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Abstract

Several recent gene expression studies identified hundreds of genes that are correlated with age in brain and other tissues
in human. However, these studies used linear models of age correlation, which are not well equipped to model abrupt
changes associated with particular ages. We developed a computational algorithm for age estimation in which the
expression of each gene is treated as a dichotomized biomarker for whether the subject is older or younger than a particular
age. In addition, for each age-informative gene our algorithm identifies the age threshold with the most drastic change in
expression level, which allows us to associate genes with particular age periods. Analysis of human aging brain expression
datasets from three frontal cortex regions showed that different pathways undergo transitions at different ages, and the
distribution of pathways and age thresholds varies across brain regions. Our study reveals age-correlated expression
changes at particular age points and allows one to estimate the age of an individual with better accuracy than previously
published methods.
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Introduction

Aging is a multi-faceted, highly complex dynamic phenomenon

that has influences on human biology and medicine. An important

research problem in the study of aging is the identification of

biomarkers that reflect aging-related physiological changes that

can be further applied to the estimation of physiological age in an

individual. With the advent of technology allowing for genome-

wide surveys of gene expression, studies of aging biomarkers have

been able to move beyond the use of classical physiological

variables. Some examples include forced vital capacity (amount of

air exhaled from the lungs after the deepest breath possible),

systolic blood pressure, red blood cell count, hemoglobin, glucose,

and blood urea nitrogen [1–3]. By correlating gene expression

levels with age, hundreds of genes associated with the aging

process have been identified in nematode [4], mosquito [5], fly [6–

9], yeast [10], mouse [11], and human brain, muscle, and kidney

[12–14]. The expression level of these genes can be used as age

biomarkers to model the physiological age of organisms [5,15],

detect tissue-specific aging differences [12,13,16,17] and study the

biology of aging-related diseases [18,19].

Among all the quantitative models used in these aging studies,

the linear model is most widely used [4,13,14,20]; for example,

linear regression has been applied to estimate age-correlated genes

in human kidney, muscle and brain [13,14,16,21]. In our previous

study on human brain aging [21], we developed an ‘‘age ruler’’ by

applying regression models to gene expression in normal brain

tissues. Application of the age ruler to brain tissues with

neurodegeneration showed that Frontotemporal lobar dementia

(FTLD) and Alzheimer’s disease (AD) patients have gene

expression profiles similar to those of healthy individuals with

chronological ages older than the actual ages of the patients; i.e the

FTLD and AD patients displayed signs of premature aging.

Similarly, a piecewise linear regression model has been used in

such aging studies in nematode and human brain tissues [4,16,22].

Golden et al. identified C. elegans genes correlated with age-related

behavioral phenotypes using linear models and demonstrated that

these are biomarkers of physiological age [4]. Their result showed

difference between estimated physiological age and chronological

age to be approximately five days. Sibille et al. identified age-

related transcriptional changes in two human prefrontal cortex

regions (Brodmann Area (BA) 9 and 47), and showed the residual

in the regression prediction, i.e. the difference between the

estimated physiological age and chronological age, was between 10

to 15 years.

A critical drawback of linear models is that, although they are

useful in estimating the performance of a gene across the entire age

range, they are not sensitive enough to detect nonlinear, abrupt
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expression changes at particular chronological ages. In addition,

gene expression levels or other age-related traits such as genotype

frequencies may not be linearly correlated with age or even

monotonically ordered by age. This problem can be further

exacerbated in population studies. For example, Bergman et al.

observed that the percentage of deleterious genotypes in the

population follows a ‘‘U-shape trend’’: the percentage goes down

as the population ages, but bounces back for the very old

population (.90 y), potentially due to some unobserved ‘‘buffer

mechanisms’’ that contribute to the longevity of these individuals

through compensating for the deleterious effect [23]. There is

clearly a need for new approaches to identify genes undergoing

nonlinear transitions at particular age points.

1.1 Outline of the paper
In this study, we developed a novel computational approach

that identifies genes from a reference dataset that undergo

relatively abrupt transitions in expression at different ages, and

which combines information from these genes to estimate the age

of an individual using a naı̈ve Bayes (NB) model. The algorithm

decides the number of age-correlated genes for each age threshold

by ‘‘greedily’’ adding the most informative genes until a pre-

specified number of genes is reached, and then incorporates these

genes into a NB classifier for age estimation. In addition, we tested

other machine learning methods including linear regression

(standard lasso or stepwise) and polynomial spline regression

(POLYMARS) on the same data sets and demonstrated that our

method outperformed these models. The estimation of chrono-

logical age using our method was up to 34% more accurate than

the other tested methods. In addition, we assigned each gene to a

decade from the range of 20 to 79 years based on the

chronological age at which its expression undergoes the biggest

change, in order to differentiate between genes whose expression

profiles transition at different ages. Pathway and protein-protein

interaction network analysis identified many pathway-specific

changes associated with different stages of the aging process.

Materials and Methods

2.1 Data preparation
Microarray datasets used in this paper were downloaded from

GEO (http://www.ncbi.nlm.nih.gov/geo/index.cgi), or obtained

from the authors directly. Table 1 summarizes the data used in this

paper. For all datasets, the GCRMA package [24] for R/

Bioconductor [25] was used to generate log-2 expression levels for

probeset IDs from the original .cel files.

