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Abstract

Melanoma remains the most lethal skin cancer, mainly because of high resistance to therapy. Side population (SP)
cells are found in many types of cancer and are usually enriched in therapy-resistant as well as tumorigenic cells.
Here, we identified a Hoechst dye-effluxing SP in a large series of human melanoma samples representing different
progression phases. The SP size did not change with disease stage but was correlated with the prognostic
“Breslow’s depth” in the primary (cutaneous) tumors. When injected into immunodeficient mice, the SP generated
larger tumors than the bulk “main population” (MP) melanoma cells in two consecutive generations, and showed
tumorigenic capacity at lower cell numbers than the MP. In addition, the SP reconstituted the heterogeneous
composition of the human A375 melanoma cell line, and its clonogenic activity was 2.5-fold higher than that of the
MP. Gene-expression analysis revealed upregulated expression in the melanoma SP (versus the MP) of genes
associated with chemoresistance and anti-apoptosis. Consistent with these molecular characteristics, the SP
increased in proportion when A375 cells were exposed to the melanoma standard chemotherapeutic agent
dacarbazine, and to the aggravating condition of hypoxia. In addition, the SP showed enhanced expression of genes
related to cell invasion and migration, as well as to putative (melanoma) cancer stem cells (CSC) including ABCB1
and JARID1B. ABCB1 immunoreactivity was detected in a number of tumor cells in human melanomas, and in
particular in clusters at the invasive front of the primary tumors. Together, our findings support that the human
melanoma SP is enriched in tumorigenic and chemoresistant capacity, considered key characteristics of CSC. The
melanoma SP may therefore represent an interesting therapeutic target.
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Introduction

Cutaneous malignant melanoma is the most lethal form of
skin cancer representing more than 75% of skin cancer-related
deaths [1]. In advanced (metastasized) stages, melanoma is
dismal and almost impossible to treat resulting in a 5-year
survival rate of only 15% [1]. Resistance to chemotherapy is a
major cause of treatment failure, and better knowledge of the
melanoma chemoresistant cells can open the way to more
efficient therapies.
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In several types of cancer, the so-called side population (SP)
enriches for chemoresistant cells [2—4]. SP cells are identified
by their ability to efficiently efflux Hoechst dye through the
activity of multidrug transporters like ABCB1 (also known as P-
glycoprotein, P-GP or Multidrug Resistance Protein 1, MDR1),
ABCG2 (or Breast Cancer Resistance Protein 1, BCRP1),
ABCB5 and/or ABCC1 (or Multidrug Resistance-associated
Protein 1, MRP1) [2—4]. Because of this dye expulsion, the SP
is portrayed as a side-branch of Hoechst°" cells in dual-
wavelength flow cytometry (FACS) [2—6]. Interestingly, ABCB1,
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ABCG2, ABCB5 and ABCC1 have been found important in
melanoma chemoresistance [7-10]. Moreover, SP phenotype
and chemoresistance are proposed characteristics of cancer
stem cells (CSC), a subpopulation within the tumor that holds
the highest capacity to drive growth and progression (with
invasion and metastasis) of the tumor ( [2—4] and reviewed in
11-13). Recent studies clearly support the existence of CSC in
cancers, their chemoresistant nature and functional relevance
[14-17]. Interestingly, one of the multidrug transporters -
ABCBS5 -, has been put forward as a marker of melanoma CSC
[18]. Although this and additional factors (like JARID1B, NES,
NGFR/CD271, SOX10, TDGF1/CRIPTO) have been proposed
to mark melanoma CSC (reviewed in 13), the existence of CSC
in melanoma tumors remains contentious.

Previous studies have identified a SP in melanoma cell lines
propagated in vitro and have provided arguments supporting a
chemoresistant and CSC-like phenotype including tumorigenic
potential and expression of NES or JARID1B [19-22]. Very
recently, Luo et al. reported the presence of a SP in a small
number of clinical human melanoma tumors (n=8), analyzed
whole-genome expression of metastasized samples (lymph
node) after expansion in immunodeficient mice (n=2), and
found the SP to be more resistant to paclitaxel and
temozolomide than the non-SP cells [10]. In the present study,
we analyzed a larger series of human melanoma specimens
covering a wide range of progression phases, explored its
prognostic potential, determined genome-wide expression in
primary melanomas directly from the patient, and tested
resistance to dacarbazine, still the most commonly used single-
agent chemotherapeutic in advanced-melanoma therapy [23].
In addition, resistance to hypoxia, and tumorigenic and
clonogenic potential were investigated. Together, our analyses
point toward enrichment of the human melanoma SP in
chemoresistant and tumorigenic activity.

Results

Human melanoma contains a side population

In a recent study by Luo et al., a Hoechst dye-excluding side
population (SP) was identified in 8 clinical melanoma samples
[10]. Meanwhile, we analyzed the SP in a larger series of
patient melanoma tumors covering different progression
phases (n=38; Table S1 in File S1), and examined the
correlation with disease stage and tumor thickness (Breslow’s
depth), a strong prognostic factor and key parameter in
melanoma staging [1,24].

A SP was detected in all melanoma samples analyzed,
representing 0.1-2.2% of the viable tumor cells (median SP:
0.4%; Figure 1A-B). Verapamil, an inhibitor of efflux pumps,
strongly reduced the SP percentage, thereby confirming the SP
phenotype (Figure 1A). The SP proportion did not significantly
change between the various melanoma progression stages
(Figure 1A-B); primary melanomas (cutaneous malignant form),
in-transit metastases, lymph-node metastases and visceral
metastases harbor a median SP of 0.4% (n=13), 0.4% (n=8),
0.5% (n=14) and 0.5% (n=3), respectively. Of note, a SP was
not detected in pre-malignant nevus (data not shown).

PLOS ONE | www.plosone.org

Molecular & Functional Analysis of the Melanoma SP

Interestingly, the SP proportion in the primary melanomas was
found to correlate with Breslow’s depth (Figure 1C; p=0.01).

