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Abstract

A balance between excitatory and inhibitory synaptic currents is thought to be important for several aspects of information
processing in cortical neurons in vivo, including gain control, bandwidth and receptive field structure. These factors will
affect the firing rate of cortical neurons and their reliability, with consequences for their information coding and energy
consumption. Yet how balanced synaptic currents contribute to the coding efficiency and energy efficiency of cortical
neurons remains unclear. We used single compartment computational models with stochastic voltage-gated ion channels
to determine whether synaptic regimes that produce balanced excitatory and inhibitory currents have specific advantages
over other input regimes. Specifically, we compared models with only excitatory synaptic inputs to those with equal
excitatory and inhibitory conductances, and stronger inhibitory than excitatory conductances (i.e. approximately balanced
synaptic currents). Using these models, we show that balanced synaptic currents evoke fewer spikes per second than
excitatory inputs alone or equal excitatory and inhibitory conductances. However, spikes evoked by balanced synaptic
inputs are more informative (bits/spike), so that spike trains evoked by all three regimes have similar information rates (bits/
s). Consequently, because spikes dominate the energy consumption of our computational models, approximately balanced
synaptic currents are also more energy efficient than other synaptic regimes. Thus, by producing fewer, more informative
spikes approximately balanced synaptic currents in cortical neurons can promote both coding efficiency and energy
efficiency.
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Introduction

Cortical neurons receive many thousands of weak (sub-millivolt)

excitatory synaptic inputs [1], the majority of which originate from

other local or distant neurons within the cortex [2,3]. The currents

generated by these excitatory inputs are approximately balanced by

inhibitory currents [4,5] generated by fewer, stronger synaptic

inputs from inhibitory interneurons [6]. During ongoing activity in

vivo, excitatory and inhibitory currents depolarize the membrane

from the resting potential to around 260 mV, slightly below the

threshold for spike initiation [7]. For excitatory and inhibitory

currents to balance at approximately 260 mV, the inhibitory

conductances must be larger than excitatory conductances.

Operating this close to threshold, small fluctuations in synaptic

inputs can depolarize the neuron sufficiently to trigger spikes, giving

rise to highly variable interspike intervals, similar to those expected

from a Poisson process [4,5]. Depolarizing the membrane with

balanced synaptic currents also reduces the membrane time

constant, thereby increasing temporal resolution and extending

bandwidth [8–10], and alters both the neuron’s sensitivity and its

working point by changing gain [11–14]. Thus, depolarization by

balanced excitatory and inhibitory currents affects numerous

aspects of information processing in cortical neurons.

Cortical information processing accounts for a considerable

proportion of the mammalian brain’s energy consumption, and

cortical energy usage is dominated by synaptic transmission and

action potentials [15–17]. The cortex’s restricted energy budget

places limits on the mean spike rate and hence neural processing,

suggesting that the cortex may be under strong selective pressure

to save energy and increase efficiency [15,18]. Balanced synaptic

currents increase energy consumption by depolarizing the

membrane potential and lowering the input resistance. Conse-

quently, balanced synaptic currents will affect cortical information

processing and energy consumption, yet how they do so remains

unclear.

To assess the impact of balanced synaptic currents on

information coding and energy consumption, we compared

single-compartment models with stochastic voltage-gated Na+

and K+ channels driven by one of three synaptic input regimes;

excitatory inputs only, equal excitatory and inhibitory conduc-

tances (balanced synaptic conductances), and stronger inhibitory

than excitatory conductances (balanced synaptic currents). By

quantifying the performance of these models over a range of

synaptic input statistics, we show that balanced inhibitory and

excitatory synaptic currents increase both coding efficiency (bits/

spike) and energy efficiency (ATP molecules/bit) in comparison to
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the other synaptic input regimes. Two factors contributed to the

superior efficiency of models with balanced synaptic currents, their

firing rates were lower and their spikes more precise. Thus, our

models show that balanced synaptic inputs can improve both the

coding efficiency (bits per spike) and the energy efficiency (bits per

ATP molecule) of cortical neurons.

Results

Single compartment models
We simulated the responses of a 100 mm2 single compartment

model containing stochastic voltage-gated Na+, K+ channels and a

non-probabilistic leak conductance, to excitatory synaptic inputs

alone (Figure 1A) or to combinations of excitatory and inhibitory

inputs (Figure 1B). In the limit of large numbers of Poisson

synaptic events with small unitary conductances converging on the

post-synaptic compartment, the conductances become a Gaussian

white noise process (‘‘the diffusion approximation’’) [19]. For

synaptic events with a finite time constant, fluctuations in

conductance are represented as an Ornstein-Uhlenbeck (OU)

process (see Methods) [20], parameterized by the means (me, mi),

the standard deviations (se, si), and the time constant of the

excitatory and inhibitory synaptic events (te, tI were both fixed at

3.3 ms) [20]. The input conductance contrast is the ratio of s to m.

The mean synaptic conductance depends upon the rate, the

unitary synaptic event amplitude, and the exponential decay time

constant of synaptic events (Eq. 5), whilst the contrast is a function

of the rate and the decay time constant (Eq. 7). Therefore, when

we increase the conductance contrast we are reducing the

frequency with which afferent spikes activate synapses, and when

we increase the mean conductance at constant contrast we are

increasing event amplitude at constant rate.

We modeled three synaptic input regimes. The first was

excitation only (Figure 1C,F,I). In the second regime, balanced

conductance, the means and standard deviations of the excitatory

and inhibitory synaptic conductances were equal, (Figure 1D,G,J).