2.2 A naı̈ve Bayes approach predicts age by
dichotomizing age

We developed a new computational approach for gene

expression-based chronological age estimation by treating each

gene as a binary classifier for whether an individual is older than a

particular age threshold, and combining all such age-informative

genes using a Naı̈ve Bayes (NB) model [26,27]. An NB model

assumes all features are independently distributed, and combines

their distributions to calculate the posterior probability of the

outcome using the Bayes theorem. Naı̈ve Bayes models are known

to be robust even when the independence assumption is violated,

and are widely used in high-dimensional applications, particularly

studies involving global gene expression [28,29].

Our algorithm works as follows. Given a dataset, the algorithm

first sorts the ages of individuals from young to old, and determine

‘‘age thresholds’’ as the average ages for all pairs of adjacent ages.

For each age threshold, the algorithm uses Fisher’s exact test to

identify genes having age-related expression levels that can

differentiate between individuals older or younger than the

threshold. Each of these genes is thus a binary classifier for that

particular age threshold. Information from all selected age-

informative genes is then aggregated using Bayes formula as a

strong classifier to estimate age.

Consider a dataset in which there are no ties in age. The

algorithm first sorts individuals of age a1, a2, … an in ascending

order, then defined D= {dj: j = 1,2,…,n}as the set of age thresholds,

in which dj~
ajzajz1

2
, where 1#j#n-1. For each age threshold, the

algorithm uses Fisher’s exact test to identify genes that can

differentiate between individuals older than the threshold from

younger ones by expression level. To obtain binary classifiers for

all age thresholds, we need to perform Fisher’s exact test on each

gene and each age threshold. The algorithm first computes the

contingency table (Table 2) for probeset gij at age a = dj where j#m

samples (m = 1, 2, …n-1).

Here, hi = gi1, gi2,…gim as a set of gene expression thresholds for

each gene i across m samples selected by exhaust search; aj is the

chronological age for individual j. This contingency table

summarizes the number of genes have been counted under the

Table 1. Microarray datasets used in this study.

ID tissue Number of samples Age range Gender GEO ID

H1 Rostral aspect of frontal cortex 29 26,95 F: 11 GDS707 [12]

(,BA10) M: 18

H2 Dorsolateral prefrontal cortex 29 25,79 F: 7 * [16]

(BA9) M: 22

H3 Orbital prefrontal cortex 27 28,77 F: 6 * [16]

(BA47) M: 21

*: obtained from the authors directly.
doi:10.1371/journal.pone.0074578.t001

Table 2. Contingency table for probeset gij at age a = dj

where j#m samples (m = 1, 2, …n-1).

aj#dj9 aj.dj9

gij #hi C00 C01

gij.hi C10 C11

doi:10.1371/journal.pone.0074578.t002

A Bayes Model for Age Estimation Using Microarray
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corresponding conditions. The algorithm then computes the odds

ratio

C00=(C00zC01)

C01=(C00zC01)
=

C10=(C10zC11)

C11=(C10zC11)
~

C00C11

C01C10
ð1Þ

and Fisher’s exact test to get the significance of association

between age threshold dj and probeset i in sample j.

Using Bayes theorem, we write our model as follows:

Pr(ADG1,:::,Gk)~
Pr(G1,:::,Gk DA):Pr(A)

Pr(G1,:::,Gk)
ð2Þ

In our study, we estimate the age threshold a with maximum

Pr(Aj~aDG1j ,:::,Gkj) or individual j using:

Pr(Aj~ajG1j ,:::,Gkj)~

Pr(G1j~g1j ,:::,Gkj~gkj jAj~a):Pr(Aj~a)
ð3Þ

Here, gene gij is the log-2 gene expression level of probe set i in

individual j, age threshold a M d , k is the number of features (genes)

obtained using Fisher’s exact test.

Assuming individuals are uniformly distributed on age, we

rewrite the formula

Pr(Aj~ajG1j ,:::,Gkj)!Pr(G1j~g1j ,:::,Gkj~gkj jAj~a)~

P
i~1

k

Pr(Gij~gij jAj~a)

ð4Þ

Here, Pr(G1j~g1j ,:::,Gkj~gkj DAj~a) measures the association

between gene expression of each gene and every age threshold in

d. Pr(Aj~aDG1j ,:::,Gkj) can be computed as follows:

P(Gij~gij DAj~a)~

p0
j

p1
j

1{p0
j

1{p1
j

gƒqj ,aƒdj

gƒqj ,awdj

gwqj ,aƒdj

gwqj ,awdj

8>>>>>><
>>>>>>:

ð5Þ

We use a greedy algorithm to select the features (genes) for each

age threshold in age estimation to guarantee each selected gene

was designated to at most one age threshold. The purpose of this

selection step is to satisfy the requirement of the Bayes theorem

(i.e., each gene is used at most once for a particular age threshold)

while ensuring that every age threshold has enough genes assigned.

The algorithm is as follows:

1. Consider table A where column represents age threshold and

rows represent all the genes. Entry oij in table A is the absolute

value of log2 odds ratio for gene i and age threshold j.