Because of the restricted availability of patient-derived
melanoma tissue, we also used the human malignant
melanoma A375 cell line [25] for further extended SP
characterization. In the cell line we identified a small but clear
SP (Figure 1D; range SP: 0.1-0.3%; median: 0.1%; n=18).

The melanoma SP is enriched in tumorigenic activity

In several types of cancer, the SP is enriched in cells that are
more tumorigenic than the other cancer cells and that can
regrow the tumor [3,26-28]. These cells are generically
designated as CSC.

We selected two melanoma progression phases (i.e. primary
and lymph-node metastasis) from which to assess the in vivo
tumorigenic activity of SP cells. Because primary melanomas
were typically too small to sort a sufficient number of cells, they
were first expanded in immunodeficient (SCID) mice. SP and
bulk tumor “main population” (MP) cells were then sorted and
10,000 cells subcutaneously (sc) injected into SCID mice. The
SP generated a new tumor in every experiment (n=3) whereas
the MP produced a tumor at lower frequency (1 from n=3). To
explore tumorigenic activity of a further melanoma progression
stage and at the same time enabling the assessment of clinical
melanoma without intervening expansion in a mouse, SP and
MP cells were sorted from a larger lymph-node metastasis and
sc transplanted into SCID mice. High cell numbers of SP and
MP (50,000) both generated tumors at a similar pace, with
visible appearance after 6-7 weeks. The re-formed tumors from
both primary melanomas and lymph-node metastasis were
histologically comparable to the original human lesions (Figure
2A). In particular, the SP from a pigmented melanoma
generated a pigmented tumor (arrows in Figure 2A; no tumor
from the MP). Of note, the tumors grown from the SP
expanded more than from the MP, i.e. they were larger at the
time point of analysis (18 weeks after injection; Figure 2B).

To investigate whether tumorigenic capacity is sustained, we
again sorted the SP and MP cells from the SP-derived first-
generation xenograft tumors (F1, see Figure 2A). Injection of
10,000 SP cells resulted in a visible tumor (F2) as early as 10
weeks after injection (n=2). In contrast, MP cells — injected at
even 5-fold higher numbers (50,000) -, induced palpable F2
tumors only after 18-22 weeks. The F2 xenograft tumors again
were histologically comparable to the original tumors (Figure
2C). In addition, the SP-derived F2 tumors were larger than the
MP-derived tumors as analyzed at a late time point (32 weeks
after injection; Figure 2C-D).

Together, the data above provide support that the melanoma
SP contains higher tumorigenic activity than the MP.

Finally, to examine tumorigenic activity in conditions that are
more  permissive to standardization, we analyzed
tumorigenesis by SP and MP cells from the A375 cell line and
at the same time tested smaller numbers of cells. After sorting
by FACS, 2500, 1000 and 500 SP or MP cells were sc
transplanted into SCID mice. Irrespective of cell numbers
injected, SP-derived tumors were significantly larger than the
tumors grown from the MP (Figure 2E-F; n=3). Moreover, at the
lowest number of cells tested, the MP became incapable of
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Figure 1. The side population (SP) in human melanoma of various progression phases. A) Representative examples of
FACS density plots of Hoechst-incubated cells from primary melanoma (cutaneous malignant form; top left), in-transit metastasis
(top right), metastasis to a regional lymph node (bottom left) and visceral metastasis (bottom right) with indication of SP percentage,
and the corresponding controls with verapamil.

B) Boxplot of the SP proportions from all human melanoma samples taken together (All, n=38), and from the different progression
phases as indicated (primary melanomas, n=13; in-transit metastases, n=8; regional lymph-node metastases, n=14; visceral
metastases, n=3).

C) SP proportion in primary (cutaneous malignant) melanomas as outlined against tumor’s thickness (Breslow’s depth). A significant
correlation is observed (Spearman r=0.68; p=0.01; dashed line, 95% confidence interval of the best-fit line).

D) Representative example of FACS density plots of Hoechst-incubated cells from the human malignant melanoma cell line A375
with indication of SP percentage, and the corresponding verapamil control (n=18).

doi: 10.1371/journal.pone.0076550.g001
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Figure 2. In vivo tumorigenic activity of the melanoma SP. A) Sections (H&E staining) of the xenograft tumors developed in
SCID mice 18 weeks after sc injection of SP and MP cells from a primary melanoma (pigmented, see arrows) (upper row) and from
a lymph-node metastasis (lower row), together with sections of the original tumors (scale bar, 150um).

B) Volume of the xenograft tumors grown in SCID mice 18 weeks after sc injection of the melanoma SP and MP cells
(10,000-50,000 cells). Bars represent mean £ SEM (n=6). *, p<0.05.

C) Photographs and sections (H&E staining) of the xenograft tumors developed in SCID mice 18-32 weeks after sc injection of SP
and MP cells from the SP-derived first-generation xenograft tumors (F1, see A), together with sections of the original tumors (scale
bar, 150um). Again note the pigmentation (upper row) as clear from the picture of the dissected tumor.

D) Volume of the F2 xenograft tumors grown in SCID mice 32 weeks after sc injection of the SP and MP cells from the SP-derived
F1 tumors (10,000 SP cells, 50,000 MP cells). Bars represent mean + SEM (n=2).

E) Tumors grown in SCID mice 5-7 weeks after sc injection of 2500, 1000 and 500 SP cells (upper row) or MP cells (lower row) from
the A375 melanoma cell line (n=3). Representative examples are shown.

F) Summary of tumor volume (relative to volume of the tumors grown from 2500 SP cells) after sc injection of the indicated number
of A375 SP cells (black bar) and MP cells (white bar). Bars represent mean + SEM (n=3). *, p<0.05; ***, p<0.001.

doi: 10.1371/journal.pone.0076550.g002
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generating tumors whereas the SP remained tumorigenic. In
agreement with this higher in vivo tumorigenic activity, SP cells
(from A375) generated more colonies (~2.5-fold) than MP cells
when living (propidium iodide-negative) cells were seeded in
vitro at equal low density (Figure 3A). Furthermore, the A375
SP was able to gradually reconstitute the cell line’s
heterogeneity when seeded in culture, i.e. to re-generate the
MP with concurrent decrease of the SP proportion (Figure 3B).
Of note, the MP still contained some SP cells (~0.1%) after
sorting which did not change during culture (Figure 3B).