In the third regime, approximately balanced current, the mean

excitatory and inhibitory conductances were adjusted

(Figure 1E,H,K) to produce approximately equal inward and

outward currents at the mean sub-threshold membrane potential

of approximately 264 mV. In this balanced current regime,

mi = 5me and, because inhibitory and excitatory conductances

always had the same contrast, si = 5se [7]. All three synaptic

regimes evoked action potentials (APs, spikes), the rate of which

depended upon the specific regime, and the stimulus mean and

contrast (Figure 1). As expected, increasing the inhibitory input

reduced spike rates (Figure 1I–K).

Spike rates
We quantified the differences in the spike rates of the models

driven by different synaptic input regimes. Within each regime we

varied the means of the excitatory and inhibitory inputs at

different contrasts (Figure 2), while keeping mi = me in the balanced

conductance regime, and mi = 5me in the approximately balanced

current regime. At low contrasts (i.e. high synaptic event rates),

increasing the mean synaptic conductance in the excitatory regime

increases the spike rate from ,10 spikes/s with minimal input to

over 40 spikes/s with 100 mS/cm2 (Figure 2A,D). Adding an

inhibitory conductance with the same mean conductance so that

model operates in the balanced conductance regime, shifts the

curve relating mean synaptic conductance to spike rate down,

reducing the maximum spike rate to 30 spikes/s with 100 mS/cm2

(Figure 2A,E). This downward shift reduces sensitivity, yet

increases the range over which the compartment can operate. In

the approximately balanced current regime, mi = 5me, increasing

the total mean conductance inverts the trend seen in the other two

regimes; spike rates decrease from ,10 spikes/s to ,2 spikes/s

(Figure 2A,F).

Next we examined responses to higher contrasts that are

produced by larger synaptic events occurring at lower rates. In

the excitatory regime the spike rate increases with the mean

synaptic conductance, from ,10 spikes/s with no input to ,50

spikes/s with 100 mS/cm2 (Figure 2B,D). As with low contrasts,

the addition of an inhibitory input with balanced conductance,

mi = me, shifts the rate/conductance curve down, reducing the

maximum spike rate to ,40 spikes/s with 100 mS/cm2

(Figure 2B,E). However, in the balanced current regime, mi = 5me,

increasing the total mean conductance shifts the rate/conduc-

tance curve down, reducing the maximum spike rate to ,25

spikes/s with 100 mS/cm2 (Figure 2B,F). Again, these downward

shifts act as a divisive gain control, reducing sensitivity and

increasing the range over which the compartment can operate.

Thus, by adjusting the amount of inhibition it is possible to tune

the responses of the post-synaptic neuron (Figure 2B, right panel).

Comparing different contrast levels in the approximately

balanced current regime shows that the curve relating spike rate

to excitatory conductance becomes steeper at higher contrasts

(Figure 2C). Thus, increasing the slope of the F–I curve is not

only a property of the intrinsic biophysics but is also strongly

dependent upon the input stimulus statistics (cf. Stemmler and

Koch [21]; Figure 2).

Information coding
Differences in the inter-spike intervals of spikes evoked by the

three synaptic regimes were quantified using the coefficient of

variation (CV) (see Methods). Irrespective of the stimulus contrast,

excitatory synaptic inputs alone generated spike trains with a high

CV when the mean conductance was low (Figure 3A). The

addition of inhibitory synaptic inputs of the same mean

conductance and contrast increased the CV, indicating greater

Author Summary

The adult human brain consumes more than 20% of the
resting metabolism. With ,19–23 billion neurons, the
cerebral cortex consumes much of this energy, mainly to
restore ion gradients across membranes for electrical
signaling. Even small increases in the average spike rate
of cortical neurons could cause the cortex to exceed the
energy available for the whole brain. Consequently, the
cortex is likely to be under considerable selective pressure
to reduce spike rates but, given its important roles in
behavior, to maintain information processing. Numerous
experimental studies have shown that excitatory and
inhibitory synaptic currents are balanced in cortical
neurons. Could this feature of cortical neurons contribute
to their efficiency? We tested this by making comparisons
among computational models with different amounts of
inhibition and excitation: excitation only, equal excitation
and inhibition (balanced synaptic conductances), and
more inhibition than excitation (balanced synaptic cur-
rents). Our simulations show that computational models
with balanced synaptic currents have similar information
rates to the other regimes but achieve this with fewer,
more informative spikes that consume less energy.
Therefore, in comparison to other synaptic regimes,
balanced synaptic currents have the highest coding
efficiency and the highest energy efficiency.

Balanced Synaptic Currents Promote Efficiency
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Figure 1. The single compartment model. (A) A circuit diagram of a single compartment model with two voltage-gated conductances, gNa and
gK, and a leak conductance, gl. The model has a capacitance, C, determined by the size of the compartment and receives excitatory synaptic inputs,
gexcit. (B) A circuit diagram of a single compartment model as in A with an additional inhibitory synaptic input, ginhib. (C) An example of a low mean,
low contrast excitatory conductance waveform. (D) An example of a low mean, low contrast excitatory conductance waveform and an identical
inhibitory conductance waveform. (E) An example of a low mean, low contrast excitatory conductance waveform and an inhibitory conductance
waveform with five-fold greater mean and standard deviation. (F) The synaptic current evoked by the stimulus shown in C. (G) The synaptic current
evoked by the stimulus shown in D. (H) The synaptic current evoked by the stimulus shown in E. (I) The spike train evoked by the stimulus shown in C.
(J) The spike train evoked by the stimulus shown in D. (K) The spike train evoked by the stimulus shown in E.
doi:10.1371/journal.pcbi.1003263.g001

Balanced Synaptic Currents Promote Efficiency
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irregularity in the spike trains, even at high mean conductance

levels (Figure 3B). Increasing the inhibitory synaptic inputs to

balanced currents, mi = 5me, increased the CV still further,

indicating even greater irregularity in the spike trains (Figure 3C).