2. Construct table B where each column corresponds to an age

threshold and each row represents a gene that may be selected

for each age threshold. The number of rows is N. Entry bij in

table B indicates gene j is assigned as the classifier for the ith age

threshold. Initially every entry in B is set to 0.

3. Iterate over all columns. For each column j in table A, find the

gene with the largest odds ratio (say gene m). Set bij = 1. Change

omj = 2Inf so that gene m will not be chosen for any other age

threshold. After the iteration, each column in B will have one

more entry set to 1.

4. Repeat step 3 until every column in B has N entries set to 1.

The source code in R is posted on our lab website (http://

wanglab.pcbi.upenn.edu/nonlinear-aging/).

2.3 Age estimators using linear model
For performance comparison, we also used other statistical

methods including linear regression, the lasso algorithm, and

forward stepwise regression to compute the significance of a

correlation between age and the expression level of a gene, with/

without adjusting for the effect of gender. These approaches

assume a linear relationship between age and log-2 expression

level with additional features to control for model complexity and

avoid overfitting. We compute lasso and stepwise regression using

the R/lars package [30]. Specifically, we compute linear

regression while adjusting for the effect of gender using the

following equation:

Yij~mizb1iAjzb2iSjzb3iA
Male
j zeij ð6Þ

Here Yij is the log-2 gene expression level of probe set i in sample j,

Aj is the age for individual j, Sj is 0 if individual j is female, 1 if he is

male. Aj
Male is the age of individual j if Sj = 1; it is 0 otherwise

(included to test for interaction between age and gender). The

coefficients b1i, b2i, and b3i are regression coefficients reflecting the

rate of change in gene expression with respect to age alone, gender

alone, and age-gender interaction effects, respectively.

The lasso is a shrinkage and selection method for linear

regression. R package ‘‘lars’’ implements modified least angle

regression and forward stepwise regression as the solutions for

lasso [30]. We used the R package ‘‘lars’’ to compute the

correlation between age and the expression level of a gene by

forward stepwise regression and lasso. We also ran five-fold cross

validation to estimate the age estimation errors. In each fold of

cross validation, we first estimated the best tuning parameter such

that the mean squared error is minimal by another five-fold cross

validation on the training data, and then we estimated age in the

testing data using the selected tuning parameter.

POLYMARS is the multivariate adaptive polynomial spline

regression using piecewise linear splines to model the response

[31]. It has been used to estimate age in a C. elegans study [4]. We

included this method in our study to compare its performance with

our naı̈ve Bayes model.

2.4 Performance of age estimators by permutation test
We used five-fold cross validation to estimate the error of our

age estimator as follows. We first divided the subjects into five

subsets. We then used reference data from four of the subsets

(training set) to generate age estimations for the individuals in the

fifth subset (test set). Thus, the average estimation error over all

five subsets is the estimated error of the age estimator:

Age estimation error~(
X5

i~1

XMi

j~1

DÂAij{Aij D=Mi)=5 ð7Þ

Here Mi is the total number of individuals in the ith partition (test

set), and Aij and ÂAij are the actual age and the age estimation for

A Bayes Model for Age Estimation Using Microarray
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the jth individual in the ith partition respectively. We computed

the significance of the error by obtaining 1,000 randomized

cross-validation errors with age information randomly shuffled; the

significance of the estimation error is the proportion of the 1,000

errors from the randomized dataset lower than the actual cross-

validation error.

2.5 Dividing age-correlated genes into young, middle-
age and old gene groups by their age transition points

Our NB algorithm is able to find the age threshold that has the

biggest transition for each age-correlated gene, defined as the

transition age point for the gene. We ran our NB classifier on the

three brain data sets (H1,H3) (Table 1) and obtained genes

demonstrating significant statistical differences at each age

threshold in each data set with p,0.005. For each of the three

brain regions we divided age-correlated genes into three age

groups: young (,40 years old), middle-age (between 40 and 59

years old) and old (between 60 and 79 years old).

2.6 The distribution of age correlated genes in the
protein-protein interaction network

We generated a human whole protein-protein interaction (PPI)

network, G = (V, E) using the largest connected component from

Human Protein Reference Database (HPRD) Release 9 [32]. The

PPI network G contains [2] = 9,267 proteins with [2] = 36,913

interactions. For each age-correlated gene corresponding protein

in the network, we measured how ‘‘central’’ each node is within

the network using four commonly used node statistics:

1. Degree (k) is defined as

k nið Þ~the number of connections from a node nið Þ ð8Þ

2. Betweenness Centrality (B) is defined as the ratio of shortest

paths that go through a node (ni)

B(ni)~

P
s=ni=t[V

sst(ni)

sst

ð9Þ

where sst = number of shortest paths from node s to node t,

dst(ni) = number of shortest paths from node s to node t through

node ni.

3. Closeness Centrality (Clo) is defined as the average distance

from the particular node to all the other nodes in the whole

network:

Clo(ni)~

P
t=ni[V

d(ni,t)

N{1
ð10Þ

where N is the number of nodes in a network, and d(ni, t) = the

shortest path from node ni to all the other nodes in the network

4. Clustering Coefficient (Clu) is defined as the proportion of

neighbor’s actual connections among the number of neighbor’s

fully connections:

Clu(ni)~
2fe(ni,nj)g

ni|(k(ni){1)
ð11Þ

where e(ni, nj) = edge from node ni to node nj.

