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Abstract

These studies focused on a new radiolabeling technique with copper ( Cu) and zirconium ( Zr) for positron emission64 89

tomography (PET) imaging using a CD45 antibody. Synthesis of 64Cu-CD45 and 89Zr-CD45 immunoconjugates was
performed and the evaluation of the potential toxicity of radiolabeling human peripheral blood stem cells (hPBSC) was
assessed in vitro (viability, population doubling times, colony forming units). hPBSC viability was maintained as the dose of
64Cu-TETA-CD45 increased from 0 (92%) to 160 mCi/mL (76%, p.0.05). Radiolabeling efficiency was not significantly
increased with concentrations of 64Cu-TETA-CD45 .20 mCi/mL (p.0.50). Toxicity affecting both growth and colony
formation was observed with hPBSC radiolabeled with $40 mCi/mL (p,0.05). For 89Zr, there were no significant differences
in viability (p.0.05), and a trend towards increased radiolabeling efficiency was noted as the dose of 89Zr-Df-CD45
increased, with a greater level of radiolabeling with 160 mCi/mL compared to 0–40 mCi/mL (p,0.05). A greater than 2,000
fold-increase in the level of 89Zr-Df-CD45 labeling efficiency was observed when compared to 64Cu-TETA-CD45. Similar to
64Cu-TETA-CD45, toxicity was noted when hPBSC were radiolabeled with $40 mCi/mL (p,0.05) (growth, colony formation).
Taken together, 20 mCi/mL resulted in the highest level of radiolabeling efficiency without altering cell function. Young
rhesus monkeys that had been transplanted prenatally with 256106 hPBSC expressing firefly luciferase were assessed with
bioluminescence imaging (BLI), then 0.3 mCi of 89Zr-Df-CD45, which showed the best radiolabeling efficiency, was injected
intravenously for PET imaging. Results suggest that 89Zr-Df-CD45 was able to identify engrafted hPBSC in the same locations
identified by BLI, although the background was high.
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Introduction

In vivo imaging techniques with sufficient sensitivity to detect

small quantities of cells are needed to determine the safety and

efficiency of new stem/progenitor cell therapies for a spectrum of

human diseases. A crucial gap for effective in vivo imaging

technologies in stem cell research is the need to improve detection

sensitivity, and to ensure that images can accurately identify

transplanted cells at a given anatomical location. Nuclear

medicine techniques, particularly positron emission tomography

(PET), have much higher sensitivity than magnetic resonance

imaging (MRI), and unlike bioluminescence imaging (BLI), which

has similar sensitivity, can provide three-dimensional quantitative

images. Outcomes with PET can also be translated from animal

models to humans since many of the radiotracers are currently

used in a human clinical setting [1–4].

We previously reported techniques for radiolabeling

stem and progenitor cells with 64Cu- pyruvaldehyde-bis

(N4-methylthiosemicarbazone) (PTSM) for PET imaging [5].

Studies showed that a minimum of 2.56104 CD34+ hematopoietic

cells (1.1 pCi/cell) and 6.256103 mesenchymal stromal cells

(4.4 pCi/cell) could be detected, and that each cell type had a

different level of sensitivity to the radiolabeling technique. 64Cu

has a half-life of 12.7 hours allowing cells to be tracked for

approximately 2–3 days, and we demonstrated a radiolabeling

dose that avoided cell toxicity. We also adapted this method to

radiolabel and track transplanted renal precursors differentiated

from human embryonic stem cells in fetal rhesus monkeys in vivo

[6]. These studies showed effective radiolabeling techniques for

renal precursors without toxicity, and correlative imaging

outcomes with PET, BLI, and at the tissue level.