The CV confounds variation due to the fluctuating synaptic

input (signal) with noise generated by the stochastic activation of

voltage-gated Na+ and K+ channels. Noise is identified by

comparing responses to repeated presentations of the same signal

and its effects on coding accounted for with information theoretic

metrics [22]. For a given stimulus, the total entropy is a measure of

the repertoire of spiking patterns that can be produced by the

compartment, setting its information capacity [23]. We measured

the total entropy by presenting a different conductance waveform

on each subsequent trial (unfrozen noise) (see Methods). The total

spike train entropy generated by excitatory synaptic inputs alone

increases with the mean conductance, me (Figure 3D). The addition

of inhibitory synaptic inputs with the same mean and contrast

decreases the total entropy (Figure 3E), and entropy decreases still

further when the current is approximately balanced by increasing

the inhibitory input so that mi = 5me (Figure 3F).

We also presented the same conductance waveform repeatedly

(frozen noise) to quantify the noise entropy of the responses (see

Methods), which is a measure of spike train reproducibility [23].

With purely excitatory inputs of low contrast the noise entropy

increases with mean conductance (Figure 3G). The addition of

inhibition that balances the excitatory conductance, mi = me,

decreases the noise entropy (Figure 3H cf. Figure 3G), and again

noise entropy increases as synaptic conductance increases.

Increasing the relative strength of inhibition to approximately

balance current, mi = 5me, greatly reduces noise at all combinations

of contrast and mean conductance (Figure 3I), making the spikes

more reproducible from trial to trial.

Figure 2. Firing rates of spike trains evoked by three different synaptic input regimes. (A) The firing rate of the single compartment
model for three different synaptic regimes; excitation alone, identical excitation and inhibition, and five-fold greater inhibition than excitation. All
stimuli have a low contrast (0.1). (B) (left panel)The firing rate of the single compartment model with increasing inhibition. The amount of inhibition
varies from none (excitation alone) to five-fold greater inhibition than excitation. All stimuli have a high contrast (0.5). (right panel) The firing rate of
the single compartment model with different levels of inhibition. (C) The firing rate of the single compartment model for five-fold greater inhibition
than excitation. The stimulus contrast ranges from 0.1 to 0.5. (D) (top panel) Action potentials in response to a mean excitatory (blue trace)
conductance of 20 mS/cm2 at three different contrasts (top: 0.1, middle: 0.25. bottom: 0.4). (bottom panel) The information rates of spike trains
generated by excitatory conductances alone. (E) (top panel) Action potentials in response to a mean excitatory (blue trace) and inhibitory (red trace)
conductance of 20 mS/cm2 at three different contrasts (top: 0.1, middle: 0.25. bottom: 0.4). The x- and y- scales are identical to that in D. (bottom
panel) As in D, except that an identical inhibitory synaptic input has been added. (F) (top panel) Action potentials in response to a mean excitatory
(blue trace) conductance of 20 mS/cm2 at three different contrasts (top: 0.1, middle: 0.25. bottom: 0.4). The mean and standard deviation of the
inhibitory conductance (red trace) is set at five times that of the excitatory conductance. The x- and y- scales are identical to that in D. (bottom panel)
As in D, except that the excitatory input is accompanied by a five-fold greater inhibitory synaptic input. The x- and y-axes represent the mean and
contrast of the excitatory conductance.
doi:10.1371/journal.pcbi.1003263.g002
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The difference between the total and noise entropies determines

the mutual information (MI) of the spike trains, a direct measure of

the amount of information free of assumptions about how the

information is represented and what it means [23]. We calculated

the MI represented in the spike trains generated by each synaptic

input regime (Figure 4A–C). The information rate increases with

input contrast when the synaptic inputs are purely excitatory

(Figure 4A) because increasing contrast increases the signal

amplitude, and hence the signal-to-noise ratio (SNR) within the

model compartment. Incorporating inhibition identical to the

excitation (Figure 4B) had little effect on the information rates, and

they vary with contrast and mean conductance level in the same

way. The changes are small because the addition of inhibition

reduces the total entropy and the noise entropy by equivalent

amounts (median reduction is 1.1 fold). When inhibition is

increased to approximately balance currents, mi = 5me, the noise

Figure 3. Irregularity and entropy of spike trains evoked by three different synaptic input regimes. (A) The Coefficient of Variation (CV)
of the interspike interval distribution of spike trains generated by excitation alone. (B) As in A, except that an identical inhibitory synaptic input has
been added. (C) As in A, except that the excitatory input is accompanied by a five-fold greater inhibitory synaptic input. (D) The total entropy of
responses of spike trains generated by excitation alone. (E) As in D, except that an identical inhibitory synaptic input has been added. (F) As in D,
except that the excitatory input is accompanied by a five-fold greater inhibitory synaptic input. (G) The noise entropy of responses of spike trains
generated by excitation alone. (H) As in G, except that an identical inhibitory synaptic input has been added. (I) As in G, except that the excitatory
input is accompanied by a five-fold greater inhibitory synaptic input. The x- and y-axes represent the mean and contrast of the excitatory
conductance.
doi:10.1371/journal.pcbi.1003263.g003

Balanced Synaptic Currents Promote Efficiency
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entropy reduces by a factor of 2.3 fold (averaged across the range

of contrasts and mean conductance levels) and the total entropy

reduces 1.7 fold (Figure 4C). In other words, increased inhibition

produces highly irregular spike trains that are precisely timed over

trials. This simultaneous yet unequal drop in both total entropy

and noise entropy produces a marginally better information

encoding – the area of poor encoding (low bit rate) increases but

there is a steeper rise to a higher bit rate at the highest values of

contrast and mean conductance. Hence, more inhibition (approx-

imately balanced currents) causes weak signals to perform worse

and stronger signals to perform marginally better.