For each set of genes, we define the characteristic path length as the

average length of all pairwise shortest paths between every pair of

genes in the set.

L~

P
jwi

d(ni,nj)

N
ð12Þ

where N is the number of nodes in a age-group and d(ni, nj) is the

shortest path length of gene ni and nj.

Similar to what we did within a group, we amended the

equation to measure the characteristic path length between two

age groups

Lg1,g2
~

P
ni[g1,mj[g2

d(ni,mj)

N|M
ð13Þ

where g1 and g2 denote the two groups we are looking at, and Ng1 is

the number of nodes in an age-group g1 and Mg1 is the number of

nodes in the other age-group g2, and d(ni, mj) is the shortest path

length of gene ni and mj.

Intuitively, the larger the statistic is, the more distant the genes

in the set are from each other. Similarly, we define the

characteristic path length between two sets of genes as the average

length of all pairwise shortest paths between every pair of genes,

one each from the two sets, and use this statistic to measure how

proximate the two gene sets are on the network. We used these

statistics to measure how close the three gene groups by age

transition are similar to one another. We tested the statistical

significance of each statistic using a permutation test by comparing

the observed score with that computed using 1000 randomly

generated gene sets of the same size. The same permutation test

was performed for the characteristic path length statistics using

100 randomly generated gene sets/pairs of gene sets, as computing

the characteristic path lengths took considerably more time.

2.7 Functional annotation analysis
The functional annotation analysis was done by submitting the

gene lists to NIH DAVID online tool (http://david.abcc.ncifcrf.

gov/summary.jsp). The statistical significances of functional

annotations were calculated by Fishers’ exact test. To reduce

redundancy, we also used Functional Annotation Clustering in

DAVID to group similar annotations together. The grouping

algorithm is based on the hypothesis that similar annotations

should have similar gene members. The enrichment score of each

cluster that was used to rank its biological significance is the

geometric mean (in 2log scale) of member’s p-values in a

corresponding annotation cluster. In our analysis, we applied

enrichment score cut-off at 3 (equivalent to p-value,0.001) to

select the clusters of annotations.

Results

3.1 Age estimation using the naı̈ve Bayes approach on
human brain gene expression

We tested our NB age estimation model using the three normal

human brain datasets (H1,H3) (Table 1), each consisting of gene

expression profiles from three different areas of the frontal cortex:

the rostral cortex (Dataset H1 for the Brodman Area 10 (BA10)

region, see Methods section) [12], the dorsolateral prefrontal

cortex (H2 for the BA9 brain region), and the orbital prefrontal

cortex (H3, BA47) [16]. The ages of the subjects in each dataset

were uniformly distributed between 25 and 95 years old. Accuracy

A Bayes Model for Age Estimation Using Microarray
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in age estimation was evaluated using five-fold cross validation.

We compared the errors of age estimation using four settings

selected by our algorithm (N = 10, 20, 50 and 70) for the number

of genes correlated to each age threshold in our estimator. The

best N is the one with the least error in the five-fold cross

validation. We found that optimal N varies across all three regions

(Table 3), although N has very little impact on the estimation

accuracy for BA9 and BA47. The best age estimation in BA10 was

accurate to within 14.43 years of the actual age of the subject with

N = 70; age estimation could be accurate to within 9.48 years in

BA9 with N = 50; and age estimation error was 8.33 years in BA47

using N = 10 (Table 3). Among all three data sets, age estimation

error in BA10 (H1) is largest (14.38 years). One possible

explanation is that the number of probesets on the microarray

platform (Affymetrix hgu95av2) used for this dataset is only half

that of the platform (Affymetrix hgu133a) used for H2 and H3.

To determine the statistical significance of our predictions, we

randomly permuted the ages of the individuals in each brain

dataset (1,000 permutations performed) and examined the

estimated errors: less than 0.9% of the permutations had lower

age estimation errors than our observed error (8.33,14.43 years)

(Table 3). Therefore, our age estimators at each age threshold

performed significantly better than by random chance. We also

found that the difference between actual and estimated median

age on the same group of subjects in the cross validation is very

small (0.5 years) in BA9 (H2) and BA47 (H3), but relatively large

(9.5 years) in BA10 (H1), probably due to a smaller sample size

and fewer probesets on the microarray platform.

3.2 The Naı̈ve Bayes approach outperforms other models
for age estimation

Having demonstrated the accuracy of age estimation using our

NB model, we next compared its performance with other widely

used statistical models including linear regression (standard, lasso,

and stepwise) [13,14], and the POLYMARS (multivariate

adaptive polynomial spline regression) method [4], on datasets

H1,H3. Our five-fold cross validation results showed age

estimation errors of the NB model to be 0.14,4.38 years less

than other tested models, or up to 34.5% reduction in error

(Figure 1).