Taken together, the melanoma SP is enriched in cells with
higher clonogenic and tumorigenic activity than the MP, and
seems able to reconstitute the tumor’s heterogeneity in vivo
and in vitro. These findings support the idea that the SP
encompasses melanoma CSC or CSC-like cells.

Gene expression profiling of melanoma SP

In the recent study by Luo et al., SP gene expression was
determined starting from xenograft tumors of lymph-node
metastases (n=2) [10]. Here, we explored whole-genome
expression in SP (versus MP) from primary melanomas
obtained directly from the patient (n=4). Microarray analysis
revealed 462 differentially expressed genes (21.5-fold up or
down, p<0.05; see Table S2 in File S1). Of these genes, 264
were differentially expressed in at least 3 of the 4 individual
samples (bold in Table S2 in File S1), corresponding to 251
human ENSEMBL IDs of which 142 and 109 genes were up-
and downregulated, respectively, in the SP compared to the
MP. The upregulated expression of a few genes (DDX17,
MARCHS8, TNRC6A) was confirmed by RT-gPCR (using the
limited residual RNA/cDNA of 2 of the microarrayed melanoma
samples; Figure S1A in File S2). The 251 differentially
expressed genes were submitted to Gene Set Enrichment
Analysis (GSEA) which revealed a significant overlap of the
genes upregulated in the melanoma SP with gene sets
upregulated in other cancers such as colon carcinoma (as
compared to normal mucosa [29]) and bladder cancer with high
recurrence rate (versus low recurrence rate [30]) (Table S3 in
File S1). In addition, a significant overlap of genes
downregulated in the melanoma SP was observed with gene
sets downregulated in the breast cancer cell line MCF7 SP
cells (versus the MP cells) [31], of quiescent cells of chronic
myeloid leukemia (as compared to proliferating cells [32]) and
of melanomas from patients that develop distant metastases
within 4 years (as compared to non-metastasizing melanomas
[33]) (Table S4 in File S1). Visualization of the interaction
network of SP-upregulated genes by STRING analysis
revealed that genes involved in regulation of apoptosis (e.g.
BAG4, CASP2, DDX17, IGF1 and MDM?2), chemoresistance
(e.g. IGF1, IGF1R, MAPK14 and MDM?2), and epithelial-
mesenchymal transition (MDM2, SETD8 and TWIST1) occupy
a central position (Figure S1B in File S2). A further detailed and
more focused analysis of a selection of genes of the microarray
expression data revealed upregulated expression (=1.5-fold in
half or more of the 4 tumors, p<0.05) in the SP of genes
implicated in “cancer stemness”, chemoresistance, anti-
apoptosis, and cell invasion and migration; and downregulated
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expression of cell adherence and pro-apoptotic genes (Table 1
and Table S5 in File S1).

The SP is considered as a subpopulation that can efflux
drugs, and that is enriched in candidate CSC in several
cancers [3,4,26-28]. The higher tumorigenic activity as
described above supports a CSC-like phenotype of the SP also
in melanoma. To further investigate the drug-effluxing and
CSC-like character, we analyzed an additional and larger set of
melanoma samples (primary, n=3; metastases, n=4), obtained
directly from the patients, by RT-qPCR for expression of ABC
multidrug transporters and of CSC-associated markers (see
Table S6 in File S1). Compared to the MP, SP cells showed a
significantly higher expression of ABCB1, CXCR4, DNMT3B,
EPAS1 (or hypoxia-inducible factor 2A, HIF2A), FOSL2,
FOXC1, JARID1B, LEF1, MYC, SOX10 and TERT (Figure 4A).
Amongst these, ABCB1, DNMT3B, EPAS1, JARID1B and
TERT have previously been designated as melanoma CSC(-
associated) markers ( [8,22] and reviewed in 13). Of note,
these transcripts were not revealed as significantly upregulated
in the microarray analysis, which may be accounted for by the
limited number of samples (n=4), causing low statistical power
and differences in expression levels that may have been
missed (i.e. not revealed as significant). Indeed, a number of
the genes including ABCB1 and JARID 1B showed similar folds
of upregulation in the microarray analysis, but the differences
were not statistically significant (see Table S7 in File S1).

Furthermore, in the RT-gPCR analysis, ABCG2, KLF4,
POUSF1/0CT4, SNAI2 and TDGF1 displayed upregulated
expression, but also not statistically significant (Figure S2 in
File S2). Other proposed CSC-associated (melanoma) markers
like ABCB5, CD44, MAGE-C2, NANOG, NES, NGFR and
SOX2 did not show different expression levels in SP and MP
(Figure S2 in File S2). Of note, expression of ABCB5 was
higher in the SP than the MP in 3 out of the 7 tumors (0.5- to
7.8-fold), and lower in the 4 other tumors (-1.7- to -9-fold),
making the overall difference statistically non-significant.
Finally, a selection of these factors was further validated using
the A375 cell line (Figure 4B). The majority (except FOXC1 and
LEF1) was also found upregulated in the SP of the melanoma
cell line.