Coding efficiency
Differences in the information rates of spike trains generated

by the three synaptic regimes are dependent partly upon the

spike rate (Figure 2D–F) [24]. However, by dividing the

information rate by the corresponding spike rate for each

conductance stimulus for a particular synaptic regime it is

possible to determine the information encoded by each spike,

the coding efficiency (Figure 4D–F). The coding efficiency of

spikes evoked by excitation alone or by identical excitation and

inhibition was similar; both attained between 0.1 and 2.4 bits/

spike with the higher values being generated by high contrast,

low mean stimuli (Figure 4D,E). Increased inhibition not only

increases the coding efficiency across the entire stimulus space

but also alters the trends so that low mean, low contrast stimuli

evoke the most bits/spike (Figure 4F). The higher coding

efficiency of the increased inhibition stimuli derives from the

increased reliability and precision of the spikes they generate

(Figure 3I) and emphasizes that although they achieve similar

information rates to the other synaptic regimes, they do so

despite far lower spike rates.

Energy consumption
The ion fluxes across the membrane that generate electrical

signals and noise in neurons consume energy because the Na+/K+

ATPase must expel Na+ ions and import K+ ions against their

concentration gradients, using the energy provided by ATP

[16,25,26]. The ATPase hydrolyzes one ATP molecule to ADP to

expel 3 Na+ ions and import 2 K+ ions and this stoichiometry

allows one to calculate the energy consumption (Methods) from

the total fluxes of Na+ and K+ across the membrane [16]. In all

three synaptic regimes, the model’s energy consumption increased

with the excitatory synaptic conductance so that spike trains

generated by high mean, high contrast stimuli used the most

energy (Figure 5A–C). Comparison among the three synaptic

input regimes shows that energy consumption across the entire

stimulus space drops as inhibition increases (Figure 5A–C).

The total energy consumption of our single compartment model

is determined by the currents flowing through the excitatory and

inhibitory synaptic conductances, the voltage-gated ion channels

that generate the action potentials, and the leak conductance

[16,27]. We partitioned the energy consumption into these

component parts to determine their relative contributions (see

Methods) (Figure S1). Under all synaptic regimes, and with all

combinations of contrast and mean synaptic conductance, the

currents flowing through voltage-gated ion channels during action

potentials (Figure S1A–I) were the primary energy consumers.

Figure 4. Information rate and coding efficiency evoked by three different synaptic input regimes. (A) The information rates of spike
trains generated by excitatory conductances alone. (B) As in A but with identical excitatory and inhibitory conductances. (C) As in B but the inhibitory
conductance is five-fold greater than the excitatory conductance in both mean and standard deviation. (D) The information per spike of spike trains
generated by excitatory conductances alone. (E) As in D but with identical excitatory and inhibitory conductances. (F) As in E but the inhibitory
conductance is five-fold greater than the excitatory conductance in both mean and standard deviation. The x- and y-axes represent the mean and
contrast of the excitatory conductance.
doi:10.1371/journal.pcbi.1003263.g004

Balanced Synaptic Currents Promote Efficiency
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This explains why the trends in energy consumption (Figure 2D–F,

5A–C) closely resemble those in spike rate (Figure 2E–F).

In both the excitation only and balanced conductance regimes,

action potentials account for between 85 and 90% of the total

energy consumption, and the highest AP consumption occurring

with high mean, high contrast stimuli (Figure S1C,F). The

majority of the remaining energy is consumed by the leak

conductance, between 5–12%, the energy consumed decreasing as

the stimulus mean increases (Figure S1A,D). The synaptic currents

account for just 2–4% of the total energy consumption, increasing

with higher stimulus means (Figure S1B,E).

Increasing inhibition to approximately balance the excitatory

synaptic current, mi = 5me, reduces the fraction of the energy

consumed by the voltage-activated currents to between 50 and

80% (Figure S1I). These active currents consume the least

energy with high mean, low contrast stimuli, the costs rising

with increasing contrast or decreasing stimulus mean (Figure

S1I). The opposite trend occurs for the synaptic costs, which

rise from 2 to 30% of the total energy consumption as the

stimulus mean increases and the contrast decreases (Figure

S1H). The leak current consumes between 7 and 15%, the

highest consumption occurring at low contrasts (Figure S1G).

These trends can be explained by the reduced spike rates

evoked by low contrast stimuli, especially with high mean

stimuli, which cause the spike rate to drop below the

spontaneous spike rate (Figure 2F).

Energy efficiency
The energy efficiency (bits/ATP molecule) of a spike train can

be calculated by dividing the mutual information rate (bits/s) by

the energy consumed (ATP molecules/s). Increased inhibition

generates spike trains that are more efficient than either excitation

alone or identical excitation and inhibition irrespective of the

stimulus mean and contrast (Figure 5D–F). Increasing both the

mean and the contrast of the stimulus produces the highest energy

efficiency, up to 5*1027 bits/ATP molecule for increased

inhibition (Figure 5D–F) attributable to a drop in spike rate,

which reduces total consumption while coding efficiency, the

number of bits carried by each spike, increases (Figure 5D–F).

