Imputation-Based Genomic Coverage Assessments

of Current Human Genotyping Arrays

Sarah C. Nelson,*" Kimberly F. Doheny," Elizabeth W. Pugh,” Jane M. Romm," Hua Ling,"

Cecelia A. Laurie,* Sharon R. Browning,* Bruce S. Weir,* and Cathy C. Laurie*
*Department of Biostatistics, University of Washington, Seattle, Washington, 98195, and TCenter for Inherited Disease
Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21224

ABSTRACT Microarray single-nucleotide polymorphism genotyping, combined with imputation of
untyped variants, has been widely adopted as an efficient means to interrogate variation across the human
genome. “"Genomic coverage” is the total proportion of genomic variation captured by an array, either by
direct observation or through an indirect means such as linkage disequilibrium or imputation. We have
performed imputation-based genomic coverage assessments of eight current genotyping arrays that assay
from ~0.3 to ~5 million variants. Coverage was determined separately in each of the four continental
ancestry groups in the 1000 Genomes Project phase 1 release. We used the subset of 1000 Genomes
variants present on each array to impute the remaining variants and assessed coverage based on correlation
between imputed and observed allelic dosages. More than 75% of common variants (minor allele frequency >
0.05) are covered by all arrays in all groups except for African ancestry, and up to ~90% in all ancestries for the
highest density arrays. In contrast, less than 40% of less common variants (0.01 < minor allele frequency <
0.05) are covered by low density arrays in all ancestries and 50-80% in high density arrays, depending on
ancestry. We also calculated genome-wide power to detect variant-trait association in a case-control design,
across varying sample sizes, effect sizes, and minor allele frequency ranges, and compare these array-based
power estimates with a hypothetical array that would type all variants in 1000 Genomes. These imputation-
based genomic coverage and power analyses are intended as a practical guide to researchers planning
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Microarray genotyping has been widely adopted as an efficient means
to interrogate variation across the human genome. Such arrays are the
technological foundation of genome-wide association studies (GWAS),
which have uncovered numerous genetic associations for a wide va-
riety of traits and diseases (Manolio 2010; Visscher et al. 2012). The
arrays used in GWAS often are designed to genotype a maximally
informative set of variants that capture, or “tag,” a substantial pro-
portion of genome-wide variation (Carlson et al 2004). “Genomic
coverage” refers to the total proportion of genomic variation captured
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by an array, either directly, via genotyping, or indirectly, through
linkage disequilibrium (LD) with one or more genotyped variants
(Barrett and Cardon 2006).

The determination of whether an untyped variant is “captured” by
a genotyped variant can be based on one of two measures. The first
measure is the maximum pairwise squared correlation (r?) between
discrete allelic dosages at the untyped variant and any of the geno-
typed variants. Thus one way to describe genomic coverage is as the
fraction of variants in a reference set having a maximum r? with array
variants above a given threshold (e.g., ? greater than 0.8). Genomic
coverage for the first generation of SNP microarrays typically was
estimated using this pairwise LD paradigm and with the HapMap
Project (Frazer et al. 2007) as the reference set (Barrett and Cardon
2006; Li et al. 2008).

A second measure for determining whether an untyped variant is
captured by an array involves using array variants to impute, or predict,
the genotype at the untyped variant. Imputation yields a different 72
from the pairwise LD r? metric described previously. “Imputation 2 is
the squared correlation between the actual (discrete) allelic dosage at
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a genomic variant and the imputed (continuous) allelic dosage, over
a defined set of samples. For a variant with two alleles A and 4, the
imputed dosage is calculated as 2P(AA) + P(Aa), where P(AA) and P
(Aa) are posterior genotype probabilities from imputation. Under this
imputation paradigm, genomic coverage can be reported as the fraction
of variants in a reference set with imputation 72 above a given threshold
(again, usually greater than 0.8) (Hoffmann et al. 2011b). The reference
set of variants used to determine imputation-based genomic coverage
then becomes the variants present in an imputation reference panel
such as the 1000 Genomes Project (Abecasis at al. 2012). Imputation-
based genomic coverage is especially relevant to current practice in
association studies, in which untyped variants in the 1000 Genomes
Project are routinely imputed from a scaffold of array genotypes and
tested for association with traits of interest (Marchini and Howie 2010).