The melanoma SP shows resistance to dacarbazine
chemotherapy and to hypoxia

In general, the SP phenotype is considered to enrich for
chemoresistant tumor cells [2-4]. In agreement, our gene
expression analysis of melanoma SP revealed upregulated
expression of chemoresistance genes (see Table 1 and Table
S5 in File S1). Therefore, we tested the effect of dacarbazine
(DTIC) - the current standard chemotherapeutic agent for
melanomas [23] -, in the A375 cell line. First, time- and dose-
response of cell toxicity was determined (Figure S3 in File S2).
Cell death was most prominent after 3-day exposure (with an
IC5, of 75ug/ml), in accordance with other reports [34]. A375
cells were then treated during 3 days with double the IC,, dose
of DTIC (150ug/ml) to obtain a profound toxic effect. As shown
in Figure 5A, the SP increased ~10-fold in proportion
suggesting that the SP cells are more resistant to DTIC than
the non-SP cells.
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Figure 3. Clonogenic and reconstituting capacity of the melanoma SP. A) Clonogenic capacity of A375 SP cells (relative to
MP cells) as assessed at day 9 after seeding at low density. Representative examples of colony-forming activity by SP (bottom left)
and MP (bottom right) are shown. Bars represent mean + SEM (n=3). ***, p<0.001 versus MP.

B) SP analysis (representative FACS density plots) 5, 10 and 11 days after seeding A375 SP cells (upper row) and MP cells (lower
row) in standard culture medium (n=4 except for day 11 where n=2; numbers indicate the mean SP proportion).

doi: 10.1371/journal.pone.0076550.g003
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Table 1. Selection of functionally interesting genes
differentially expressed between the SP and MP of primary
melanomas.

GeneName

1 Fold? p-value Gene Function

DDX17 4.85 0.004 anti-apoptosis; migration
PDE4D 2.90 0.030 invasion; metastasis
HIPK1 2.73 0.008 stemness

PPID 2.51 0.034 anti-apoptosis

YWHAE 227 0.003 tumorigenesis; metastasis
ASB11 2.18 0.019 stemness

SLC18A1 212 0.029 therapy resistance
TRIM23 212 0.019 metastasis; tumorigenesis
SOCS3 2.11 0.033 stemness; anti-apoptosis
ZNF420 2.05 0.049 anti-apoptosis

MAPK14 1.93 0.016 metastasis; stemness

MDM?2 1.83 0.025 therapy resistance; anti-apoptosis
HOXC10 1.81 0.035 invasion

IGF1IR 1.74 0.029 anti-apoptosis; migration

BAG4 1.71 0.040 anti-apoptosis

SGK 1.70 0.035 metastasis

MFGES8 1.70 0.042 tumorigenesis; metastasis

PAK6 1.67 0.020 migration; therapy resistance
TP53RK 1.67 0.047 anti-apoptosis
NAV2 1.61 0.014 migration

IGF2BP1 1.60 0.029 migration; therapy resistance
MAPRE2 159 0.016 invasion

HSPA8 1.59 0.005 metastasis

IGF1 1.59 0.023 anti-apoptosis; invasion; stemness

invasion; migration; metastasis; therapy resistance;
TWIST1 1.58 0.014

stemness
CRYAA 1.58 0.046 anti-apoptosis
ZFX 1.57 0.015 anti-apoptosis

SETD8 1.55 0.008 metastasis
ERAS 1.55 0.018 stemness; therapy resistance; tumorigenesis
BOK 0.67 0.039 pro-apoptosis

inhibition of migration; of invasion and of
ERP29 0.66 0.050 ) .
tumorigenesis

PSMA7 0.65 0.034 inhibition of migration and of tumorigenesis
NRSN2 0.65 0.010 tumor suppression

APITD1 0.64 0.026 tumor suppression

LRRC4 0.64 0.006 inhibition of invasion and of tumorigenesis
SEC 14L2 0.64 0.007 tumor suppression

SCOTIN 0.63 0.014 pro-apoptosis

PRDM5 0.57 0.048 tumor suppression

MAGED1 0.55 0.043 inhibition of invasion; of migration and of metastasis
CLDN1 0.55 0.027 inhibition of metastasis

BMP7 0.52 0.003 inhibition of metastasis and of stemness
PTPRD 0.31 0.019 tumor suppression
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Table 1 (continued).

1. Genes related to “stemness”/CSC, therapy resistance, apoptosis, metastasis,
and cell adherence, invasion and migration, differentially expressed between SP
and MP in =half of the 4 primary melanomas as analyzed by microarray (=1.5-fold,
p<0.05).

2. Fold up- or downregulation in the SP versus MP.

doi: 10.1371/journal.pone.0076550.t001

Gene expression analysis further revealed upregulated
expression of anti-apoptotic factors in the SP suggesting
resistance to severe conditions such as hypoxia, typically
occurring in cancer growth [4,35]. The A375 cell line was grown
in 1.5% O, (meaning hypoxia in cell cultures that are standardly
kept in 20% O,). Analysis of the SP showed a ~45-fold
increase in proportion (Figure 5B), indicating that SP cells are
more resistant to hypoxic conditions. This finding concurs with
the upregulated expression of EPAS1/HIF2A in the SP (Figure
4).

ABCB1* cells are localized in the tumor’s invasive
component

Gene expression profiling identified upregulated expression
of ABCB1 in the melanoma SP, in agreement with findings by
Luo et al. [10]. In order to localize ABCB1-expressing cells in
melanomas in situ, a series of 20 additional patient tumor
samples (7 primary melanomas and 13 corresponding
metastases), different from the 38 samples analyzed above,
was examined using immunohistochemistry. ABCB1
expression was detected in a subset of melanoma cells,
displaying a punctuated cytoplasmic or a membranous staining
pattern (Figure 6A). No obvious differences in proportion of
ABCB1-immunopositive (ABCB1*) were observed between
primary melanomas and metastases (Figure 6A-B).
Remarkably, ABCB1* cells in the primary melanomas were
predominantly found at the invasive front of the tumors (Figure
6C), reminiscent of putative CSC in other cancer types [36].
These ABCB1* cells frequently occurred in small clusters,
whereas the ABCB1* cells found scattered within the tumors
mostly presented as individual cells. In melanoma metastases,
single or clustered ABCB1* cells were only found disseminated
over the tumor (and not localized in a front; Figure 6A). In some
of the tumors analyzed, similar cells also expressed JARID1B
(Figure S4 in File S2). Although low-signal ABCB1
immunoreactivity was also observed in a few endothelial cells
and some (tumor-infiltrating) lymphocytes, the tumoral stroma
mostly lacked ABCB1 expression. ABCB1 was also absent
from most (normal) epidermal cells, although the basal layer of
the epidermis showed sporadic immunoreactivity (data not
shown).