Net currents and efficiency
We compared the performance of the three synaptic regimes in

terms of the net currents that they produce with low and high

contrast stimuli. Both the excitation alone and the equal excitation

and inhibition regimes generated an increasingly large net inward

current as the mean excitatory synaptic conductance increases,

irrespective of the stimulus contrast (Figure 6). However, when the

inhibitory conductance is five-fold greater than the excitatory,

there is no net current flow (Figure 6). Comparison of the three

regimes shows that balanced synaptic currents generate spike

trains with higher mutual information rates (Figure 6A), and lower

energy consumption (Figure 6B) than either of the regimes that

produce a higher net current. Because of the low spike rates

Figure 5. Energy consumption and energy efficiency evoked by three different synaptic input regimes. (A) The energy consumption of
spike trains generated by excitatory conductances alone. (B) As in A but with identical excitatory and inhibitory conductances. (C) As in B but the
inhibitory conductance is five-fold greater than the excitatory conductance in both mean and standard deviation. (D) The energy efficiency of spike
trains generated by excitatory conductances alone. (E) As in D but with identical excitatory and inhibitory conductances. (F) As in E but the inhibitory
conductance is five-fold greater than the excitatory conductance in both mean and standard deviation. The x- and y-axes represent the mean and
contrast of the excitatory conductance.
doi:10.1371/journal.pcbi.1003263.g005

Balanced Synaptic Currents Promote Efficiency
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generated by balanced synaptic currents, this results in improved

metabolic efficiency (Figure 6C), and more information per spike

(Figure 6D) than the other synaptic input regimes.

Discussion

We have shown that approximately balanced inhibitory and

excitatory synaptic currents increase both coding efficiency and

energy efficiency in comparison to two other synaptic input

regimes – excitation alone, and balanced excitatory and inhibitory

conductances. Key to this improvement in efficiency is a reduction

in spike rate and an increase in spike timing precision. The strong

inhibitory conductance needed to generate a current that balances

the excitatory current produced the lowest spike rates of all the

regimes we studied across the entire input stimulus space. This

reduction in spike rate is responsible for an overall drop in energy

Figure 6. Approximate balance of excitation and inhibition. (A) The mutual information of spike trains from all three synaptic regimes with
high (circles) and low contrast (squares) stimuli versus the net current. (B) As in A but for the energy consumption. (C) As in A but for energy efficiency.
(D) As in A but for the coding efficiency. Open squares indicate a low input contrast (0.05). Open circles indicate a high input contrast (0.5). Data are
re-plotted from Figures 4 and 5.
doi:10.1371/journal.pcbi.1003263.g006

Balanced Synaptic Currents Promote Efficiency
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consumption (ATP molecules/s) because the voltage-gated

currents that generate APs dominate the energy consumption of

all the models. In the balanced synaptic current regime, the energy

savings from lower spike rates are sufficient to offset the increased

costs of the synaptic conductances. Yet, despite generating fewer

spikes, the information rates of spike trains generated by balanced

synaptic currents in our models are similar to those generated by

excitation alone or by balanced excitatory and inhibitory

conductances. Thus, balanced synaptic currents increase coding

efficiency (bits/spike) rather than the information rate (bits/s). By

reducing energy consumption and increasing coding efficiency,

approximately balanced synaptic currents increase the energy

efficiency (bits/ATP molecule) of spike trains compared to the

other synaptic regimes we modeled.

Our conclusions are based upon comparisons among single

compartment models that incorporated a well-established model

of synaptic input that accounts for the Poisson distribution of

spikes in cortical neurons [20]. The model assumes that large

numbers of weak synapses are activated individually by afferent

spikes that, because they come from a large population of neurons

firing with Poisson statistics, are largely uncorrelated [28].

Excitatory and inhibitory synaptic inputs to our models were

uncorrelated, noise free, and had identical synaptic time constants.

However, within cortical networks excitation and inhibition are

continuously synchronized and correlated in strength [29]. Even

small differences in the timing of excitation and inhibition can

modulate neuronal integration time, forming a selective gate for

signal transients that affects information processing [30]. The

addition of noise to the time-varying sub-threshold synaptic input

of a spiking neuron can increase the regularity (periodicity) of

spiking (stochastic resonance) [31] or, in the absence of time-

varying input, additive noise can lead to patterned firing

(coherence resonance) [32]. In the absence of these effects, the

addition of noise to synaptic currents will degrade the quality of

the input signal (SNR), decreasing the information rate through an

increase in noise entropy [33]. However, noise in the inhibitory

and excitatory conductances will be multiplicative rather than

additive with consequences for post-synaptic firing rates, informa-

tion coding and metabolic efficiency [34–36].

Post-synaptic inhibitory conductance changes can be phasic or

tonic [37]; phasic inhibition supports rhythmic activity in neuronal

networks, such as the theta or the gamma oscillations [38,39],

whereas tonic inhibition increases conductance affecting signal

integration. These specific characteristics have consequences for

their effects on neuronal gain control. For example, blockage of

tonic inhibition can shift the input-output relationship of cerebellar

granule cells to the left (subtractive gain control) depending upon

the temporal properties of the excitatory conductance [40,41].

Random trains of excitatory conductance cause a divisive as well

as a subtractive modulation of gain [42]. Although our models

encompass a limited set of excitatory and tonic inhibitory input

properties that capture qualitatively similar modulation of

neuronal gain to that observed empirically, cortical circuits

incorporate numerous other combinations of phasic/tonic inhibi-

tion and static/random trains of excitation that can modulate gain

and affect information processing.

We use the simplest possible model of synaptic integration, an

electrotonically compact compartment in which synaptic inputs

directly drive a membrane containing the minimum set of voltage-

gated conductances [43]. Consequently, our models do not

account for the complex structure of pyramidal neurons [1,3]

and the spatial distribution of excitatory and inhibitory inputs

[44–46]; excitatory inputs are formed mainly on dendritic spines,

whereas inhibitory synapses are located primarily on dendritic

shafts, the soma and the axon initial segment [47]. Synaptic inputs

are shaped and filtered by both passive membrane properties and

active conductances in pyramidal neurons [48] that will affect both

information processing and energy consumption.

