tuned to achieve optimal prediction accuracy
based on cross-validation (CV). However, this procedure was

shown not to be consistent in terms of variable selection, with
a potential overfitting effect in the resulting model (Meinshausen
and Buhlmann, 2006; Wang et al., 2007). This problem will be

vastly exaggerated when the sparsity of the network is assumed
in the domain of biological network inference. On the other
hand, BIC is a well-known model selection criterion, which

tends to favor parsimonious models. The comparison of CV
and BIC for optimal regularized parameter selection in network

inference demonstrated that BIC preferentially resulted in sparse
networks and had less overfitting effect than CV (Supplementary
Table S4). The results are consistent with those in the previous

study (Wang et al., 2007). We also defined a BIC score that
incorporated our prior knowledge on network sparsity to ad-
dress the network over sparsity issue of the original BIC, espe-

cially in the setting of large networks with small sample sizes
(n5p). mBIC was shown to have less overfitting effect than
CV, while consistently outperforming CV in identifying true net-

work edges (Supplementary Table S4). Compared with a CV-
based method, the modified form of BIC presents advantages
of considering the data fitting during model selection, being

more straightforward to compute and more easily to incorporate
prior knowledge, and providing better performance in network
inference. Therefore, BIC and its modified forms were adopted in

our study to select the optimal regularization parameter.

Table 3. Univariate Cox analysis and the predictive power of the gene

signatures selected from different methods

Methods Cox analysis Prediction accuracy

P HR (95% CI) Sensitivity Specificity

Breast cancer dataset (van de Vijver et al., 2002)

pLasso 0.00001 2.89 (1.68–5.13) 0.81 0.48

Lasso 0.007 1.97 (1.10–2.99) 0.74 0.41

GeneNet 0.003 2.18 (1.14–3.52) 0.71 0.46

SAM 0.007 2.03 (1.21–3.40) 0.76 0.41

76-gene

signature

0.00002 2.23 (1.45–3.43) 0.78 0.47

TCGA ovarian cancer dataset

pLasso 0.0001 1.94 (1.40–2.81) 0.69 0.54

Lasso 0.0009 1.58 (1.28–2.10) 0.63 0.51

GeneNet 0.0006 1.33 (1.15–1.56) 0.58 0.52

SAM 0.0003 1.50 (1.16–2.42) 0.62 0.48

193-gene

signature

0.0009 1.16 (1.11–1.28) 0.60 0.52

Note: The patient samples in the validation datasets were classified into two groups

based on the selected genes. P, P-value of Cox analysis. HR, Hazard Ratio.

Fig. 3. Kaplan–Meier analysis for metastasis-free survival (breast cancer)

and disease-free survival (ovarian cancer) on independent validation data-

sets. Patients were divided into two groups based on their risk scores: the

high-risk group (black) and the low-risk group (red)
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Our proposed pLasso method is conceptually analogous to

some other approaches that use a mixture of prior distributions

to represent the gene interactions absent and present in the prior

knowledge, respectively (Tai and Pan, 2007a, b; Wei and Pan,

2008). However, our approach is different in that we took ad-

vantage of the Bayesian perspective of the lasso procedure and

modeled the Laplacian prior distributions for the regression co-

efficients between genes by specifying different values of the reg-

ularized parameter in lasso penalty terms. Although the

importance of incorporating prior knowledge into analysis has

been widely recognized, there seems to be few studies in using the

lasso penalty terms to differentiate the gene interactions absent

and present in the prior knowledge. Out study is also clearly

different from other approaches in terms of its application

domain. It is performed in the framework of Gaussian graphical

model for inferring a genome-wide gene association network,

whereas most other applications incorporating prior information

focused on classification analysis (Tai and Pan, 2007a, b), detect-

ing differential gene expression (Li and Li, 2008; Wei and Li,

2007) or identifying transcription factor targets in a small scale

(Wei and Pan, 2008).
In our real data analysis, we used the prior knowledge compiled

from the KEGGdatabase and the PCweb resource. BothKEGG

and PC represent an incomplete recapitulation of the true under-

lying network and may contain some irrelevant interactions. To

improve the level of completeness of the prior knowledge, it is

natural to combine the information from both resources for net-

work inference. The quality of the prior is another contributing

factor to the method performance. Taking into account the rela-

tive robustness of our method to the estimated precision level of

the prior (Table 2), we used the same precision rates in the appli-

cation of KEGG and PC prior information. It was demonstrated

that using the combined prior information from PC and KEGG

yielded a network withmore genes and edges than using either the

PC or KEGG alone, while achieving better performance in pre-

dicting clinical outcome in both the breast cancer and the ovarian

cancer datasets (Supplementary Table S5). It was also observed

when using KEGG alone as the prior, the performance of the

pLasso was not as good as that using PC alone or using the

combined prior. These results suggest the coverage of prior know-

ledge is a more significant contributing factor to the method per-

formance than the quality in this real data application. Based on

these results, it is expected the pLasso method lends itself a po-

tential improvement of performance as our knowledge of path-

ways accumulates over time and an increasing amount of prior

knowledge gets incorporated into the analysis.
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