Discussion
In the present study, we identified a SP in human melanoma

and found molecular and functional indications that this
subpopulation is enriched in tumorigenic and chemoresistant
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Figure 4. Gene expression in melanoma SP as analyzed by RT-qPCR. A) Expression ratios of the indicated genes in the SP
versus the MP from patient melanomas. Bars represent mean + SEM (n= 3 primary melanomas and 4 melanoma metastases). *,
p<0.05; **, p<0.01.

B) Expression ratios of the indicated genes in the SP versus the MP from the A375 cell line. Bars represent mean + SEM (n=4). *,
p<0.05; **, p<0.01; ***, p<0.001.

doi: 10.1371/journal.pone.0076550.g004
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Figure 5. The melanoma SP after exposure to dacarbazine and hypoxia. A) Representative example of FACS density plots of
Hoechst-incubated A375 cells treated with dacarbazine (+DTIC; 150ug/ml for 3 days) (left; verapamil control not shown) and
summary of the SP proportions (right). Bars represent mean + SEM (n=3). *, p<0.05 versus control (-DTIC).

B) Representative example of FACS density plots of Hoechst-incubated A375 cells cultured in hypoxic conditions (1.5% O, 3 days)
(left; verapamil control not shown) and summary of the SP proportions (right). Bars represent mean £ SEM (n=3). *, p<0.05 versus

standard cell-culture condition (20% O,).
doi: 10.1371/journal.pone.0076550.g005

cell phenotypes. The chemoresistant character is supported by
superior survival under dacarbazine exposure and by
upregulated expression of a number of anti-apoptotic (e.g.
BAG4, DDX17 and MDM?2) and resistance-conferring genes
(e.g. ABCB1, SLC18A1 and MDM?2). The functional basis of
resistance to dacarbazine, whether it is for instance due to
increased drug efflux, DNA repair or anti-apoptosis, remains to
be investigated. We further found that the SP proportion

PLOS ONE | www.plosone.org

increases under hypoxic conditions supporting the idea that the
SP also enriches for melanoma cells that survive harsh
conditions occurring in the in situ tumor environment. In
accordance, EPAS1/HIF2A, a hypoxia-inducible factor that
enables cancer cells to adapt to low oxygen conditions [37-39],
was found upregulated in the melanoma SP.

Our analysis further points to a prognostic potential of the SP
proportion as far as primary cutaneous melanomas are
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Figure 6. ABCB1 expression in primary human melanomas and corresponding metastases. A) Representative examples of
primary melanoma (left) and melanoma metastasis (right) immunostained for ABCB1 (scale bar, 150um; +, cytoplasmic staining; *,

membranous staining).

B) Summary of semi-quantitative analysis, showing estimated percentage of ABCB1* cells and signal intensity (no staining = 0,
weak signal = +, moderate signal = ++, strong signal = +++; N/A, not applicable).
C) Primary melanoma immunostained for ABCB1 (top) and higher magnification of the boxed area (bottom) (scale bar, 300um).

doi: 10.1371/journal.pone.0076550.g006

concerned, given its correlation with Breslow’s depth [1,24].
Although promising, more samples of primary melanomas will
have to be analyzed for thorough support.

The melanoma SP displays tumorigenic capacity that is
higher than that of the MP cells in terms of xenograft tumor
size, efficiency of tumor formation, number of cells needed for
tumor growth and clonogenic activity. Moreover, the SP
appears able to re-establish the A375 cell line heterogeneity in
culture and can re-form tumors that are histologically
comparable to the source melanoma. Because such
tumorigenesis as well as chemoresistance and adaptation to
aggravating conditions like hypoxia [37] are proposed
hallmarks of CSC, the melanoma SP may thus be enriched in
CSC or CSC-like cells. Also in other cancer types, the SP has

upregulated expression of factors that by others have been
assigned to (candidate) melanoma CSC, including ABCBT,
DNMT3B, EPAS1, JARID1B and TERT [8,13,22]. These
factors may also have important functions in melanoma biology
and therapy resistance. The DNA methyltransferase DNMT3B
maintains hematopoietic and neural stem cells, has been
shown to promote in vivo tumorigenesis of colon cancer by
transcriptional silencing of tumor suppressor genes, and is also
involved in therapy resistance by inducing cell cycle arrest
[40-44). EPAS1/HIF2A has been proposed as a CSC marker
not only in melanoma but also in other cancers like glioma
[37,45]. In renal cancer EPAS1 plays an important role in
resistance to chemotherapeutics [46]. In addition, EPAS1 is
correlated with tumor invasiveness in hepatocellular carcinoma

been shown to enrich for CSC(-like) activity (reviewed in [47]. Interestingly, high expression of EPAS1 has been
3,4,26-28). In further support, the melanoma SP shows observed in melanoma with poor prognosis [48]. The
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telomerase reverse transcriptase TERT promotes stem-like
features and drug resistance in both glioma and breast cancer
[49,50], and correlates with tumorigenic capacity of melanoma
cells [51]. Although the data above were mainly considered
within the CSC theory of cancer and support a CSC(-like)
phenotype of the melanoma SP, it should be mentioned that
the identification of the SP may also fit within the classical
clonal evolution model of cancer, with the SP enriching for cells
that clonally drive progression of the cancer. In fact, the CSC
and clonal evolution theories are not mutually exclusive [52].