The voltage-gated ion channel properties in our models are

taken from the squid giant axon because detailed kinetic models

exist for these voltage-gated channels [49]. However, the squid

action potential is profligate in its energy usage, consuming ,17-

fold more energy than some vertebrate action potentials [27],

suggesting that channels with different kinetics will reduce energy

consumption [17]. Our calculations of energy consumption also do

not incorporate the presynaptic cost of generating the synaptic

conductances. Inhibitory neurons typically have higher firing rates

and form more, stronger synaptic connections than excitatory

neurons [50]. However, in the cortex, inhibitory neurons are

smaller and less numerous than excitatory neurons [2]. This

suggests that the pre-synaptic cost of generating inhibitory

conductances is lower than generating excitatory conductances

and, indeed, cortical energy budgets have ignored the cost of

inhibition entirely [16,27].

Yet because our analysis is basic, it reveals some biophysical

principles of efficient coding. In our model, balanced inhibitory

and excitatory currents increase coding efficiency by reducing the

number of action potentials and increasing their spike timing

precision in the face of channel noise. This sparsening of the

output spike train is due to the strong inhibitory conductance

needed to generate a current that balances the excitatory current.

Sparser codes translate into fewer spikes or the activation of fewer

neurons in a network, reducing redundancy [51]. Our work shows

that such temporal sparseness [52] is produced by an increase in

inhibition that makes the neuron more efficient by increasing the

information (bits) per spike. A reduction in spike rate also tends to

increase the information per spike because spikes become more

surprising [24]. Increased spike timing precision is a consequence

of a faster membrane time constant and larger changes in

conductance ratios creating a faster-rising voltage slope, which

again increases the bits per spike. Neurons may reach high firing

rates, thereby incurring a heavy metabolic cost, but they can do so

only momentarily. Thus, our model demonstrates that inhibition

can improve efficiency by facilitating efficient sparser codes by

acting on fundamental determinants of coding efficiency.

By increasing the information per spike and reducing the spike

rate balanced synaptic currents maximize information rate within

a limited energy budget. This is particularly important when

considered in the context of cortical energy budgets, which limit

average firing rates to ,7 Hz [27] in rat grey matter and probably

to even lower rates in humans. Fewer, more informative action

potentials can save energy not just in a single neuron but

throughout the cortical network [18,53,54] by ensuring that

synapses activate only to transmit signals from more informative

spikes, thereby increasing their efficiency with which they are used.

A single cortical neuron makes recurrent excitatory synaptic

connections with many other cortical neurons, of which about

85% of the synapses are with other excitatory neurons [2,3,55,56].

Despite these synaptic connections being weak [1], spiking activity

can propagate through cortical networks [57]. Indeed, even a

single additional spike can lead to a large number of extra spikes in

downstream neurons [58]. Thus, even small changes in spike rate

can inflate energy costs by evoking additional spikes in post-

synaptic neurons.

The role of balanced synaptic currents appears to be to allow

cortical neurons to process information with low numbers of

precise spikes. This is only possible if neurons have fast membrane

time constants, sit close to the spike initiation threshold, and
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depolarize rapidly to conductance changes to produce spikes.

These features inflate energy costs suggesting that a low cost

resting state that is separated from a high cost ‘active’ state would

be advantageous. It seems likely that the cortex has been under

considerable pressure to reduce energy consumption whilst

retaining the ability to respond rapidly and precisely. Balanced

inhibition/excitation appears to be an answer to this problem.

When not in ‘active’ use, cortical neurons can sit far from rest with

slow membrane time constants incurring relatively low energy

costs. When active the balanced synaptic currents depolarize and

speed up the cortical neurons allowing them to respond rapidly to

synaptic inputs. Thus, balanced synaptic currents effectively

uncouple resting and active states in terms of energy use, saving

energy when neurons are at rest.

We have made a basic general model that reveals that current

balanced excitation and inhibition can increase coding efficiency,

improving the statistics of spike trains by increasing signal entropy

and reducing noise entropy. Energy efficiency also improves due

to a reduction in spike rate. This suggests that despite their extra

cost, inhibitory synapses will increase the energy efficiency of

circuits performing a wide variety of functions by making spikes

more informative.

Materials and Methods

Single compartment model with conductance noise
We simulated single compartment models containing stochastic

voltage-gated ion channels, the properties of which were based on

the original Hodgkin-Huxley model of a squid axon [49,59]. The

model contained transient voltage-gated Na+ channels and

delayed rectifier voltage-gated K+ channels along with a non-

probabilistic voltage independent leak conductance. The dynamics

of the membrane potential was governed by the following current

balance equation:

Cm
_VV~gNam3h ENa{Vð ÞzgK n4 EK{Vð ÞzgLeak EL{Vð Þ

zgexcite tð Þ Eexcite{Vð Þzginhibit tð Þ Einhibit{Vð Þ
ð1Þ

where Cm is the membrane capacitance, gNa, gK and gLeak are the

conductances of the Na+, K+ and leak channels, respectively. Ej

are the reversal potentials of these conductances, where

j[ Na,K,Leak,excite,inhibitf g. The variables m, h and n follow

first order kinetics of the form x~t{1
x Vð Þ x? Vð Þ{xð Þ, where

x? Vð Þ is the steady-state activation or inactivation function and

tx Vð Þ is the voltage-dependent time constant. The single

compartment model is driven either by an excitatory conductance,

gexcite tð Þ, or in addition to an inhibitory conductance, ginhibit tð Þ.
The exact forms of conductance fluctuation that give rise to the

synaptic currents are described in the next section. In our

simulations the synaptic conductances were modeled to be noise-

free.