We also tested our NB model on a nematode time course data

set (GSE12290) published in [2]. In the paper, the authors applied

POLYMARS to identify the gene correlated with age in c.elegans

and showed difference between estimated physiological age and

chronological age to be approximately five years. We applied NB

model and other two models (linear regression and POLYMARS)

to the data set. By testing five-fold cross validation, we found the

estimated age using NB model is 3.0662.03 years (N = 20)

outperformed 4.4663.34 years using linear regression and

3.5662.68 years using POLYMARS. We also estimated the age

estimation error using larger number of N, we found estimated age

is 3.0761.99 years when N = 50 and 3.0161.96 years when

N = 70. Therefore, the optimal N is determined as 70 genes in the

three validation tests (N = 20, 50, and 70).

3.3 Genes down-regulated with age undergoing
significant transition at middle age

A feature of our NB approach is that each age-correlated gene is

associated with an age threshold with the biggest change in

expression level. With this property, we are able to identify the

transition age point, defined as the age thresholds at which a gene

undergoes the most drastic expression change. We ran our NB

classifier on the three brain data sets (H1,H3) and obtained genes

demonstrating significant statistical differences at each age

threshold in each data set with p,0.005; the number of significant

genes were 2190 for H1 (false discovery rate (FDR)#0.026), 2458

for H2 (FDR#0.041), and 2379 for H3 (FDR#0.043). We

analyzed the distributions of genes and their transition age points

by the following steps. First, we merged the gene sets correspond-

ing to transition age points that fall into the same decade and

obtained the list of genes associated for each decade. Second, we

Table 3. Best number of genes (N) used in age estimation and the difference of median of age is the absolute difference between
the median of estimated age and the median of chronological age.

BA10 BA9 BA47

Error in age estimation (five-fold cross validation) 14.43611.13 9.4866.85 8.3367.56

Best N 70 50 10

Difference of median of age (with actual age) 9.5 0.5 0.5

p values (permutation test) 0.009 0.002 0.001

The significance of the error was determined by obtaining 1,000 randomized cross-validation errors with age information randomly shuffled; the significance of the
prediction error is the fraction of the 1,000 randomized errors lower than the actual cross-validation error. The best N varies across regions.
doi:10.1371/journal.pone.0074578.t003

Figure 1. Performance of age estimation using the proposed
naı̈ve Bayes method and other methods. The five-fold cross
validation results showed age estimation errors of the naı̈ve Bayes
model to be 0.14,4.38 years smaller than in other tested models, thus
reducing error by 34%.
doi:10.1371/journal.pone.0074578.g001
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generated histograms to show the distribution of these gene lists on

each decade for three data sets. We compared the histograms of

the same age range for the three brain regions (20 s,70 s)

(Figure 2). The histograms showed these age-correlated genes are

not uniformly distributed by age for all three data sets. Specifically,

we found that most genes undergoing transition are down-

regulated with age in three regions and that the most common

transition was during the 50 s for BA9 (H2) and BA47 (H3) but a

decade earlier in BA10 (H1).

For each of the three brain regions we merged age-correlated

genes into three age groups: young (,40 years old), middle-age

(between 40 and 59 years old) and old (between 60 and 79 years

old). We examined the biological significance of the three groups

of age-correlated genes in each of the three brain regions using

Gene Ontology [33] and KEGG (Kyoto Encyclopedia of Genes

and Genomes) Pathway [34–36] annotation analysis by the NIAID

DAVID database [37]. We selected annotation terms with

significant transitions in at least two brain regions. These terms

can be clustered into five major categories (total 13 categories,

Table 4) based on their direction of change, the age by which the

most drastic change occurs, and brain region: synaptic function, fatty

acid/membrane metabolism, mitochondria, purine nucleotide binding and

actin cytoskeleton. Globally, we found that the majority of the

significant pathways show down regulation with age. Furthermore,

with few exceptions, a pathway significant in two brain regions will

have the same direction of change in both regions, although the

age transition point may differ. Analysis results are generally in

agreement with literature evidence: age-regulated reduction in

neuronal genes that are involved in synaptic function are found to

contribute to age-related cognitive change [38–40]. Fatty acid

pathways are known to play a role in limiting cognitive decline

during aging [41–44], and the observation of down-regulation is

consistent with observations that certain cognitive abilities decline

as a person ages [44]. Some studies have demonstrated that

mitochondrial RNA levels are decreased in human brain aging

[45] and oxidants generated by mitochondria appear to be the

major source of the oxidative lesions that accumulate with age

[46,47]. The category ‘‘actin cytoskeleton’’ shows the connection

of suggesting a connection between regulation of autophagy, axon

guidance and actin dynamics [48] and plays a role in the

development and maintenance of neuronal function in brain aging

[49]. All these published observations are consistent with our

findings. A full list of significant KEGG and GO terms are listed in

Table S1.