The overall goal of the current studies was to explore a new

radiolabeling method for PET imaging specifically related to

human peripheral blood stem cells (hPBSC) as a prototype cell

population. We also utilized an established rhesus monkey model

of prenatal hematopoietic stem cell transplantation [7] for

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e77148



preliminary in vivo studies. Direct radiolabeling of cells provides

the best contrast-to-noise environment for cell detection because

there is essentially no background when the majority of detected

signal comes from the cells. Since all of the reagents and

techniques proposed are specific for human cells, the methodol-

ogies can be directly translated to humans. In these studies we

investigated both 64Cu and 89Zr using a radioimmunoconjugate

technique that targets the cell surface instead of an internalized

agent such as PTSM, which we have previously used. 89Zr has a

half-life of 3.3 days providing an opportunity to monitor cells for

longer time periods when compared to 64Cu, and also provides a

more favorable decay profile (22.7% positron emission, 77.3%

electron capture). Since tracking of radiolabeled cells is limited by

half-life we also considered a new way to begin to assess

engraftment by targeting a cell-surface marker in vivo, specifically

CD45 (common leukocyte antigen). Our primary objectives were

to first effectively synthesize the radioimmunoconjugates using

CD45, to test the safety and efficiency of radiolabeling hPBSC and

identify an effective radiolabeling paradigm, then to assess the

ability to identify transplanted hPBSC in the monkey model. We

utilized PET imaging in vivo in these studies in two ways: post-

injection of radioimmunoconjugated hPBSC to track the injected

cells, and after direct injection of the radioimmunoconjugate with

the goal of homing to engrafted hPBSC. The results of these

studies have shown new methods for synthesizing 64Cu-CD45 and
89Zr-CD45 immunoconjugates and optimum radiolabeling meth-

ods for PET imaging.

Materials and Methods

Animals and Ethics Statement
All animal protocols were approved prior to implementation by

the Institutional Animal Care and Use Committee (IACUC) at the

University of California, Davis, and all procedures conformed to

the requirements of the Animal Welfare Act. Activities related to

animal care including housing, feeding, and environmental

enrichment were performed in accordance with IACUC-approved

standard operating procedures (SOPs) at the California National

Primate Research Center (http://www.cnprc.ucdavis.edu). No

animals were euthanized for the imaging studies described.

Normally cycling, adult female rhesus monkeys (Macaca mulatta)

(N = 6) with a history of prior pregnancy were bred and identified

as pregnant, using established methods [8]. Activities related to

animal care (diet, housing) were performed according to Primate

Center IACUC-approved SOPs. Fetuses were transplanted

prenatally with human male donor hPBSC (256106 cells/fetus)

using an intraperitoneal approach as previously described,

monitored sonographically during gestation, and newborns

delivered by cesarean-section at term then raised in the nursery

according to established protocols for postnatal studies [7,8]. PET

imaging studies were conducted when animals were approximately

3 months postnatal age.

hPBSC
CD34+ hPBSC were obtained from a commercial source

(AllCells, Berkeley, CA) and cryopreserved using a controlled rate

cryopreservation protocol in aliquots as previously reported [7].

All hPBSC used in these studies were from the same male donor.

Transduction
Aliquots of cells used for transplantation were thawed and

plated in non-tissue culture-treated 25 cm2 flasks coated with

4 mg/cm2 of the RetroNectin (Takara Bio Inc., Kyoto, Japan).

hPBSC were incubated overnight in X-Vivo 15 serum-free

medium (Lonza, Hopkinton, MA) supplemented with 2 mM L-

glutamine, 100 units/mL penicillin, and 100 mg/mL streptomy-

cin, and containing 100 ng/mL of thrombopoietin (TPO), Flt3-

Ligand (Flt3-L), and stem cell factor (SCF) (R&D Systems,

Minneapolis, MN). Cells were resuspended in fresh medium

containing cytokines and transduced with an HIV-1-derived

lentiviral vector expressing firefly luciferase under the control of

the MND promoter at a final vector concentration of 86107 TU/

mL, with protamine sulfate at 4 mg/mL (American Pharmaceu-

tical Partners, Inc., Schaumburg, IL) using established methods

[6]. After 2 h, the medium volume was doubled and cells were

incubated at 37uC with 5% CO2 for 6–8 h. A second aliquot of

the lentiviral vector was added to the cells and incubated

overnight. Cells were washed with fresh medium and incubated

overnight, then washed and cultured in fresh medium for 2 days.

Prior to transplantation, cells were washed in sterile phosphate

buffered saline (PBS) three times, and cell counts and viability were

determined using trypan blue exclusion.