Diffusion approximations
We model the source of the synaptic conductance as a large

number of weak synaptic inputs, each driven randomly and

independently, as if by spikes from one unique neuron. This

diffusion approximation [20] delivers a white noise synaptic

current when the post-synaptic response is instantaneous, and pink

noise when the post-synaptic response lasts for a finite time. For

the diffusion approximation, we used the conductance model of

Destexhe et al. [20] and define the synaptic conductances as,

_ggexcite(t)~{ 1
texcite

gexcite(t){gmean½ �z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dexcite

p
fexcite(t) ð2Þ

where gexcite(t) is the time-dependent excitatory conductance,

texcite is the time constant that defines the decay time of the

synaptic activation in response to Poisson distributed spike trains,

and Dexcite is the diffusion coefficient of the noise process while

fexcite(t) is a zero mean and unit standard deviation Gaussian noise

process. Eexcite was set to 0 mV and texcite was fixed at 3.3 ms.

The inhibitory conductance trace was generated by an identical

yet independent differential equation, differing only in the choice

of Einhibit which was set to 275 mV.

The conductances were modeled as an Ornstein-Uhlenbeck

(OU) process. The OU process is a model for a large number of

randomly activated synaptic inputs impinging on the single

compartment, where each input is simply approximated using a

single exponentially decaying conductance. The conductances

generated using an OU process have approximately a Gaussian

distribution with a Lorentzian power spectrum. Because of this

Gaussian distribution, the differential equation can be written as a

difference equation, which is independent of step size D,

gexcite(tzD)~gmeanz gexcite(t){gmean½ �exp
{D

texcite

� �

zAexcitefexcite(t)

ð3Þ

Aexcite is the amplitude of the noise such that,

Aexcite~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dexcitetexcite

2
1{exp

{2D

texcite

� �� �s
ð4Þ

The mean synaptic conductance m (in Siemens), depends upon the

rate, R Hz, the unitary synaptic event amplitude, A Siemens, and

the exponential decay time constant t (in seconds) of synaptic

events

m~R:A:t Siemens ð5Þ

the standard deviation of synaptic conductance, s, is given by

s~A:

ffiffiffiffiffiffiffi
R:t

2

r
Siemens ð6Þ

and the conductance contrast, is

s

m
~

ffiffiffiffiffiffiffiffiffiffiffi
1

2:R:t

r
ð7Þ

Note that the stimulus contrast only depends on the event rate, R,

and the decay time constant, t, which in this study is fixed. Thus,

when we increase the conductance contrast we are decreasing the

event rate (i.e. reducing the frequency with which afferent spikes

activate synapses), and when we increase the mean conductance at

constant contrast we are increasing event amplitude at constant

rate.

The stimulus was presented for 1 second and each set of

simulations consisted of 60 such trials. All Gaussian random

numbers were generated using the Marsaglia’s Ziggurat algorithm;

uniform random numbers were generated using Mersenne Twister

algorithm. Deterministic equations were integrated using the
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Euler-algorithm while stochastic differential equations were

integrated using the Euler-Maruyama method; both with a step

size of 10 ms. Parameter values are given in Table S1. Markov

state transitions for the voltage-gated ion channels are modeled

after the channel noise formulation in Refs. [49,60].

Calculating information rates
We used the ‘‘direct method’’ to measure the entropy of the

responses [61,62], which compares different spike trains without

reference to the stimulus parameters. The total entropy sets the

information capacity for the spike train. The noise entropy

measures the variability of the spike train across trials. These

quantities were dependent upon the temporal resolution with

which the spikes were sampled, Dt (1 ms), and the size of time

window, T. We presented either a different conductance trace in

each subsequent trial (unfrozen noise) to calculate the total

entropy, or the same conductance trace in each subsequent trial

(frozen noise) to calculate the noise entropy. We divided the spike

train to form K-letter words (K = 2, 4, 6, 8, 12, 16, 24, 32, 48 or

64), where K~T=Dt. We used the responses from the unfrozen

noise presentations (60 trials each of 1 second) to estimate the

probability of occurrence of particular word, P Wð Þ. The total

entropy was estimated as,

Stotal~{
X
W

P Wð Þlog2P Wð Þbits ð8Þ

We estimated the probability distribution of each word at the

beginning of each work at time t to obtain the conditional

probabilityP W tjð Þ. Entropy estimates were then calculated from

these distributions and the average of the distributions at the

different starting times t was computed to give the noise entropy

(60 trials each of 1 second) as,

Snoise~ {
X
W

P W tjð Þlog2P W tjð Þ
t

bits ð9Þ

where, ST indicates average over time. The mutual information

was then computed as,

I~Stotal{Snoise ð10Þ

The total entropy and the conditional noise entropy diverge in the

limit Dt?0, their difference converges to the true finite

information rate in this limit 61,62]. Therefore, we used bias

correction methods to reduce the effect of sampling errors [63].

Using Dt~1 ms, we varied the spike trains to form words of

different lengths. Using these entropy estimates, we extrapolated to

infinite word length from the four most linear values of the plot of

entropy and the inverse word length.

Calculating energy consumption
The energy consumption of each compartmental model is

determined by the number of ATP molecules expended per

second, averaged over 60 trials of 1 second each. The Na+/K+

pump hydrolyses one ATP molecule for three Na+ ions extruded

and two K+ ions imported [26,64]. Assuming that the two main

charge carriers in a cell are due to Na+ and K+ we divided the

excitatory, inhibitory and leak conductances into separate pools of

Na+/K+ permeable conductances. We then determined the total

K+ permeable current and added it to the delayed rectifier K+

current. We computed the number of K+ ions by integrating the

area under the total K+ current curve for the duration of stimulus

presentation. Finally, we calculated the number of ATP molecules

used by multiplying the total K+ charge by NA= 2Fð Þ, where NA is

Avogadro’s constant and F is Faraday’s constant. Pre-synaptic

costs (transmitting an AP to the pre-synaptic terminal, transmitter

release and recycling) are not included in our analysis. The

presynaptic costs of calcium entry and transmitter release and

recycling are approximately one fifth the cost of post-synaptic

current [16,65].

