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ABSTRACT

Summary: Non-linear calibration is a widely used method for quan-

tifying biomarkers wherein concentration-response curves estimated

using samples of known concentrations are used to predict the bio-

marker concentrations in the samples of interest. The R package nCal

fills an important gap in the open source, stand-alone software for

performing non-linear calibration. For curve fitting, nCal provides a

new implementation of a robust, Bayesian hierarchical five-parameter

logistic model. nCal supports a simple graphical user interface that

can be used by laboratory scientists, and contains functionality for

importing data from the multiplex bead array assay instrumentation.

Availability: The R package ‘nCal’ is available from http://cran.r-pro

ject.org/web/packages/nCal/ under GPL-2 or later.

Contact: yfong@fhcrc.org

Supplementary information: Supplementary information is available

in the form of an R package vignette at the above repository and an

FAQ at http://research.fhcrc.org/youyifong/en/resources/ncal.html.
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1 INTRODUCTION

Non-linear calibration is a widely used method for quantifying
biomarkers in biomedical studies. There are two stages in non-

linear calibration. In the first stage, a concentration-response

curve is estimated for each assay run using observed outcome

for standard samples with known concentrations. An assay run
refers to a batch of samples run closely in time and space, e.g. all

samples run on a single microplate. In the second stage, point

estimates and confidence bounds are estimated for the biomarker

concentrations in the samples of interest.
Many laboratories use commercial software for performing

non-linear calibration. These include general purpose programs

like GraphPad Prism and StatLIA, as well as assay-specific pro-
grams like MasterPlex and Bio-Plex Manager for the multiplex

bead array assay, which is becoming a common assay for quan-

tifying protein concentrations. Besides being expensive and hard

to automate, these programs provide relatively simple single-
curve fitting methods. Furthermore, they often lack proper pre-

cision estimates for the estimated concentrations.

The R package nCal provides two sets of curve-fitting meth-
ods. The first, implemented through another R package drc (Ritz

and Streibig, 2005), is an estimating equation-based method that

is equivalent to those available from most existing non-linear

calibration software. The second, implemented within nCal, is
a robust Bayesian random effects model-based approach

(Fong et al., 2012). It allows borrowing of information across

multiple assay runs for the same biomarker, incorporates prior

information regarding the curve-to-curve variability and pro-
vides flexible models for the experimental noise. After obtaining

a curve fit via either approach, nCal estimates the biomarker
concentrations in the samples of interest and computes variance

estimates for the estimated concentrations.
nCal does not have as extensive a graphical user interface as its

commercial counterparts do, but it does contain a simple graph-
ical user interface based on the R package gWidgets that allows

non-R users to perform non-linear calibration. nCal also pro-
vides a function that imports data from the Excel files of

Luminex� results that have been output by a Bio-Plex instru-
ment’s software.

2 METHODS

Sigmoid-shaped concentration-response curves can be approximated well

by five-parameter logistic (5PL) curves. Let Yik denote the experimental

outcome, where i indexes assay runs and k indexes standard samples. Let

f5PL �; �ið Þ denote the 5PL function with parameter �i. Estimating equa-

tion-based methods solve the following optimization problem for each

assay run:

�̂ ¼ argmin
�i

X
k

g Yik � f5PL tk; �ið Þ
� �

,

where g is a penalty function. For least square method, g xð Þ ¼ x2; for

robust method, g xð Þ can be xj j, a trim function or a winsorization func-

tion (Ritz and Streibig, 2005). The estimated concentration for a sample

with observation y is then t̂ y; �̂i

� �
¼ f�15PL y; �̂i

� �
.

A Bayesian random effects 5PL model was considered by Fong et al.

(2012) and Davidian and Giltinan (1995) and can be described as follows.

Yik ¼ f5PL tk; �ið Þ þ "ik, �i � N �0, precision ¼�ð Þ

�i is assumed to have a multivariate normal distribution with mean �0
and precision �. The experimental noise "ik can be modeled as having a

normal distribution; for robust methods, it can be modeled as having a

Student’s t-distribution, a mixture of two normal distributions or a latent

first-order autoregressive process (Fong et al., 2012). We assume weakly

informative priors on �0 and the parameters of the noise distribution, and

substantive priors on � (Fong et al., 2012). The hyperparameters are

listed in the Supplementary Information. Posterior samples are drawn

using Just Another Gibbs Sampler (JAGS) (Plummer, 2003). We take

the median of the posterior samples of �i to be its point estimate, and the

median of the posterior samples of f�15PL y; �ið Þ to be the estimated concen-

tration for a sample with observation y.