An important application of r? coverage metrics is to estimate the
power to detect an association when the causal locus is not observed
directly. Pritchard and Przeworski (2001) found that a sample size of N
for direct observation of genotypes at a causal locus gives approxi-
mately the same power as a sample size of N/r? for observed genotypes
at a marker locus, where r? is the squared correlation between the
discrete allele dosages at the causal and marker loci. This relationship
has been used to estimate the genome-wide power to detect an asso-
ciation with various SNP arrays, using the maximum pairwise 72 for
each variant in a genome-wide reference set such as the HapMap (Li
et al. 2008) or 1000 Genomes Projects (Lindquist et al. 2013). For
genome-wide power, an average is taken over all variants in the
reference set, using variant-specific allelic frequency and r? values
(Jorgenson and Witte 2006). Here we show that the relationship
between power and r? also holds when using imputation 72, the
squared correlation between the discrete allelic dosage at the causal
locus and the imputed allelic dosage (a continuous variable), assum-
ing a linear relationship. We also provide genome-wide power esti-
mates with imputation r? values, estimated for each ancestry group
in a 1000 Genomes Project reference set.

Genomic coverage and power have been previously described for
a number of arrays, using either HapMap (Li et al. 2008) or 1000
Genomes Project pilot data (Lindquist et al. 2013) as reference sets
and using maximum pairwise 2. Updated coverage assessments are
provided here using new arrays, a denser and more robust data release
from the 1000 Genomes Project, and imputation-based r°. New arrays
have been developed in response to both the changing needs of the
genetic research community and technological advances in genotyping.
While the design of the first generation of arrays was informed pri-
marily by the HapMap Project (Frazer et al. 2007), array content has
since expanded to include variants cataloged by the 1000 Genomes Pro-
ject (Abecasis et al. 2012) and the Exome Sequencing Project (Tennessen
et al. 2012), in addition to pharmacogenetic and expression quantitative
trait loci markers.

Despite a growing focus on rare variants, the tagging, LD-based
variant selection scheme is still of prime importance in array design.
Many arrays still include a core, or “backbone,” of GWAS markers
selected using the same principles as the first generation of arrays. Each
of the major commercial vendors has recently released (Affymetrix
2012; Nlumina 2012) products with a foundation of approximately
240,000 GWAS tagging markers: the Illumina (www.illumina.com)
Infinium HumanCore and the Affymetrix (www.affymetrix.com) Ax-
iom Biobank. Although vendors frequently provide genomic coverage
estimates in product documentation, the methods used are often dif-
ferent and/or not well-described, making it difficult to objectively
compare across arrays. Here we have used a consistent, imputation-
based approach to evaluate genomic coverage and power across eight
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different genotyping arrays. These analyses are intended to function as
a practical guide to researchers who are planning genetic studies. The
results may be used to compare the cost efficiency of commercially
available arrays, to assess the power to detect trait associations using
imputed allelic dosages, and to design custom arrays. They also pro-
vide an evaluation of the accuracy of imputation for different catego-
ries of minor allele frequency (MAF).

MATERIALS AND METHODS

Genomic coverage

We assessed genomic coverage with the design outlined in Figure 1
by using the publicly available 1000 Genomes Project (Abecasis
et al. 2012) phase 1 integrated variant set, in variant call format
(VCF, available at ftp:/ftp.1000genomes.ebi.ac.uk/voll/ftp/release/
20110521/), comprising 1,092 samples from 14 populations (Table
1). For each array in turn, we selected 1000 Genomes Project variants
from the VCF file having the same position as variants on the array.
The array variants were first pre-phased with SHAPEIT2 software
(Delaneau et al. 2013) and then used to impute the remaining 1000
Genomes variants, with IMPUTE2 software (Howie et al. 2011). The
1092 samples were randomly divided into 10 batches (balancing
across populations) for these pre-phasing and imputation steps, with
the remaining samples serving as a worldwide imputation reference
panel. After imputation, the ten batches were combined to calculate
accuracy metrics within each ancestry group. This approach is similar
to the leave-one-out strategy used by Lindquist et al. (2013) to esti-
mate imputation-based genomic coverage.

To assess imputation accuracy and by extension genomic coverage,
we compared imputed results at all the nonarray variants to observed
genotypes from the initial VCF files. These comparisons were
performed separately in the four different ancestry groups (African,
“AFR;” American, “AMR;” Asian, “ASN;” and European, “EUR”)
and restricted to variants with at least two copies of the minor allele.
For each imputed variant we calculated three metrics: (1) the
squared correlation between observed and imputed allelic dosage,
which we call “imputation r?”; (2) the concordance between ob-
served and most likely imputed genotype, the “genotype concor-
dance”; and (3) the concordance between observed and most likely
imputed genotype, when at least one of those two genotypes con-
tains one or two copies of the minor allele, which we call “minor
allele (MA) concordance.” Array (observed) variants are included in
these metrics summaries and are given imputation r?, genotype
concordance, and MA concordance values of 1. A more detailed
account of data preparation, pre-phasing, imputation, and metrics
calculation is available in Supporting Information, File SI.