Radiochemistry
A mouse anti-human CD45 antibody (BD Biosciences, San

Jose, CA) was used for these studies. Bromacetoamido benzyl

TETA (BAT) was kindly provided by Claude F. Meares,

University of California, Davis. 64Cu was obtained from Wash-

ington University and 89Zr from IBA (Belgium). Copper (II)

chloride (Fisher Scientific, Pittsburgh, PA) and zirconium (IV)

chloride (Sigman-Aldrich, St. Louis, MO) were used for carrier

added experiments. Sephadex G50 (Sigma) was used for molecular

sieving filtration and 0.22 mm SLGV syringe end filters (Millipore,

Billerica, MA) were used for final filtration of radiolabeled

antibody. All solvents and buffer reagents were reagent grade or

better, purchased from commercial sources, and used without

additional purification. Aqueous buffers were prepared with

18 mV purified water (Millipore). Isocratic molecular sieving

HPLC (Waters, Milford, MA) was performed with a 30067.8 mm

5 m Biosep SEC-2000 column (Phenomenex, Torrance, CA),

eluted in 0.1 M sodium phosphate (aq), pH 6.8, at 1.5 mL per

minute, with UV (280 nm) and radioanalytic (Bioscan, Inc.,

Washington, DC) detection. In this system, radiolabeled antibody

eluted at 6.4 min, and 64Cu- and 89Zr-EDTA eluted at 9.8 min.

Mouse anti-human CD45 antibody was conjugated to the

copper-chelating agent TETA by combining antibody, 2-imi-

nothiolane (2IT) (Sigma), and BAT at concentrations of 0.07 mM,

1.0 mM, and 2.0 mM, respectively, in 0.1 M ammonium phos-

phate, pH 9 (0.25 mL) for 1 h at 37uC. TETA-CD45 was purified

and transferred to 0.1 M ammonium acetate, pH 5, by molecular

sieving filtration. Three TETA molecules were conjugated per

antibody, as determined by copper-binding assay with carrier-

added 64Cu and antibody assay by UV absorbance (280 nm).

Five radiolabelings of 64Cu-TETA-CD45 were performed. 64Cu

in dilute HCl (5.8 to 7.5 mCi) was buffered with ammonium

acetate, then added to CD45-TETA (0.2 to 0.8 mg) in 0.1 M

ammonium acetate, pH 5 (0.12 to 0.27 mL). The radiolabeling

solutions were incubated for 30 to 60 min at 37uC. Certified

0.1 M disodium ethylene diamine tetraacetic acid (EDTA) (Fisher

Scientific) was added to a final concentration of 10 mM, to

scavenge unchelated 64Cu. 64Cu-CD45-TETA was purified and

transferred to PBS by molecular sieving filtration, and filtered.

Radiochemical yield and product purity were determined by

analytical HPLC of EDTA-challenged radiolabeling solution and

purified 64Cu-TETA-CD45, respectively. The mean radiochem-

ical yield was 75%, and all doses exceeded 95% radiochemical

purity, with a mean activity of 17 mCi per mg of antibody.

Radiolabeling for Stem Cell PET Imaging
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Mouse anti-human CD45 antibody was conjugated to the

zirconium-chelating agent desferrioxamine by combining antibody

and desferrioxamine-p-SCN (Df-p-SCN) (Macrocyclics Inc.,

Dallas, TX) at concentrations of 32–45 mM and 200–430 mM,

respectively, in 0.1 M sodium carbonate, pH 9 (0.35 to 0.51 mL)

[9]. The molar ratios of Df-p-SCN to antibody were 6 to 12. The

conjugation solutions were incubated for 1–2 h at 40uC. Df-CD45

was purified and transferred to 0.1 M HEPES, pH 7, by

molecular sieving filtration. One to two Df molecules were

conjugated per antibody, as determined by zirconium-binding

assay with carrier-added 89Zr and antibody assay by UV

absorbance (280 nm).

Five radiolabelings of 89Zr-Df-CD45 were performed. 89Zr in

1 M oxalic acid (2.2 to 4.4 mCi) was buffered with 2 M sodium

carbonate, then added to Df-CD45 (0.40 to 0.66 mg) in 0.2 M

HEPES, pH 7 (0.39 to 0.69 mL), The radiolabeling solutions were

incubated for 1–2 h at room temperature. EDTA was added to a

final concentration of 5 mM, to scavenge unchelated 89Zr. 89Zr-

Df-CD45 was purified and transferred to saline by molecular

sieving filtration, and filtered. Radiochemical yield and product

purity were determined by analytical HPLC of EDTA-challenged

radiolabeling solution and purified 89Zr-Df-CD45, respectively.

The mean radiochemical yield was 89%, and all doses exceeded

95% radiochemical purity, with a mean activity of 4.2 mCi per mg

of antibody.

hPBSC Radiolabeling
Cell binding, internalization, and potential toxicity of 64Cu and

89Zr immunoconjugates were assessed in triplicate as described

below. Briefly, ,66106 hPBSC/mL were incubated with the

immunoconjugate for 1 h (37uC) and cells washed three times with

PBS, then radioactivity in the wash buffer and cell pellet counted.