In melanoma cell lines, ABCB1 expression has been linked
with migration and invasion [53,54]. ABCB1* cells from primary
cell cultures of resected melanomas have higher clonogenic
capacity than the immunonegative cells [8]. ABCB1 expression
has previously been correlated with aggressive melanoma
phenotypes, based on Breslow’s depth, Clark’s level and
lymph-node involvement [55]. Interestingly, we detected
ABCB1 expression in clusters of tumor cells located at the
invasive front of the primary melanomas. In colorectal
carcinoma, CSC are located in similar tumor regions of
expanding and invading borders from where they may
eventually migrate and metastasize [36]. Together with the
expansion of the melanoma SP in parallel with deeper invasion
of the primary tumor (Breslow’s depth), it is tempting to
hypothesize that the SP/ABCB1* cells represent CSC(-like
cells) that expand and invade during primary melanoma
progression, and eventually leave the tumor to migrate to
distant sites (metastasis). Of note, ABCB1 immunoreactivity
was not only observed in the cell membrane of some
melanoma cells but sometimes in the cytoplasm. Intracellular
ABCB1 has been shown to play a role in the translocation of
drugs like doxorubicin into cytoplasmic vesicles, thereby
promoting the drug’s sequestration and efflux [56-58].

The histone lysine demethylase JARID1B has previously
been identified in a small subpopulation of melanoma cells,
which were characterized as slow-cycling and self-renewing
CSC(-like cells) [22]. JARID1B* melanoma cells appeared
dispensable for tumor initiation as JARID1B-negative cells
were also tumorigenic, but the JARID1B* cells were essential
to sustain tumor growth. Along the same line, we here
observed that the melanoma SP does not seem to be pivotal
for tumor initiation (as also the MP can start xenograft tumors),
but that tumors from the SP grow larger. Possibly, the MP —
like the JARID1B-negative cell population — may contain rapidly
proliferating “cancer progenitor” (transit-amplifying) cells that
can initiate a tumor, but that exhaust after a number of cell
divisions leading to a lower expansion of the tumor [21,59].
Alternatively, the tumorigenic capacity of the MP may be due to
residual contamination of the sorted fraction with a few SP
cells. Also in studies relying on membrane markers to sort
putative CSC, no absolute purification could be obtained, and
the non-CSC compartment also induced tumor growth albeit at
(much) lower efficiency than the candidate CSC [21,22,60,61].

ABCBS5 has also been advanced as melanoma CSC marker
by others [10,18]. However, we (as well as other groups [62])
did not observe consistent but highly variable expression of
ABCBS in the melanoma SP. Differences in experimental setup
may be responsible; Luo et al. [10] studied gene expression of
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ABC transporters in SP cells of melanoma xenografts whereas
our analyses were done on the SP of melanoma samples
directly from the patient. In addition, the apparent discrepancy
may be due to differences in mRNA and protein expression
and stability of ABCB5. Finally, incomplete overlap of proposed
melanoma CSC populations has also been observed by others
(reviewed in 13).

Further interesting cancer-related genes found upregulated
in the melanoma SP include CXCR4, FOSL2, LEF1 and
SOX10. CXCR4 has previously been detected on a
subpopulation of dacarbazine-resistant melanoma cells that
play an important role in migration and subsequent metastasis
[63]. SOX10 has been implicated in migration and metastasis
of B16F10 mouse melanoma cells [64]. LEF1 expression is
predominantly observed in melanoma cell lines with high
migration capacity, possibly acting through epithelial-
mesenchymal transition [65]. And FOSL2 overexpression is
associated with a more aggressive and invasive cancer
phenotype (as found in breast cancer [66]).

As a final remark, the SP can sometimes co-purify
endothelial and immune cells as has been found in some
tissues [67]. Our observations so far suggest that this potential
contamination does not have a significant influence in our
study. First, microarray analysis did not show upregulated
endothelial- or immune-related pathways in the melanoma SP
versus MP. Second, a significant overlap was observed
between melanoma SP genes and gene sets upregulated in
other cancer cell lines which obviously lack endothelial and
immune cells. Third, important genes that were upregulated in
the SP of patient melanomas were also found upregulated in
the SP of the A375 cell line.

In conclusion, our study provides molecular and functional
arguments that the SP from human melanoma is enriched in
chemoresistant and tumorigenic cells, and hence may
encompass potential CSC. Given these important
characteristics, further exploration of the melanoma SP may
lead to new insights into melanoma biology and therapy
resistance, and eventually to new prognostic markers and
therapeutic targets.

Materials and Methods

Ethics Statement

In agreement with the admission rules of the University
Hospitals, Leuven, Belgium, patients undergoing surgical
removal of a primary or metastatic melanoma provided written
consent to use their left-over diagnostic material for scientific
purposes in an anonymized way; the research project was
approved by the local Ethical Committee of the University
Hospitals Leuven, and the use of the biological materials was
formally approved by the Biobank of the University Hospitals,
Leuven. The animal studies were approved by the local Ethical
Committee of the KU Leuven.

Human melanoma specimens

Melanoma samples were obtained after surgical resection in
the University Hospitals, Leuven. Clinical information on the
samples analyzed (n=38) is shown in Table S1 in File S1. Part
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of the tumor was wused for (immuno-)histological and
pathological evaluation, and part (cut into 3-mm? pieces) was
dissociated into single cells using collagenase type IV
(180U/ml; Life Technologies, Ghent, Belgium) for 2.5 h at 37°C.
Cells were subjected to further analysis as described below.

The human melanoma A375 cell line

The malignant (metastatic) human melanoma cell line A375
[25] was obtained from Dr. L. Van Kempen (Department of
Pathology and Oncology, McGill University, Montreal, Canada).
Cells were cultured in Dulbecco’s modified Eagle’s medium/
Ham's F12 (DMEM/F12 1:1; Lonza, Verviers, Belgium)
supplemented with 4mM L-Glutamine (Life Technologies), 10%
fetal bovine serum (FBS; Lonza) and antibiotic/antimycotic (Life
Technologies). Cell cultures were regularly tested for
mycoplasma contamination by PCR, and were found negative
(data not shown). For the analyses described below, cells were
released from the culture vessel and dissociated into single
cells using trypsin (0.05%) with EDTA (Life Technologies).