We focus on imputation 2 as the primary coverage metric mainly
due to its simple relationship to power, in addition to the following
advantages: (1) precedent in the literature for evaluating both impu-
tation accuracy (Howie et al. 2011, 2012; Delaneau et al. 2013) and
array coverage (Hoffmann et al. 2011a,b; Lindquist et al. 2013); (2)
less sensitivity to allele frequency than concordance; (3) similarity to
information metrics commonly reported by imputation software (for
a review, see Marchini and Howie 2010); and (4) incorporation of
imputation uncertainty by using expected allelic dosage rather than
most likely genotype. However, one important caveat is that r* has
high variance at low MAF (Evangelou and Ioannidis 2013). Overall
genotype concordance is also a widely used metric that is easily in-
terpretable, although it ignores imputation uncertainty and is very
sensitive to allele frequency, as low MAF variants may yield high
concordance purely by chance (Lin et al. 2010). MA concordance
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Figure 1 Study design. Schematic of the method used to assess genomic coverage of each array. Throughout the diagram, bold solid lines
around boxes indicate observed genotypes (i.e., variant calls from the 1000 Genomes Project phase 1 integrated release, version 3), whereas

dashed lines indicate imputed genotypes.

helps correct for sensitivity to MAF by not counting correctly imputed
major homozygous genotypes. Thus, although we have used imputa-
tion 72 as our primary coverage metric and the basis for the power
analyses, we also provide coverage in terms of MA concordance and
concordance to enable downstream users the flexibility to focus on
one of these alternative metrics.

Power analyses

The power to detect a variant-trait association was calculated for
a case-control study under the assumption of an additive genetic
model, using the following parameters, where A is the risk allele and
a is the alternate allele: genotype relative risk (GRR, of Aa relative to
aa) from 1.1 to 1.4 in increments of 0.1; disease prevalence (K) of 0.05;
frequency of the risk allele (p) assumed in each case to be the minor
allele; the sample size (N cases and N controls) from N = 1000 to
10,000 in increments of 50; and a significance level of 5 x 1078
(appropriate for genome-wide testing). The assumption of an additive
model is based on how imputed dosages are used in association tests,
and the range of GRR is based on a summary of effect estimates from
genome-wide association studies (Lindquist et al. 2013). Power was
calculated for an allelic association test (x2 with 1 degree of freedom)
using the non-centrality parameter in the Appendix. Sample size was
N for observed (array) variants and N/(imputation %) for imputed
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variants. A genome-wide power estimate was obtained for each array
and parameter set by averaging over all variants in a reference set, as
indicated by Jorgenson and Witte (2006). Here, the reference set
consists of 1000 Genomes variants with at least two copies of
the minor allele (or a subset thereof). In principle, power would be
calculated for each individual variant (using its individual MAF and 72
values) and averaged over all variants in the set. In practice, to reduce
computation, we binned all autosomal variants by a combination of
MAF and 72 values, calculated power for the mean values of MAF and
r? within each bin, and took the mean over bins weighted by the
fraction of variants in each bin, as in Li et al. (2008). Binning for
MAF was from 0 to 0.05 in increments of 0.005, from 0.05 to 0.10 in
increments of 0.01, and from 0.1 to 0.5 in increments of 0.05. Binning
for 2 was from 0 to 1 in increments of 0.05.

RESULTS AND DISCUSSION

We have assessed imputation-based genomic coverage for eight
commercially available genotyping arrays using the four ancestry
groups in the 1000 Genomes Project phase 1 release. The number of
assays and unique genomic positions assayed by each array are
summarized in Table 2. Only those array variants also found in the
1000 Genomes phase 1 integrated variant set were able to inform the
imputation and thus contribute to these genomic coverage estimates.
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Table 1 Samples in the 1000 Genomes Project phase | integrated variant set

Full Population Name

Abbreviation No. Samples

African Ancestry in Southwest US

Luhya in Webuye, Kenya

Yoruba in lbadan, Nigeria

Total African ancestry

Colombian in Medellin, Colombia

Mexican Ancestry in Los Angeles, CA

Puerto Rican in Puerto Rico

Total American ancestry

Han Chinese in Beijing, China

Han Chinese South, China

Japanese in Tokyo, Japan

Total Asian ancestry

Utah residents (CEPH) with Northern
and Western European ancestry

Toscani in Italia

British in England and Scotland

Finnish in Finland

Iberian populations in Spain

Total European ancestry

ASW 61
LWK 97
YRI 88
AFR 246
CLM 60
MXL 66
PUR 55
AMR 181
CHB 97
CHS 100
JPT 89
ASN 286
CEU 85
TSI 98
GBR 89
FIN 93
IBS 14
EUR 379

The Project has grouped these 1092 samples into four ancestry groups representing the “predominant component of ancestry”: African
(AFR), American (AMR), Asian (ASN), and European (EUR) (Abecasis et al. 2012).