In the above analysis, we focused on gene changes at age

thresholds that are younger than 80 years in BA10 (H1) in order

to cross compare with the other two data sets where all

individuals are younger than 80 years old (Figure 2). We carried

out the same analysis for genes associated with 80 s and 90 s

(‘‘very old’’) in BA10, and identified genes differentially expressed

at every decade from 20 to 90 for BA10 for comparison (bars of

80 s and 90 s in Figure 2A). Interestingly, in BA10 the genes

associated with the very old group showed substantially more

genes down-regulated with age. More than 70% of the down-

regulated genes in ‘‘very old’’ group were also found in genes

down-regulated with age in the young group. We also found that

more than 63% of genes up-regulated with age in the very old

group overlapped with genes going in the same direction in the

young group. Functional annotation analysis using DAVID

showed that the young group and very old group in BA10 both

tend to be involved in nucleotide or, more specifically, purine

nucleotide (ATP/GTP) binding, but this was not true in the

middle-age and old groups.

3.4 Associations between age and gene expression levels
show similarity across brain regions in human frontal
cortex, though functional difference exists

We combined all age-correlated genes in the young, middle-age

and old groups in each data set and examined the overlaps among

the three datasets. We found that out of more than 2000 genes

with age-regulated gene expression in each Brodmann Area, 984

genes showed age-correlated gene expression in both BA9 and

BA47, 660 genes showed age-correlated gene expression in both

BA9 and BA10, and BA47 and BA10 had 654 genes in common

(Figure 3). Fisher’s exact test showed that all the pair-wise overlaps

were statistically significant (P-value,6610226). Although the

Venn diagram showed overlaps between BA10 and the other two

regions are statistically significant, our annotation analysis using

DAVID showed that BA10 is functionally different from the other

two brain regions, while BA9 and BA47 have more similar

biological functions (protein localization and transport).

3.5 Distribution characteristics of age correlated genes in
the protein-protein interaction network

Having examined the functional significance and overlap of

age-correlated genes and the effect of transition age points on these

properties, we next analyzed the distribution of these genes on the

protein-protein interaction (PPI) network to characterize how

much these genes interact. Protein-protein interaction gives the

binding relationship between proteins and indicates shared

biological activities and functions. To systematically understand

the functional relationships among age-correlated genes (P-

value,0.005) for every decade in age by our NB approach, we

first mapped the age-correlated genes to the Human Protein

Reference Database (HPRD) PPI network [32], and analyzed four

commonly used topological properties: degree, betweenness,

closeness, and clustering coefficient. These properties are defined

to measure where the proteins are located and how central or

critical they are in the PPI network [50–52].

We used the same age-correlated gene grouping as in the

pathway analysis for the network analysis. Out of 5,073 age-

correlated genes, 3497 were found in the PPI network. We first

calculated the four node centrality properties of all 9267 nodes in

the PPI network including degree (mean = 7.97), betweenness

centrality (mean = 3.4961024), closeness centrality (mean = 0.24),

and clustering coefficient (mean = 0.11). We extracted the

centrality properties of nine lists of age-correlated genes (combi-

nation of the three age transition time points and three brain

regions). Permutation tests showed most groups have significantly

higher degree (z-score.3), betweenness (z-score.3), and closeness

centrality (z-score.3) when compared to random gene lists of the

same size (Table 5). This result suggests that age-correlated genes

are in central positions in the PPI network, and the high numbers

of connections indicate these genes tend to interact with more

genes than average (i.e. they have a high degree). These genes are

involved in more biological pathways (have high betweenness

centrality), and are also close to each other on the network (have

high closeness centrality).

We further divided each group into up-regulated and down-

regulated gene sets using the sign of the log2-transformed odds-

ratio obtained earlier when building the NB model (Table S2).

The new gene lists showed even higher central roles (higher z-

score) in three properties than the combining both the up- and

down-regulated groups. Again, none of the gene groups showed

statistical significance in clustering coefficient (absolute z-score,3).

No notable tendency has been found for the genes when

participating in any potential protein modules or complexes.

A Bayes Model for Age Estimation Using Microarray
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In order to inspect any biological function clustering within and

between different age-correlated gene groups, we examined how

closely the nodes are connected to each other by calculating the

average characteristic path length for age-correlated genes in the

PPI network. As shown in Table 6, almost all gene pairs in each

brain region have path lengths (between 3.895 and 4.082), which is

shorter than ‘‘the shortest path length’’ (4.24) of the network. This

indicates that these age-correlated genes are more closely

Figure 2. Histograms of genes with age-regulated transition points within each decade between 25 and 95 years (p-value#0.005) in
three brain regions. The distribution of age-regulated genes is very different in BA10 compared to BA9 and BA47.
doi:10.1371/journal.pone.0074578.g002
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connected with each other than other interacted genes in the

network. We next computed the characteristic path lengths

between-groups (Method Section) of the three age-correlated gene

groups (young, middle-age, and old) and obtained z-scores (,25)

by permuting the age-correlated genes in the network. We found

that z-scores of the characteristic path lengths are significantly

lower in all three groups and between every two groups. This is

expected because of the substantial overlap among the lists of age-

correlated genes in the three cortex regions.

Discussion

The proposed naı̈ve Bayes model is our attempt to develop a

method for more accurate age estimation. Our method is also an

extension of our previously published age estimation model [21].

In that paper, we reported our aging study on the same three brain

regions using linear regression. With the same p-value cut-off at

0.005, our NB method showed more sensitivity than linear

regression and the numbers of genes shared between regions were

found to be significantly greater; furthermore the NB method

allowed us to discern a greater number of significant functional

associations.