SP analysis by FACS

We adapted the original SP protocol [5] for optimal resolution
of SP from human melanoma. Briefly, cell density was adjusted
to 1x10% cells/ml and cells were incubated with 5ug/ml
Hoechst33342 (Sigma, Bornem, Belgium) for 90 min at 37°C.
Verapamil (100pM; Sigma), added 20 min before in control
samples, was used to confirm the SP phenotype because it
reduces efflux of the dye [5,67]. Cells were finally resuspended
in ice-cold PBS (Life technologies) with FBS (2%; Lonza) and
propidium iodide (2ug/ml; Sigma) for subsequent analysis by
flow cytometry using a FACSVantage or FACSArialll (BD
Biosciences, Erembodegem, Belgium). The SP is visualized as
a Hoechst*" population after UV excitation of Hoechst and
detection of blue emission with a BP 424/44 filter and of red
emission with a BP 630/22 filter. Analysis was done, and
proportions calculated, within the living (propidium iodide-
negative) cell population. Statistical analysis of SP percentages
was performed using one-way ANOVA (Dun’s Multiple
Comparison test).

Exposure to dacarbazine and hypoxia

To obtain time- and dose-response curves of cell toxicity by
dacarbazine (DTIC, activated by light; see 68), A375 cells were
treated with different concentrations of DTIC (25-200 ug/ml;
Sigma) or vehicle (PBS). Viable cells were counted after 1 to 3
days using the 4-methylumbelliferyl heptanoate (MUH) assay
(according to [69]). For SP analysis, A375 cells (triplicate) were
treated with 150 pg/ml DTIC for 3 days and cells analyzed by
FACS as described above.

To investigate the effect of hypoxia on the SP, A375 cells
(triplicate) were cultured in 1.5% O,/5% CO, using the “In Vivo,
400" hypoxic incubator (Ruskinn Technology, Bridgend, UK) for
3 days, and the SP compared with the SP of A375 cells
cultured under standard cell-culture conditions (20% O,/5%
CO,). Statistical analysis of SP percentages was performed
using two-tailed unpaired Student’s t-test.
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Culture and colony formation

SP and MP were sorted from subconfluent A375 cell
cultures, and equal numbers seeded in culture at 200-1000
cells/ml in the standard culture medium. Both cell populations
displayed comparable viability after sorting (Trypan Blue
exclusion test; data not shown). Five, 10 and 11 days later, cell
cultures were analyzed by FACS to determine the SP
proportion.

To assess colony-forming capacity, A375 SP and MP cells
were cultured at low density (1000 cells/60-mm dish) in the
standard medium. At day 9, cultures were washed twice with
PBS, stained for 10 min at room temperature with 1,9-dimethyl-
methylene blue (0.25% in 50% ethanol; Sigma) and the
number of colonies was counted.

In vivo tumorigenesis

To assess tumorigenic activity in vivo, SP and MP cells from
melanoma or A375 were sorted by FACS into DMEM/F12
(supplemented with 10% FBS). Cells were mixed with Matrigel
(1:1; BD Biosciences), and varying numbers sc injected into
“severe combined immunodeficiency” (SCID) mice (males,
6-10 weeks old; bred in-house). Tumor volume was calculated
using the formula [(large side)x(small side) ?]x0.52, and tumor
sizes from SP and MP compared at identical time points in the
individual experiments.

Microarray analysis

SP and MP cells from primary (cutaneous malignant)
melanomas were sorted by FACS into cold lysis solution of the
RNeasy Micro Kit (Qiagen, Venlo, The Netherlands). RNA was
extracted according to the manufacturer’'s protocol (comprising
DNase treatment), and quality and concentration determined
using Picochips on a BioAnalyzer 2100 (Agilent Technologies,
Diegem, Belgium). Only samples with RNA Integrity Number
28.0 were used for microarray analysis (n=4 primary
melanomas), which was performed in the VIB Nucleomics Core
(Leuven, Belgium). RNA (20ng) was subjected to 2 successive
rounds of linear amplification by in vitro transcription while
incorporating Cy3 label [70]. cRNA probes were hybridized
onto Agilent whole human genome 4x44K oligonucleotide
arrays (Ag-Hu-WG-G4112F). The microarray data have been
deposited in the NCBI's Gene Expression Omnibus (GEO) and
are accessible through GEO Series accession number
GSE48838. Data were further processed using the Agilent’s
Feature Extraction Software (version 10.1.1.1). Raw signal
intensities were background-corrected, subjected to quantile
normalization and log,-transformed. The obtained data sets of
SP and MP were compared in a pair-wise fashion, and p-
values calculated by paired Students t-test performed on the
log, values of the probe sets. Genes were considered
differentially expressed when p<0.05 and fold change=1.5. To
explore the underlying functional categories, clustering analysis
of differentially expressed genes was performed using GSEA
[71]. Finally, we narrowed the gene sets by focusing on factors
shown to be important in “stemness”/CSC, cellular migration,
chemoresistance, apoptosis and cell adherence (=1.5-fold in =
half of the samples, p<0.05). To further visualize gene
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networks, the Search Tool for the Retrieval of Interacting
Genes (STRING,; http://string-db.org/) was used.

Reverse-transcription quantitative PCR (RT-qPCR)

For real-time gPCR using SYBR Green, RNA was amplified
and converted into cDNA with the Ovation Pico SL WTA kit
(NuGEN, Bemmel, The Netherlands). Oligonucleotide primers
for gPCR were designed with Perlprimer [72] (see Table S6 in
File S1) and validated for comparable amplification efficiency
(data not shown). Multiple housekeeping genes were tested for
normalization (GAPDH, HPRT, B2M, RPL19). Based on the
level and stability of expression in all samples (relative to the
other housekeeping genes), the most appropriate set of
housekeeping genes (i.e. with uniform expression), being
RPL19 and B2M, was selected. gqPCR was performed on an
ABI 7900HT Fast PCR system using Fast SYBR Green Master
Mix (Applied Biosystems/Life Technologies) according to the
manufacturer’'s protocol. Negative controls and dissociation
curves were used to confirm specific amplification.