To see how this fact may differentially impact arrays, in Table 2 we
also report (1) the percent overlap with 1000 Genomes at any MAF
and (2) the percent overlap with 1000 Genomes at the requisite MAF
to be included in the imputation (i.e., at least two copies of the minor
allele observed in any one of the four ancestry groups). As may be
expected, the overlap with 1000 Genomes for arrays with a high pro-
portion of rare and exome variants is less than for arrays with less
content devoted to rare and exome variants. The possible impact of
the differential 1000 Genomes overlap across arrays on the estimated
genomic coverage appears to be small (see File S1).

Figure 2 shows the fraction of variants passing an imputation r?
threshold of 0.8, by MAF bin and ancestry group, whereas Figure 3
shows the mean MA concordance. Genomic coverage assessments
commonly use the MAF groupings of > 0.01 and > 0.05, which
we have shown in Figure 2 and Figure 3, C and D, respectively. All the
data plotted in Figure 2 and Figure 3 are presented numerically in
Table 3 and Table 4, which also include tabular summaries of mean
imputation r? and genotype concordance and the counts of variants in
each MAF bin, as this count differs by ancestry group. Line plots of

Table 2 Array summaries

mean imputation 72 and mean genotype concordance are available in
Figure S1 and Figure S2. Plots organized by ancestry panel rather than
by metric are available for AFR in Figure S3, AMR in Figure S4, ASN
in Figure S5, and EUR in Figure Sé6.

As one might expect, coverage generally improves with increasing
array density, regardless of either ancestry group or MAF bin. Common
variants (MAF > 0.05) are well-covered by all the arrays in the AMR,
ASN, and EUR ancestry groups. The percentage of common variants
with imputation 2 = 0.8 is greater than 75% in these three ancestry
groups, and up to ~90% in all four ancestry groups for the highest
density arrays. The most dramatic increase in coverage occurs for com-
mon variants in the AFR group: the fraction of common variants pass-
ing the imputation 72 threshold of 0.8 increases by almost 40% from the
least to most dense array. This finding is likely explained by the genetic
diversity and lower LD characteristic of present day African ancestry
populations compared to the other ancestry groups (Wall et al. 2008).

However, coverage at common variants eventually levels off with
increasing array density, a phenomenon of diminishing returns pre-
viously observed by Barrett and Cardon (2006). The array density at

Percent Overlap ~ Percent Overlap with 1000

Company Array Product Information® No. Assays No. Positions \yith 1000 Genomes Genomes, MAF Filtered
Ilumina HumanCore 12v1-0, A 296,720 296,677 88.2 87.8
lumina HumanCore+Exome 12v1-0, B 535,743 528,484 76.3 69.3
Affymetrix ~ Axiom Biobank na33 716,836 645,209 73.6 67.7
lumina OmniExpress 12v1, H 727,413 727,410 98.8 98.8
Affymetrix Axiom World Array 4 na32 841,602 814,831 98.6 98.5
lllumina Omni2.5M 8v1, A 2,368,218 2,362,580 93.2 93.0
lllumina Omni2.5M+Exome 8v1l, A 2,556,812 2,513,578 91.5 89.9
lllumina Omni5M 4v1, C 4,285,657 4,279,793 94.4 93.2

Summaries of each array included in these genomic coverage analyses, restricted to assays mapped to chromosomes 1 through 22 and the non-pseudoautosomal
portion of the X chromosome. For each array, the columns give (1) the company manufacturing the array; (2) the array name; (3) additional product information; (4) the
total number of assays; (5) the total number of unique map locations represented by those assays; (6) the percent overlap with 1000 Genomes phase 1 integrated
variant set, at any frequency; and (7) the percent overlap with 1000 Genomes phase 1 integrated variant set, with a minimum of two copies of the minor allele seen in
at least one of the four ancestry groups. The counts in (5) are less than (4) when there is more than one assay/feature for a given genomic position. The percentages
given in (6) and (7) are with a denominator of unique positions, rather than unique assays. MAF, minor allele frequency.