As in Davidian and Giltinan (1995), the variance of the estimated

concentration can be decomposed into two components. The first

component assumes that the concentration-response curve is perfectly

known and the variability comes from the variability of y. It can be

estimated as �̂2 @f�15PL y; �̂i

� �
=@y

n o2
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methods, where �̂2 is the estimated variance of the experimental noise.

The second component assumes that y is perfectly measured and the

variability comes from the variability of the curve estimate. For the

estimating equation-based methods, it can be estimated by

@f�15PL y; �̂i

� �
=@�̂i

n oTdVar �̂i� �
@f�15PL y; �̂i

� �
=@�̂i

n o
, where dVar �̂i� �

is the esti-

mated variance–covariance matrix of �̂i. For the Bayesian random effects

model-based methods, it can be estimated by the variance of the posterior

samples of f�15PL y; �ið Þ.

3 EXAMPLE SESSIONS

We illustrate the use of nCal through two examples (see

Supplementary Information for the complete R code and more
detailed explanation of the output). In the first example, we
simulate a dataset with one assay run and four samples of inter-

est. To perform non-linear calibration, we call

4res¼ncal(log(fi) �expected_conc, dat,

bcrm.fit¼TRUE)

The Boolean argument bcrm.fit controls whether to use bcrm,
which implements the Bayesian random effects model, or drm

from the drc package, which implements the estimating equation
methods for curve fitting. res is a data frame, each row of which
corresponds to one sample of interest. ncal also creates a plot

with four panels (Supplementary Information nCal vignette
Supplementary Fig. S1 and S2), showing the curve fit, the esti-
mated concentrations for the samples of interest and the preci-
sion profiles. From the two figures, we see that both curve fitting

methods lead to similar calibration results for this example.
In the second example, we analyze a dataset containing four

assay runs, one of which is affected by multiple outliers.

4 fit.bcrm¼bcrm(log(fi) �expected_conc, dat,

error.model¼’’gh_t4’’, informative.prior¼T)
4for (i in 1:4) {

fit.drm¼drm(log(fi) �expected_conc, data¼
dat, subset¼assay_id¼¼paste(’’Run’’,i),

fct¼LL.5(),robust¼’’median’’)
plot(fit.drm, type¼’’all’’, main¼p)

plot(get.single.fit(fit.bcrm,
paste(’’Run’’, i)),add¼T)

}

Figure 1 shows that the two methods produce similar results
for Runs 1, 3 and 4, but differs significantly for Run 2. Figure 1
also shows the curve fits by Prism with the robust option. By

borrowing information across assay runs, bcrm appears more
successful at reducing the influence of multiple outlying observa-
tions than drm and Prism.

ACKNOWLEDGEMENTS

The authors thank members of the Lab Data Operations at

SCHARP for assay data quality control. They also thank the

members of the CRAN team for testing and distributing the

package. The authors are grateful to the editor, the associate

editor and the referees for their constructive comments.

Funding: This work was supported by the National Institute of

Allergy and Infectious Diseases (NIAID) [UM1-AI-068618] to

the HIV Vaccine Trials Network, the Bill and Melinda Gates

Foundation [OPP1032317] to the Collaboration for AIDS

Vaccine Discovery and the NIAID [AI104370-01] to Y.F.

Conflict of interest: none declared.

REFERENCES

Davidian,M. and Giltinan,D. (1995) Nonlinear models for repeated measurement

data. Vol. 62, Chapman & Hall/CRC, Boca Raton, FL, USA.

Fong,Y. et al. (2012) A robust Bayesian random effects model for nonlinear

calibration problems. Biometrics, 68, 1103–1112.

Plummer,M. (2003) JAGS: a program for analysis of Bayesian graphical models

using Gibbs sampling. In: Proceedings of the 3rd International Workshop on

Distributed Statistical Computing. 2003, p. 20–22. Vienna, Austria.

Ritz,C. and Streibig,J. (2005) Bioassay analysis using R. J. Stat. Software, 12, 1–22.

Fig. 1. Example II. Robust curve fits from Prism, drm and bcrm
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