For RT-gPCR using Tagman technology, SP and MP cells
were sorted in lysis solution of the Tagman Preamp Cell-to-Ct
Kit (Applied Biosystems/Life Technologies) and RNA isolated
according to the manufacturer’s protocol (including DNase
treatment). After examination of quality and concentration, RNA
was amplified and converted to cDNA with the Tagman
Preamp Cell-to-Ct Kit. To measure expression of selected
genes, corresponding Tagman GEX Assays (containing
primers and TagMan probe) were used (see Table S6 in File
S1). ACTB was included as housekeeping gene for
normalization, as recommended by the manufacturer. qPCR
was performed on an ABI 7900HT Fast PCR system using
Tagman Gene Expression Master Mix (Applied Biosystems/Life
Technologies) following the manufacturer’'s recommendations.

Normalized, relative expression data were calculated using
the comparative threshold cycle (299°) method [73]. Statistical
analysis was performed using two-tailed one sample t-test (if
Gaussian distributed) or two-tailed Wilcoxon rank sum test.

Immunohistochemistry

Five-um sections of formalin-fixed paraffin embedded
melanoma specimens were immunostained using a Bond-max
fully automated staining system (Leica Microsystems, Wetzlar,
Germany), including onboard heat-induced antigen retrieval
during 20 min in EDTA-Tris buffer, pH 9.0 (for ABCB1) or
citrate buffer, pH 6.0 (for JARID1B) and alkaline phosphatase-
based Bond Polymer Refine Red Detection. The primary
antibodies were used at optimized dilutions, i.e. 1/200 for
ABCB1 (Clone JSB-1; MON9011 from Monosan/Sanbio, Uden,
The Netherlands) and 1/100 for JARID1B (HPA027179 from
Sigma). Specificity of the ABCB1 antibody [74] has been amply
validated before in our lab, using multiple types of normal
tissues and tumors [75-77]. The anti-JARID1B antibody [78]
was manufactured by the Human Protein Atlas (HPA), which
validates the affinity-purified antibodies by
immunohistochemistry in a multitude of tissues and cells
assembled in tissue microarrays, by immunofluorescence and
confocal microscopy in human cell lines, by Western blot and
by protein array analyses (http://www.proteinatlas.org/ [79]). In
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addition, we routinely perform immunohistochemistry using
these antibodies on control specimens (human tissue with
known expression pattern such as liver for ABCB1 and skin for
JARID1B) with positive results.

Sections were evaluated for estimated abundance of
immunopositive cells and signal intensity (no staining = 0, weak
signal = +, moderate signal = ++, strong signal = +++) by 2
investigators.

Supporting Information

File S1. Table S$1. Clinical information on the 38 melanoma
samples analyzed. 'F, female; M, male?. SSMM, superficial
spreading malignant melanoma®. NA, not available. Table S2.
Differentially expressed genes in SP versus MP as identified by
microarray analysis of primary melanomas. 'Genes
differentially expressed between SP and MP in 4 primary CMM
as analyzed by microarray (=1.5-fold, p<0.05). Genes
differentially expressed in =3 of the 4 tumors samples are
indicated in bold. 2Fold up- or downregulation in SP versus MP
(average of the 4 patient samples, Pts 1-4). Table S3. GSEA of
genes upregulated in the SP versus MP of primary melanomas.
'Gene Set Enrichment Analysis (GSEA) of the 142 human
ENSEMBL IDs upregulated in the SP versus MP in 23 of the 4
microarrayed primary CMM (21.5-fold, p<0.05). Table S4.
GSEA of genes downregulated in the SP versus MP of primary
melanomas. 'Gene Set Enrichment Analysis (GSEA) of the 109
human ENSEMBL IDs downregulated in the SP versus MP in
23 of the 4 microarrayed primary CMM (21.5-fold, p<0.05).
Table S5. Additional information on the genes mentioned in
Table 1. 'References to the literature of the differentially
expressed genes selected for Table 1 as related to "stemness"/
CSC, therapy resistance, apoptosis, metastasis, and cell
adherence, invasion and migration. 2PMID, PubMed Identifier.
Table S6. Summary of functionally interesting genes analyzed
by RT-gPCR in SP versus MP from primary melanomas and
A375. [1]Function of the selected genes as related to ABC
transporters ~ (chemoresistance) and  "stemness"/CSC.
[2]Corresponding references to literature. [3]Sequences of the
oligonucleotide primers used for qPCR. [4]Tagman GEX
Assays (containing primers and TagMan probe) used for
gPCR. [5]PMID, PubMed Identifier (NA, Not Applicable) Table
S7. Microarray expression data of genes found significantly
upregulated in the melanoma SP versus MP by RT-qPCR.
Fold up- or downregulation in SP versus MP (average of the 4
primary melanoma samples as analyzed by microarray).
(XLSX)

File S2. Figure S1. Microarray expression data of human
melanoma SP versus MP: concise validation by RT-qPCR and
interaction network by STRING analysis. A) Expression ratios
(SP/MP) determined by RT-gPCR of a few interesting genes
that were found upregulated in the SP in microarray analysis;
RT-gPCR was performed on the limited residual RNA/cDNA of
2 of the microarrayed melanoma samples. B) STRING analysis
of genes upregulated in the human melanoma SP versus the
MP, displayed as “evidence view” (i.e. only connected nodes
are shown). Figure S2. Overview of functionally interesting
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genes not significantly upregulated in the melanoma SP.
Expression ratios of the indicated genes related to ABC
transporters and CSC markers, in the SP versus the MP from 3
primary melanomas and 4 melanoma metastases, as analyzed
by RT-qgPCR. Figure S3. Time- and dose-response curves of
dacarbazine toxicity on A375 cells. Cells were treated with
different doses of dacarbazine (DTIC) for 1, 2 or 3 days, and
cell viability (relative to control) analyzed using the 4-
methylumbelliferyl heptancate (MUH) assay. Figure $4.
JARID1B expression in primary human melanoma. Primary
melanoma immunostained for JARID1B (top) and higher
magpnification of the boxed area (bottom) (scale bar, 300um).
(PDF)
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