@ Product information. For lllumina arrays, number of samples (e.g., 4, 8, or 12), version of the array (e.g., “v1”), and version of the array manifest file (bpm, e.g., “A"”

or "B"). For Affymetrix arrays, the NetAffx release number.
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Figure 2 Fraction of variants passing an imputation r? threshold of 0.8, by MAF bin and ancestry group. The imputation r? metric plotted here is
the squared correlation between imputed and observed allelic dosage in the samples comprising the ancestry group. The y-axis is the proportion
of variants (imputed and observed) with imputation r? = 0.8, restricted to variants with at least two copies of the minor allele in the given ancestry
group. The x-axis position of each array corresponds to the number of unique positions assayed by that array (see Table 2, column 5). Thus. the
order of the arrays on each axis is as follows: HumanCore, HumanCore+Exome, Axiom Biobank, OmniExpress, Axiom World Array 4, Omni2.5M,
Omni2.5M+Exome, and Omni5M. Panel (A) is for variants with at least two copies of the minor allele and MAF = 0.01, (B) for 0.01 < MAF = 0.05,
(C) for MAF > 0.01, and (D) for MAF > 0.05.

which this occurs differs by ancestry group. For AMR, ASN, and EUR,  regions have insufficient LD to accurately impute variants, regardless of
leveling off begins at the OmniExpress, whereas for AFR, coverage = MAF. Furthermore, even with high density arrays, there may still be
continues to improve up until the Omni2.5M. This plateau in coverage  some regions that are sparsely covered and therefore difficult to impute.
may be in part due to the limited size of the reference sample, and in Also as expected, less common variation is not as well covered as
part due to the underlying structure of the genome being such that some ~ common variation. The percentage of variants with MAF between
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Figure 3 Mean MA concordance, by MAF bin and ancestry group. The y-axis values are mean MA concordance in samples comprising the given
ancestry group. MA concordance is defined as the concordance (percent agreement) between observed and most likely imputed genotype, when
at least one of those two genotypes contains one or two copies of the minor allele. Variants were restricted to those with at least two copies of
the minor allele in the given ancestry group. The x-axis position of each array corresponds to the number of unique positions assayed by that array
(see Table 2, column 5). Thus the order of the arrays on each axis is as follows: HumanCore, HumanCore+Exome, Axiom Biobank, OmniExpress,
Axiom World Array 4, Omni2.5M, Omni2.5M+Exome, and OmniSM. (A) Variants with at least two copies of the minor allele and MAF =< 0.01, (B)
for 0.01 < MAF = 0.05, (C) for MAF > 0.01, and (D) for MAF > 0.05.

0.01 and 0.05 and an imputation > = 0.8 is substantially lower than  array, most notably in EUR (61% vs. 77% with > = 0.8 with
for MAF greater than 0.05: less than 40% for low density arrays in all ~ Omni2.5M and Omni5M, respectively). Rare (MAF < 0.01) variants
ancestries and 50-80% in high density arrays, depending on ancestry.  are generally not well imputed by either low or high density arrays.
In all ancestry groups there is some improvement in coverage of less ~ Imputation accuracy for rare variants is greatest in the AMR ancestry
common variants when moving from the Omni2.5M to the Omni5M  group, which might be a consequence of the lower genetic diversity

1800 | S. C. Nelson et al. = G3-Genes | Genomes | Genetics



Table 3 Genome-wide coverage estimates for all eight arrays, in AFR and AMR ancestry groups