To assure that 64Cu or 89Zr was not released over time, the

radiolabeled hPBSC were incubated in rhesus monkey serum

under physiologic conditions, and the fraction of radioactivity

associated with the cells measured at time points out to 3 (64Cu)

and 7 (89Zr) days. The following assessments were performed in

triplicate: (1) incubation time (hourly for 1–4 h); (2) amount of

radioactivity for the incubation (mCi/cells/mL); (3) viability of the

cells after incubation and over 48 h (trypan blue); and (4) efflux of

radioactivity. Post-radiolabeling hPBSC were assessed in triplicate

in hematopoietic colony forming unit (CFU) assays in parallel with

unlabeled cells using established protocols [5].

hPBSC were incubated at room temperature for 30 min with
64Cu-TETA-CD45 or 89Zr-Df-CD45 at concentrations of 0, 20,

40, 80, or 160 mCi/mL in triplicate. A gamma count was taken on

radiolabeled cells and medium obtained from the final wash with

cell viability assessed using trypan blue. After radiolabeling, cells

were incubated for 1 week at 37uC and 5% CO2. Cell counts were

obtained for each dose with proliferation assessed by determining

population doubling times using established protocols [5].

Radiolabeled cells were also plated in Methocult and incubated

for 10 days for CFU assay. Differentiation potential of radiola-

beled cells was assessed by counting erythroid (burst forming unit-

erythroid, BFU-E) and myeloid (CFU-granulocyte macrophage,

CFU-GM) colonies [5,7]. A theoretical upper limit of radiolabel-

ing efficiency was determined using QuantiBRITETM PE beads

following the manufacturer’s protocol.

In vivo Imaging
BLI was performed according to established protocols [10,11]

once animals were sedated with telazol and after an intravenous

injection of 100 mg/kg D-Luciferin using a Xenogen IVISH200

Imaging System with Living Image Software analysis (Caliper Life

Sciences, Alameda, CA). Each animal was imaged using four views

(anterior-posterior, posterior-anterior, right and left lateral) at each

imaging session in a light tight chamber, and whole body images

obtained with quantification performed. Bioluminescence and

photographic images were superimposed using Living Image 2.50

software. Regions of interest (ROIs) were defined by selecting

areas showing bioluminescence. Numbers of total photons/sec/

cm2 detected in ROIs were recorded.

The microPET P4 imaging system (Siemens Preclinical

Solutions, Inc., Malvern, PA) has a 22 cm bore, 20 cm transaxial

field of view, and 8 cm axial field of view, and sensitivity of the

scanner is 2.25% at the center of the field of view with an energy

window of 250–750 keV and a timing window of 10 ns (default

values) [12]. With maximum a posteriori (MAP) reconstruction

incorporating an accurate system model (standard reconstruction

algorithm used), image resolution is ,1.8 mm isotropically (6 mL

volumetric resolution). PET signals were analyzed and quantified

with AMIDE (amide.sourceforge.net) software.

Animals were sedated with telazol and supplemented with

ketamine as needed and injected intravenously with radiolabeled

hPBSC (N = 2) or ,0.3 mCi of 64Cu-TETA-CD45 or 89Zr-Df-

CD45 (N = 4; 2 per radioimmunoconjugate). Each animal was

placed on the scanner bed (supine) and the upper abdominal area

was positioned in the center field of view based on images obtained

by BLI. Static PET scans were acquired for ,60 min on day 0,

day 2, day 5, and day 9 post-injection. All listmode data were

sorted into 3D sinograms using a span of 3 and a ring difference of

31. Images were reconstructed with a 2D OSEM reconstruction

algorithm with an imaging matrix of 12861286112 with a

corresponding voxel size of 0.1960.1961.21 mm3.

Statistical Analysis
Results are reported as the mean 6 standard error of the mean

and calculated using Microsoft Excel (Microsoft, Redmond, WA).

Statistical significance (p,0.05) was determined by analysis of

variance or two-sided Student’s t-test analysis.