Supporting Information

Figure S1 The composition of metabolic consumption
of spike trains evoked by three different synaptic input
regimes. Left column: Contribution of the leak current to the

total metabolic consumption. Middle column: Contribution of the

synaptic current to the total metabolic consumption. Right

column: Contribution of the active current to the total metabolic

consumption. A–C only excitation. D–F Excitation and inhibition.

G–I More inhibition. The x- and y-axes represent the mean and

contrast of the excitatory conductance.

(TIF)

Table S1 Parameters for the stochastic Hodgkin-Hux-
ley model.

(DOCX)
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35. Häusser M, Roth A (1997) Estimating the time course of the excitatory synaptic
conductance in neocortical pyramidal cells using a novel voltage jump method.

J Neurosci 17: 7606–7625.
36. Kleppe IC, Robinson HP (1999) Determining the activation time course of

synaptic AMPA receptors from openings of colocalized NMDA receptors.

Biophys J 77: 1418–1427.
37. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic

activation of GABA(A) receptors. Nat Rev Neurosci 6: 215–229.
38. Jonas P, Bischofberger J, Fricker D, Miles R (2004) Interneuron Diversity series:

Fast in, fast out–temporal and spatial signal processing in hippocampal

interneurons. Trends Neurosci 27: 30–40.

39. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of
neuronal activity in hippocampus by individual GABAergic interneurons.

Nature 378: 75–78.

40. Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule

cells control information flow through cerebellar cortex. Neuron 33: 625–633.

41. Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in

cerebellar granule cells during sensory processing. Nature 428: 856–860.

42. Mitchell SJ, Silver RA (2003) Shunting inhibition modulates neuronal gain
during synaptic excitation. Neuron 38: 433–445.

43. Stemmler M, Sengupta B, Laughlin SB, Niven JE (2012) Energetically Optimal

Action Potentials. In: Shawe-Taylor J, Zemel RS, Bartlett P, Pereira FCN,

Weinberger KQ, editors. Advances in Neural Information Processing Systems.
pp. 1566–1574.

44. Cash S, Yuste R (1998) Input summation by cultured pyramidal neurons is

linear and position-independent. J Neurosci 18: 10–15.

45. Poirazi P, Brannon T, Mel BW (2003) Arithmetic of subthreshold synaptic

summation in a model CA1 pyramidal cell. Neuron 37: 977–987.

46. Liu G (2004) Local structural balance and functional interaction of excitatory

and inhibitory synapses in hippocampal dendrites. Nat Neurosci 7: 373–379.

47. Mel BW, Schiller J (2004) On the fight between excitation and inhibition:

location is everything. Sci STKE 2004: PE44.

48. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev
Neurosci 1: 181–190.

49. Skaugen E, Walløe L (1979) Firing behaviour in a stochastic nerve membrane

model based upon the Hodgkin-Huxley equations. Acta Physiol Scand 107:

343–363.

50. Barth AL, Poulet JF (2012) Experimental evidence for sparse firing in the

neocortex. Trends Neurosci 35: 345–355.

51. Graham D, Field D (2006) Sparse coding in the neocortex. In: Kaas JH,
Krubitzer LA, editors. Evolution of the Nervous Systems: Elsevier.

52. Willmore B, Tolhurst DJ (2001) Characterizing the sparseness of neural codes.

Network 12: 255–270.

53. Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the
evolution of sensory systems. J Exp Biol 211: 1792–1804.

54. Sengupta B, Stemmler M, Friston K (2013) Information and efficiency in the

nervous system. PloS Computational Biology 9: e1003157.

55. Douglas RJ, Martin KA (2007) Recurrent neuronal circuits in the neocortex.
Curr Biol 17: R496–500.

56. Douglas RJ, Martin KA (2004) Neuronal circuits of the neocortex. Annu Rev

Neurosci 27: 419–451.

57. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, et al. (2004) Synfire chains
and cortical songs: temporal modules of cortical activity. Science 304: 559–564.

58. London M, Roth A, Beeren L, Hausser M, Latham PE (2010) Sensitivity to

perturbations in vivo implies high noise and suggests rate coding in cortex.
Nature 466: 123–127.

59. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current

and its application to conduction and excitation in nerve. J Physiol 117: 500–
544.

60. Sengupta B, Laughlin SB, Niven JE (2010) Comparison of Langevin and

Markov channel noise models for neuronal signal generation. Phys Rev E Stat
Nonlin Soft Matter Phys 81: 011918.

61. Strong SP, de Ruyter van Steveninck RR, Bialek W, Koberle R (1998) On the

application of information theory to neural spike trains. Proceedings of the Pac

Symp Biocomput. pp. 621–632.

62. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1997) Entropy

and information in neural spike trains. Phys Review Letters 80: 197–200.

63. Treves A, Panzeri S (1995) The upward bias in measures of information derived
from limited data samples. Neural Comput 7: 399–407.

64. Skou JC (1957) The influence of some cations on an adenosine triphosphatase

from peripheral nerves. Biochim Biophys Acta 23: 394–401.

65. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron
75: 762–777.

Balanced Synaptic Currents Promote Efficiency

PLOS Computational Biology | www.ploscompbiol.org 12 October 2013 | Volume 9 | Issue 10 | e1003263