A AFR (n = 246) AMR (n = 181)
ncestry Group
MAF bin 0.4%<MAF= 1% 1%<MAF= 5% MAF>1% MAF>5% 0.6%<MAF=1% 1%<MAF=5% MAF>1% MAF>5%
Number of variants 5,567,596 7,515,313 16,995,351 9,480,038 3,783,595 4,245,247 11,211,369 6,966,122
Array Metric
HumanCore ” = 0.8 (%) 8.1% 12.4% 31.0% 45.8% 23.0% 33.0% 59.3% 75.4%
r? (mean) 0.275 0.447 0.588 0.699 0.446 0.576 0.741 0.842
MA conc (mean) 0.253 0.445 0.599 0.721 0.404 0.563 0.742 0.851
geno conc (mean) 0.989 0.968 0.934 0.907 0.990 0.976 0.958 0.946
HumanCore + 2 = 0.8 (%) 9.5% 15.1% 33.8% 48.6% 24.8% 35.3% 60.9% 76.4%
Exome 2 (mean) 0.296 0.476 0.610 0.717 0.463 0.594 0.752 0.849
MA conc (mean) 0.273 0.473 0.620 0.736 0.422 0.581 0.753 0.857
geno conc (mean) 0.989 0.969 0.938 0.912 0.990 0.977 0.959 0.949
Axiom Biobank  ? = 0.8 (%) 9.9% 15.0% 33.5% 48.2% 26.5% 38.4% 64.7% 80.8%
r? (mean) 0.299 0.482 0.622 0.733 0.488 0.633 0.780 0.870
MA conc (mean) 0.276 0.478 0.629 0.749 0.445 0.618 0.778 0.876
geno conc (mean) 0.989 0.970 0.939 0.914 0.991 0.980 0.964 0.955
OmniExpress = 0.8 (%) 18.4% 35.0% 56.1% 72.8% 36.4% 51.8% 73.1% 86.0%
2 (mean) 0.415 0.644 0.754 0.841 0.569 0.708 0.830 0.904
MA conc (mean) 0.387 0.632 0.753 0.848 0.532 0.697 0.829 0.910
geno conc (mean) 0.991 0.980 0.964 0.951 0.992 0.984 0.974 0.967
Axiom World 2= 0.8 (%) 17.5% 29.6% 51.9% 69.5% 36.2% 55.1% 75.5% 88.0%
Array 4 r? (mean) 0.401 0.619 0.735 0.828 0.577 0.737 0.845 0.910
MA conc (mean) 0.375 0.607 0.734 0.834 0.536 0.724 0.843 0.915
geno conc (mean) 0.991 0.979 0.961 0.947 0.993 0.986 0.975 0.968
Omni2.5M = 0.8 (%) 27.6% 57.6% 74.4% 87.7% 42.6% 62.7% 79.9% 90.3%
r? (mean) 0.509 0.769 0.850 0.914 0.625 0.781 0.874 0.931
MA conc (mean) 0.481 0.758 0.847 0.917 0.590 0.772 0.874 0.936
geno conc (mean) 0.993 0.988 0.979 0.973 0.993 0.989 0.981 0.976
Omni2.5M + 2= 0.8 (%) 27.8% 57.5% 74.2% 87.5% 42.7% 62.7% 79.8% 90.2%
Exome 2 (mean) 0.510 0.769 0.849 0.912 0.626 0.780 0.874 0.930
MA conc (mean) 0.482 0.757 0.846 0.916 0.592 0.772 0.873 0.935
geno conc (mean) 0.993 0.988 0.979 0.972 0.993 0.989 0.981 0.976
Omni5M = 0.8 (%) 33.3% 63.0% 77.8% 89.4% 51.4% 72.4% 84.4% 91.7%
r? (mean) 0.553 0.797 0.869 0.926 0.690 0.838 0.902 0.941
MA conc (mean) 0.526 0.787 0.866 0.929 0.658 0.833 0.903 0.945
geno conc (mean) 0.993 0.989 0.982 0.976 0.995 0.992 0.984 0.980

Four metrics are presented for each array: fraction of variants with imputation r? = 0.8; mean imputation r%; mean minor allele concordance (“MA conc”); and mean
genotype concordance (“geno conc”); separately by ancestry group (AFR, AMR) and MAF bin. Note the lower bound of MAF in the first MAF bin differs across
ancestry groups. This is because we required at least two copies of the minor allele in each panel in order to contribute to these metrics summaries, and there are
differing numbers of samples in each group. AFR, African, AMR, American, MAF, minor allele frequency.

and greater LD in Native Americans than in other ancestry groups,
due to a recent population bottleneck associated with human migra-
tion into the Americas (Wall et al 2011). Imputation quality at rare
variants may be improved by replacing pre-phased imputation with
the traditional haplotype sampling approach, although the latter is
more computationally intensive (Howie et al. 2012).

All coverage plots are essentially monotonic, with the exception of
the transition from the OmniExpress to the Axiom World Array 4 in
the AFR ancestry group. This array was designed for use in Latinos and
involved preferential selection of variants in European and Native
American ancestries (Hoffmann et al. 2011b), which might explain the
lower coverage in the AFR group. We also note that the addition of the
exome content has little effect on coverage and accuracy, particularly
for the Omni2.5M. The HumanCore+Exome, however, shows slight
improvement over the HumanCore alone for lower MAF variants, most
likely because the addition of the exome content affords a greater rel-
ative increase in density for the HumanCore than for the Omni2.5M.
Although exome content contributes little to overall genomic coverage,
it clearly has additional value when directly observed, in that exomic
variants are more likely to be functional than non-exomic variants.
Furthermore, this value comes at relatively low additional cost.

Genome-wide power
Previous studies of genome-wide power using arrays have utilized
a finding that the sample size required to achieve a given power is N/r?
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when using a tag marker compared with N when using the causal
locus genotypes, where 72 is the squared correlation between the dis-
crete allelic dosages at each locus (Pritchard and Przeworski 2001).
The Appendix shows that this relationship also holds under an addi-
tive genetic model when using a continuous imputed dosage rather
than the discrete dosage of the causal locus. Therefore, we used im-
putation r? for estimating the genome-wide power to detect an
association.