Results

64Cu-CD45 and 89Zr-CD45 Immunoconjugates
To investigate the feasibility of tracking cells after transplanta-

tion with PET, optimal conditions were explored using a human-

specific CD45 antibody and radiolabeling hPBSC with either
64Cu-TETA-CD45 or 89Zr-Df-CD45. In a preliminary study the

selected CD45 clone HI30 showed a very high specificity for

human cells with no binding to rhesus monkey cells. The CD45

antibody was successfully conjugated to 64Cu or 89Zr after several

in vitro studies.

hPBSCs radiolabeled with each of the immunoconjugates were

incubated with secondary antibodies against CD45 for analysis by

flow cytometry. Results showed no significant differences in the

percentage and mean fluorescence of hPBSC labeled with the

immunoconjugates when compared to control cells (data not

shown). Thus, no internalization was observed.

Optimum Labeling Dose
Cryopreserved hPBSC were thawed and plated in 12-well

culture plates at 16106 cells per well in X-VIVO 15TM medium

supplemented with SCF, TPO, and FLT3L (50 ng/mL each) as

noted above. Cells were incubated at room temperature for

30 min with 64Cu-TETA-CD45 or 89Zr-Df-CD45 with the range

of concentrations identified.

For 64Cu, no significant decrease in viability was observed as

the dose of 64Cu-TETA-CD45 increased from 0 (92%) to

Radiolabeling for Stem Cell PET Imaging
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160 mCi/mL (76%; p.0.05) (Figure 1). Radiolabeling efficiency

was not significantly increased with concentrations of 64Cu-

TETA-CD45 greater than 20 mCi/mL (p.0.5). For 0, 20, 40, 80,

and 160 m/mL, activities were 0.003, 0.023, 0.022, 0.031, and

0.028 pCi/cell, respectively. Toxicity affecting both growth and

colony formation (BFU-E, CFU-GM) was observed with cells

radiolabeled with $40 m/mL (p,0.05). Population doublings

observed for 0, 20, 40, 80, and 160 mCi/mL were 2.360.1,

2.260.2, 1.760.1, 1.360.1, and 0.960.4, respectively. CFU-GM

identified at each of the doses were 17.162.1, 30.266.1, 8.465.3,

7.864.2, and 8.063.1, respectively. No toxicity was observed in

BFU-E colony formation. Peak theoretic radiolabeling efficiency

was calculated to be 10-fold more (0.32 pCi/cell) than the greatest

measured radioactivity per cell, suggesting further optimization

may be able to be achieved.

For 89Zr, there were no significant differences in viability

observed between the dose groups evaluated (p.0.05) (Figure 2).

As shown in Figure 2, a trend in increasing radiolabeling efficiency

was observed as the dose of 89Zr-Df-CD45 increased with a

significantly greater level of radiolabeling for 160 mCi/mL

compared to 0–40 m/mL (p,0.05). A greater than 2,000 fold-

increase in the level of 89Zr-Df-CD45 labeling efficiency was

observed when compared to 64Cu-TETA-CD45. Similar to the

study using 64Cu-TETA-CD45, toxicity was observed with cells

radiolabeled with $40 mCi/mL (p,0.05) when growth and colony

formation (BFU-E, CFU-GM) were evaluated. Taken together,

20 mCi/mL showed the highest level of efficiency without altering

cell function.

Biodistribution of Immunoconjugates
Based on outcome, in vivo studies with 64Cu-TETA-CD45 were

not pursued because the per-cell activity was significantly lower

when compared to 89Zr-Df-CD45. When these results were

compared to our prior studies with 64Cu-PTSM, a greater level of

cell labeling was noted which may be related to PTSM which

labels the cells by passive diffusion [5] in contrast to radio-

immunoconjugates that target the cell surface. The half-life of
64Cu is also relatively short (12.7 days) thus allowing 3 days of

imaging whereas 89Zr has a half-life of 3.3 days allowing cells to be

tracked for approximately 2 weeks. Two animals injected with

56106 cells radiolabeled with 64Cu-PTSM at 20 mCi/mL showed

signals in the lung (white arrow) and liver (red arrow) immediately

post-injection (Figure 3). Radioactivity was also detected in the

lumbar spine (yellow arrow). Animals showed no detectable level

of radioactivity in subsequent scanning sessions. For short-term

cell trafficking studies, 56106 hPBSC radiolabeled with 89Zr-Df-

CD45 at the optimal dose of 20 mCi/mL were injected

intravenously (N = 2), and animals were imaged 24 and 48 h

post-injection, then 1 week after transplantation. No detectable

PET signals were observed immediately following injection (data

not shown). These studies suggest that 64Cu-PTSM may be more

efficient for direct radiolabeling hPBSC and in vivo detection.