We observed diversity of age transition point and brain region

specificity in the three datasets. These specificities are significantly

associated with pathways (e.g. Table 4) for down-regulated genes;

although there are as many up-regulated genes, the number of

significant pathways is much smaller. This suggests a considerable

portion of age-correlated gene expression changes reflects more

than just random breakdown. These findings affirm the rich

complexity in human brain aging, the value of these high-quality

gene expression datasets, and the importance of reanalyzing these

preexisting datasets using newer algorithms.

It is worth noting that the choice of N, the number of features in

the NB model, can affect the performance of age estimation. In

our study we used a standard ‘‘model selection’’ approach in

machine learning literature: we determined the best of four

different settings of N features (probe sets) for each age threshold

by choosing the one with the best performance on the training

data. It is important to note that having more features does not

necessarily mean the accuracy will improve because over-fitting

can occur.

An underlying assumption of our approach is that global gene

expression reflects the true ‘‘physiologic age’’ of an individual.

Given that independent physiological age biomarkers are not

available for these datasets, chronological ages are used as an

informative proxy of physiologic age in our cross validation

verification. Because some individuals appear to age more rapidly

than others, for any particular individual there may not be a

perfect correspondence between the individual’s predicted phys-

iological and actual chronological age. However, for a population

of individuals, there should be a good correspondence between

these values. This is also in agreement with the finding that the

error in predicting population average is much lower than error

for individuals.

We merged age-correlated genes by combining decades into

young, middle-age and old age groups, and found that BA9 shared

biological functions with BA47 in the middle-age group and with

BA10 in young group. We also found that BA47 shared genes

involved in phosphorylation processes in the young and old groups

while both the young and old groups in BA10 are involved in

neuron projection and synaptic transmission (Table S1). Synaptic

transmission has been shown to be partly unaffected or even

Table 4. Functional annotation analysis summary.

BA10 BA47 BA9

Cluster Description
No.
pathways Y M O Y M O Y M O

Dn Up Dn Up Dn Up Dn Up Dn Up Dn Up Dn Up Dn Up Dn Up

1 Synapse 40 * * * * * *

2
Fatty acid/membrane
metabolism

4 *

3 Mitochondria 24 * * *

4
Purine nucleotide
binding

24 * * * * *

5 Actin cytoskeleton 4 *

6
Ubiquitin
proteolysis;
channel activity

49 * * * *

7
Translation; DNA
damage response

5 * *

8
Transcriptional
activation

12 * * *

9 Neuronal function 49 * *

10
Mitochondrial
transport

9 *

11
Cytoskeleton/RNA
splicing

8 *

12 Calcium transport 4 *

13 Chromatin regulation 4 *

doi:10.1371/journal.pone.0074578.t004
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compensatory in the aging process in the rodent hippocampus

[53].

Notably, our analysis demonstrated that genes transitioning in

the young group shared functional roles with genes in the very old

group in BA10, including neuron projection, and ATP binding.

The presence of genes involved in the morphogenesis of neuron

projections may imply a change in the aging brain’s ability to form

connections between neurons, or that this process plays a

protective role. The finding of age-correlated genes being involved

in ATP binding is consistent with many studies showing that the

efficiency of these processes is modulated by both aging [54] and

AD [55], and it is also consistent with the role of oxidative stress in

neuronal cell death [56]. It is also possible that these similarities

between the gene sets associated with young and very old indicate

survivor phenotypes, i.e. a lack of youthful gene expression in

middle age may be linked to an early demise.

Our analysis showed that the associations between age and gene

expression levels are substantially shared among the three human

frontal cortex regions (Figure 2), yet there were apparent

functional differences among three data sets (Table 4). In

Table 4, if we cross-compared the age-correlated genes in three

brain regions we found that BA9 has more overlap with BA47 and

BA10, while BA47 and BA10 are less similar. Thus, we have a

perplexing situation where we observe significant overlap between

age-correlated genes among regions, but there is little overlap in

significant pathways in the annotation analysis. It turns out that

our network analysis on the distribution of age-correlated genes in

the PPI network (Table 5) provides a possible explanation. It is

well understood that degree centrality measures the amount of

connecting neighborhood of a protein in the network, and

therefore proteins with high degree have the potential to

participate in more functional protein complexes [57]. Between-

ness centrality is a ‘‘bottleneck’’ measure: it measures the fraction

of shortest paths that pass through a given node, and thus

quantifies the ability of the node to monitor communication

between proteins or pathways [50]. Therefore, a node with high

scores in both degree and betweenness centrality in the network

could be involved in multiple protein complexes distributed across

several pathways. The fact that a significant portion of age-

correlated genes have this characteristic suggests that age-

correlated genes in each region may function together closely or

even as protein complexes, and hence different pathways were

identified in each of the brain regions because they have different

combinations of age-correlated genes.

We also calculated a different topological property called

average clustering coefficient and found no significance in any

age/region group (Table 6). One important property of the

average clustering coefficient is that it measures the local

‘‘cliquishness’’ of a network neighborhood of a protein [58].