Genome-wide power estimates for GRR values of 1.2, 1.3 and 1.4
are displayed in Figure 4 for MAF > 0.05 (common variants), Figure 5
for 0.01 < MAF = 0.05 (less common), Figure S7 for MAF > 0.01 and
Figure S8 for all variants with at least two copies of the minor allele
within an ancestry group. Figure S9 displays results for GRR = 1.1 for
each of the four MAF categories. The power curves show a sigmoidal
relationship between power and sample size for all arrays, including the
hypothetical 1000 Genomes array (“1000 Genomes”), which is equiv-
alent to direct observation of all 1000 Genomes Project variants passing
the ancestry-specific MAF filters (i.e., at least two copies of the minor
allele observed in the given ancestry group) and thus does not involve
uncertainty introduced by imputation. Power is generally low for the
range of parameters considered here (even for “1000 Genomes” array),
except at the upper end of genetic effect and sample sizes. This is
particularly true for the less common variants, where power is generally
< 50% even at the high end of the parameter space for the actual arrays
and up to ~60% for the “1000 Genomes” array.
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Table 4 Genome-wide coverage estimates for all eight arrays, in ASN and EUR ancestry groups

A ASN (n = 286) EUR (n = 379)
ncestry group
MAF bin 0.4%<MAF= 1% 1%<MAF=5% MAF>1% MAF>5% O0.3%<MAF=1% 1%<MAF=5% MAF>1% MAF>5%
Number of variants 3,004,524 2,385,094 8,606,085 6,220,991 3,991,091 2,944,222 9,705,585 6,761,363
Array Metric
HumanCore ? = 0.8 (%) 7.8% 29.6% 62.4% 75.0% 11.0% 33.7% 64.1% 77.3%
r? (mean) 0.193 0.455 0.726 0.830 0.269 0.544 0.758 0.851
MA conc (mean) 0.180 0.460 0.738 0.845 0.256 0.545 0.766 0.862
geno conc (mean) 0.988 0.968 0.948 0.941 0.991 0.974 0.957 0.950
HumanCore + 2 = 0.8 (%) 8.7% 31.4% 63.6% 75.9% 12.3% 35.8% 65.3% 78.2%
Exome 2 (mean) 0.205 0.471 0.735 0.836 0.285 0.562 0.767 0.857
MA conc (mean) 0.192 0.476 0.747 0.851 0.271 0.562 0.775 0.868
geno conc (mean) 0.988 0.969 0.950 0.943 0.991 0.975 0.959 0.952
Axiom Biobank 2= 0.8 (%) 9.5% 32.8% 63.1% 74.8% 12.0% 37.1% 70.5% 85.0%
r? (mean) 0.215 0.492 0.742 0.839 0.303 0.603 0.803 0.890
MA conc (mean) 0.203 0.496 0.753 0.851 0.288 0.598 0.806 0.897
geno conc (mean) 0.989 0.970 0.951 0.943 0.991 0.978 0.966 0.962
OmniExpress 2 = 0.8 (%) 13.3% 42.9% 73.0% 84.5% 18.1% 48.7% 75.1% 86.6%
r? (mean) 0.267 0.570 0.802 0.892 0.359 0.665 0.834 0.908
MA conc (mean) 0.253 0.574 0.810 0.901 0.346 0.663 0.839 0.915
geno conc (mean) 0.990 0.976 0.966 0.962 0.992 0.981 0.973 0.969
Axiom World ? = 0.8 (%) 13.4% 42.9% 72.9% 84.4% 18.5% 55.4% 79.0% 89.3%
Array 4 r? (mean) 0.269 0.574 0.802 0.889 0.380 0.720 0.859 0.920
MA conc (mean) 0.257 0.578 0.809 0.898 0.364 0.716 0.862 0.926
geno conc (mean) 0.989 0.976 0.965 0.961 0.992 0.985 0.976 0.971
Omni2.5M r? = 0.8 (%) 17.8% 50.8% 78.5% 89.1% 23.9% 60.6% 81.5% 90.5%
2 (mean) 0.324 0.643 0.846 0.923 0.426 0.752 0.879 0.935
MA conc (mean) 0.310 0.647 0.852 0.930 0.412 0.750 0.883 0.940
geno conc (mean) 0.990 0.980 0.975 0.974 0.993 0.986 0.980 0.977
Omni2.5M + 2 = 0.8 (%) 18.0% 50.8% 78.4% 89.0% 24.2% 60.6% 81.4% 90.4%
Exome 2 (mean) 0.326 0.643 0.845 0.923 0.428 0.752 0.879 0.934
MA conc (mean) 0.313 0.648 0.851 0.930 0.414 0.750 0.882 0.940
geno conc (mean) 0.990 0.980 0.975 0.973 0.993 0.986 0.980 0.977
Omni5M 2 = 0.8 (%) 20.7% 53.6% 80.0% 90.2% 37.5% 76.8% 87.3% 91.9%
2 (mean) 0.357 0.670 0.859 0.932 0.545 0.849 0.916 0.944
MA conc (mean) 0.344 0.674 0.865 0.938 0.530 0.849 0.919 0.949
geno conc (mean) 0.991 0.982 0.978 0.977 0.995 0.991 0.984 0.980