Efficiency of 89Zr-CD45 Immunoconjugate to Identify
Engrafted Human Cells

The CD45 antibody was directly bound to 89Zr and used as a

method to identify engrafted cells that had previously been

Figure 1. 64Cu-TETA-CD45 radiolabeling of hPBSC. hPBSC were radiolabeled with 0, 20, 40, 80, or 160 mCi/mL of 64Cu-TETA-CD45. No
significant changes in cell viability or degree of labeling were observed with increasing concentrations. A decline in cell growth and colony formation
was observed when cells were incubated with 64Cu-TETA-CD45 at a concentration .20 mCi/mL.
doi:10.1371/journal.pone.0077148.g001

Radiolabeling for Stem Cell PET Imaging
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confirmed by BLI (prenatal hPBSC transplant, postnatal imaging).

Animals transplanted prenatally with 256106 hPBSC expressing

firefly luciferase were injected with 0.3 mCi of 89Zr-Df-CD45

intravenously at 3 months postnatal age and PET imaging

performed at 0, 1, 3, 5, and 9 days post-injection (N = 2). Monkey

#1 showed a high level of bioluminescence (3.06107 p/s) in the

right abdomen whereas very low signals (2.16106 p/s) were

observed for Monkey #2 (Figure 4). As anticipated, high

background PET signals were observed in the liver prior to day

5 (data not shown). PET imaging on day 5 post-injection showed

CD45 labeling (yellow arrow) within the peritoneum of Monkey

#1, which was consistent with the corresponding BLI image.

Monkey #2 showed signals in the liver with no detectable

radioactivity observed on day 9 post-injection.

Discussion and Conclusions

These studies focused on new methods for the development of

CD45 immunoconjugates with 64Cu and 89Zr. Nontoxic hPBSC

radiolabeling conditions were identified and an optimal dose

selected for in vivo imaging studies. The outcome of these

preliminary investigations suggest that the 64Cu immunoconjugate

was not as efficient when compared to radiolabeling cells with
64Cu-PTSM, and that the signal from intravenously injected

radiolabeled hPBSC (using either immunoconjugate) was below

the level of detection by the microPET scanner used in these

studies. Outcomes also suggest that the direct injection of 89Zr-Df-

CD45 was the most efficient in identifying engrafted hPBSC in the

rhesus monkey host. While these studies were conducted in a small

group of animals, they report for the first time new stem/

progenitor cell radiolabeling methods in vitro and the potential

applications in vivo.

We have previously reported the optimization of radiolabeling

rhesus monkey stem and progenitor cells with 64Cu-PTSM

without evidence of radiotoxicity [5]. PTSM is a lipophilic

redox-active carrier molecule that can deliver 64Cu into the cell

passively. When Cu(II)-PTSM is reduced to Cu(I)-PTSM, Cu(I) is

Figure 2. 89Zr-Df-CD45 radiolabeling of hPBSC. hPBSC were labeled with 0, 20, 40, 80, or 160 mCi/mL of 89Zr-Df-CD45. No significant changes in
cell viability were observed with increasing concentrations. However, a greater degree of radiolabeling was observed with 80 and 160 mCi/mL of 89Zr-
Df-CD45. A decline in cell growth and colony formation was noted when cells were incubated with 89Zr-Df-CD45 at a concentration .20 m/mL.
doi:10.1371/journal.pone.0077148.g002

Figure 3. Short-term tracking of hPBSC radiolabeled with 89Cu-
PTSM by PET. hPBSC were radiolabeled with 20 mCi/mL of 64Cu-PTSM.
Cells radiolabeled with 64Cu-PTSM were detected in the lung (white
arrow) and liver (red arrow) on the day of postnatal transplant (day 0).
Cells were observed in the liver (red arrow) and spinal column (yellow
arrow) 24 h post-injection (day 1).
doi:10.1371/journal.pone.0077148.g003