Mathematically, a clique is a subnetwork where every node is

connected to one another; therefore the average clustering

coefficient measures if all interacting partners of a gene tend to

interact with each other and be part of a single complex. In our

study, the z-scores of degree, betweenness, and closeness

centralities of age-correlated genes were all very high, but this

was not the case for the average clustering coefficient. This implies

that although the numbers of interactants of age-correlated genes

are high, the interactants themselves do not necessarily form

complexes together; rather they participate in distinct functional

pathways. This is consistent with our annotation analysis result

that age-correlated genes are associated only with higher, less

specific levels in Gene Ontology hierarchy.

There are certain limitations of this type of ‘‘cross-sectional’’

experimental design for human brain aging. First, each subject is

only observed once (postmortem) and differences between

individuals contribute variance to the data. Second, since we are

directly measuring the physiological state, our age estimator is for

Figure 3. Venn diagram of three human brain regions. Age-
correlated genes (p#0.005) in three human brain regions have
statistically significant overlaps. Shown are the numbers of genes with
age-correlated expression in each brain region.
doi:10.1371/journal.pone.0074578.g003

Table 5. Topological Characteristics of the protein-protein interaction network of age-correlated genes.

Topological Characteristics in Protein-Protein Interaction Network

Degree Betweenness Centrality Closeness Centrality Clustering Coefficient

Young
Middle-
aged Old Young Middle-aged Old Young

Middle-
aged Old Young

Middle-
aged Old

BA10 13.083 11.894 12.645 6.74E-04 6.14E-04 7.05E-04 0.250 0.249 0.250 0.097 0.103 0.100

Z-score 10.412 8.761 9.009 6.787 5.874 6.968 9.863 8.798 8.827 21.212 20.322 20.750

BA9 10.237 10.774 10.844 5.15E-04 5.45E-04 5.30E-04 0.247 0.247 0.250 0.094 0.101 0.094

Z-score 3.665 7.087 5.806 2.669 5.103 3.720 4.804 8.124 8.546 21.318 20.726 21.595

BA47 11.254 10.516 8.573 6.29E-04 5.29E-04 3.78E-04 0.247 0.246 0.244 0.102 0.102 0.087

Z -score 5.635 6.495 0.940 4.868 4.593 0.453 5.130 7.212 2.705 20.406 20.612 22.074

For each of the three brain regions age-correlated genes divided into three age groups: young (,40 years old), middle-age (between 40 and 59 years old) and old
(between 60 and 79 years old).
doi:10.1371/journal.pone.0074578.t005
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the ‘‘physiological age’’ which will be different from the actual age

of an individual. As independent age biomarkers were not

available for the datasets, we use the chronological age as a

‘‘surrogate’’ covariate for the physiological age. Although the

difference between the ‘‘physiological age’’ and the chronological

age varies at the individual level, the difference is stochastic and

will be smaller when we average over the entire population, as our

analysis shows.

In addition to the intrinsic stochastic difference between

physiological aging rate and actual age, there are other exogenous

factors that may contribute to the age estimation errors: (1) quality

and protocol for RNA extraction and profiling, and postmortem

interval differ from study to study, (2) within the same study, brain

region dissection may not match perfectly, (3) there may be other

undiagnosed neurological conditions. For example, early-stage

neurodegeneration may take place in some older subjects and

perturb their expression profile substantially, yet it is hard to

distinguish from the natural brain aging process, which also

involves slight brain atrophy and amyloid accumulation. A larger

sample size will alleviate this issue and produce more robust

results.

A sensible future direction will be to perform larger studies with

more brain regions and collect independent physiological age

biomarkers such as MRI imaging data. Correlating brain aging

with other tissue types such as blood over the same set of

individuals enables us to explore common and different parts of

aging rate between different tissues, but can also lead to more

accessible biomarkers. A powerful approach is to integrate gene

expression with genetic data to find expression quantitative trait

linkage (eQTL) that influence expression of age-correlated genes;

this will allow us to better pinpoint causal relations [59,60]. We

also plan to apply our naı̈ve Bayes model to other age-informative

biomarkers such as cerebrospinal fluids (CSF), plasma proteomic

data, and MRI in order to better quantify the correlations between

rate of aging and neurodegeneration.

Conclusions

We have developed a naı̈ve Bayes (NB) model for assessing the

capacity of genes undergoing relatively large transitions in

expression at particular age points to provide an estimate of an

individual’s age. When we applied our method to three brain

regions located in the frontal cortex, we found a 1.46% to 34.46%

improvement in chronological age estimation accuracy over other

published models. We were able to obtain genes with age-

correlated expression changes at particular age thresholds at a p-

value of 0.005. We determined the genes associated with each

decade by aggregating gene sets associated with age thresholds in

same decade. We found that age-correlated genes are not evenly

distributed on the age scale, but rather are most prominent around

age 50, suggesting that important changes in basic physiology

occur around this age.
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Table S1 Functional annotation analysis for three brain
regions is done using NIAID DAVID online tool (http://
david.abcc.ncifcrf.gov/tools.jsp). We only listed Gene

Ontology terms and KEGG pathways that have significant p-

values (p-value#0.001) and shared by at least two groups. The

terms have similar function were grouped together and have

enrichment score greater than 3 (See Method section).
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