Radiolabeling for Stem Cell PET Imaging
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captured by intracellular macromolecules while the neutral PTSM

diffuses out of the cell. This method has been shown to result in

efficient intracellular radiolabeling of target cells [5]. However,

radiotoxic Auger electrons have a penetration of 0.02–10 mm with

very high DNA toxicity within this range. 64Cu emits a 6.84-keV

Auger electron with a penetration range of approximately 5 mm

and can potentially result in DNA damage, thus, requiring a lower

dose for labeling to prevent radiotoxicity. Thus, in this study, a

human-specific antibody to a membrane protein, a pan-hemato-

poietic marker CD45, was used for radiolabeling rather than the

intracellular approach with PTSM. We hypothesized that labeling

of the cell membrane using the human-specific CD45 antibody

conjugated to 64Cu or 89Zr would increase radiolabeling efficiency

while minimizing radiotoxicity. However, no increase in radiola-

beling efficiency was observed in these studies. In addition, the

antibody-based membrane labeling approach showed a similar

level of radiotoxicity compared to the intracellular PTSM

radiolabeling method. These findings suggest that the concentra-

tion of radioisotope in the labeling solution is an important factor

in determining radiotoxicity when compared to the quantity and

location of 64Cu bound to cellular components. Similar findings

were observed when cells were radiolabeled using the CD45

antibody conjugated to 89Zr.

In our in vitro radiolabeling studies, CD45 antibodies conjugated

to 89Zr consistently resulted in a higher labeling efficiency

compared to 64Cu at the same concentration of radiotracers.

When hPBSC radiolabeled with the CD45 antibody and 89Zr

were directly injected in vivo and subsequently imaged with PET,

no detectable signals were observed above background. For

comparison, hPBSC radiolabeled with 64Cu-PTSM showed clear

signals in the lung and spinal column, with high background in the

liver. These findings suggest that there are insufficient CD45

molecules on the plasma membrane, which were estimated to be

1.386105 antibody binding sites per cell (unpublished findings), to

provide sufficient antibody binding for radiolabeling and PET

imaging. However, this finding does not preclude the possibility of

identifying another membrane-bound molecule that is present at a

higher frequency than CD45 for radiolabeling purposes. In

addition, a polyclonal antibody with a greater number of binding

sites per target molecule could potentially be explored, and a

combination of these factors may enhance radiolabeling efficiency.

Current instrumentation and methodology for PET is optimized

for detecting and quantifying relatively high levels of radiotracer

concentrations that are distributed throughout the body. The most

common example is 18F-fluorodeoxyglucose (FDG) for imaging

glucose metabolism. The imaging environment for cell studies in

vivo is vastly different. The total amount of radioactivity inside the

subject is typically 3 orders of magnitude lower (mCi versus mCi),

and the distribution of this activity is sparse and confined to cell

location. Therefore, issues related to background become critical

in identifying very weak signals, and the image reconstruction

methodologies typically employed have not been optimized for this

task. A major limitation of commercially available PET scanners is

the use of detector materials that incorporate lutetium that has a

naturally occurring isotope, Lu-176, which makes the detectors

slightly radioactive. We have focused on this potential limitation

by comparing PET scanners based on the scintillator lutetium

oxyorthosilicate (LSO) and bismuth germanate (BGO) [13]. These

related investigations have determined that radioactive LSO-based

PET scanners do not perform as well when compared to those

with non-radioactive materials such as BGO for imaging low

activity sources. Optimizing parameters such as energy windows

on the LSO-based scanners was also found to only lead to

marginal improvements.

In conclusion, these studies report methods for developing

CD45 immunoconjugates with 64Cu and 89Zr. Preliminary

imaging studies also indicate that the 64Cu immunoconjugate

was not as efficient for in vivo imaging when compared to

radiolabeling cells with 64Cu-PTSM and the signal from injected

radiolabeled hPBSC (using either immunoconjugate) was below

the level of detection by the microPET scanner used in these

studies. Of the approaches tested, direct injection of 89Zr-Df-

CD45 was found to be the most efficient in identifying engrafted

hPBSC. Additional studies with immunoconjugates and related

cell labeling techniques are important in order to develop sensitive

and safe methods to monitor cell trafficking and cell fate for future

human application.
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Figure 4. BLI and PET imaging of transplanted hPBSC. hPBSC
expressing firefly luciferase were transplanted prenatally in the late first
trimester [7]. At ,3 months postnatal age D-luciferin was injected
intravenously and BLI was performed to confirm the anatomical
location of transplanted cells, then 89Zr-Df-CD45 was injected. Monkey
#1 showed a high level of bioluminescence in the abdominal region.
Both animals showed strong PET signals on day 5 post-injection of 89Zr-
Df-CD45 within the liver. The muscular component of the peritoneum
(white and yellow arrows) of Monkey #1 showed corresponding BLI
and PET signals.
doi:10.1371/journal.pone.0077148.g004
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