Four metrics are presented for each array: fraction of variants with imputation r? = 0.8; mean imputation r%; mean minor allele concordance (“MA conc”); and mean
genotype concordance (“geno conc”); separately by ancestry group (ASN, EUR) and MAF bin. Note the lower bound of MAF in the first MAF bin differs across
ancestry groups. This is because we required at least two copies of the minor allele in each panel to contribute to these metrics summaries, and there are differing
numbers of samples in each group. ASN, Asian, EUR, European, MAF, minimum allele frequency.

The cost efficiency of achieving equal power can be compared
among array choices using these power estimates. For example, for the
variant set with MAF > 0.05 and GRR = 1.3, achieving 50% power
requires N = 3000 for the Omni2.5M array and N = 4000 for the
HumanCore array in the African ancestry group. A power of 80%
requires a larger sample size difference (5300 vs. 8900). Generally, the
array differences required to achieve a set power are notably larger in
regions where the power curves plateau. One array is more cost-efficient
than another when the ratio of cost per sample is less than the ratio of
sample sizes required to achieve equal power. Of course, this evaluation
assumes that the extra samples required are available and that the main
interest of the study is to detect effects characterized by the parameters
used in the power calculation. All of the data used to generate the power
plots are available for download at http://jhir.libraryjhu.edu/handle/
1774.2/36508, so that users can select parameter sets appropriate to
their project goals. We also provide the number of variants per MAF
and r? combinations within each ancestry group so that users can
readily calculate power using parameters beyond the set provided here.

As noted previously in a similar analysis by Lindquist et al. (2013),
increasing sample size can benefit genome-wide power more than in-
creasing array density even up to full genotyping of the complete 1000
Genomes variant set. For example, with GRR = 1.3 and MAF > 0.05
in African ancestry, power is 26.7% for the “1000 Genomes” array with
N = 2000, whereas doubling the sample size and using the HumanCore
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array brings power up to 50.2%. Lindquist et al. (2013) focused their
analysis on variants with characteristics similar to those found in pre-
vious GWAS (odd ratios mainly in the range of 1.2—1.3 and MAF >
0.10). They concluded that only about one fifth of such variants have
been detected with existing GWAS and that the potential for increas-
ing this fraction is greater by increasing sample size than by increasing
genomic coverage. Our results support this conclusion (using some-
what different methods and arrays), given the current situation where
low density arrays such as the Illumina HumanCore and Affymetrix
BioBank are much lower in cost than genomic sequencing or even
high density arrays such as the Omni2.5M. However, we also note
their caveat that increasing sample size significantly is not an option
for many diseases.

For rare variants, power is low, even for complete coverage and
very large sample sizes. Therefore, analysis of rare variants generally
involves aggregation strategies to achieve reasonable power to detect
an effect (Li and Leal 2008). The value of low density arrays in this
context appears to be low because rare variants are not well imputed
and aggregate tests are sensitive to genotype errors (Powers et al.
2011). Therefore, direct detection of rare variants using genomic se-
quencing, high density arrays and/or arrays supplemented with se-
lected variants of interest (such as exome content) are likely to be
required for making significant progress in detecting trait variation
caused by rare variants.
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Figure 4 Genome-wide power estimates for GRR values of 1.2, 1.3, and 1.4, for common autosomal variants (MAF > 0.05). The array Omni2.5+
Exome is not shown in these plots because it is indistinguishable at this resolution from the Omni2.5M array. In the legend, “1000 Genomes” refers to
a hypothetical array in which all variants in the 1000 Genomes dataset would be typed.

In addition to planning experiments with existing arrays, our
genomic coverage results can be used to design new genotyping
arrays. For example, one might wish to design an array focused on
specific candidate variants or regions, while also providing a backbone
for genome-wide imputation, such as the existing HumanCore or
Biobank variant set. In that case, one might begin with the backbone
and then add candidate variants that are not already well imputed by
the backbone variants in the target ancestry group(s). For this
purpose, we also provide the individual imputation r? values for all
1000 Genomes variants from imputation using each of the arrays
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considered here (available at http://jhir.library.jhu.edu/handle/
1774.2/36508).

In conclusion, these imputation-based genomic coverage and
power analyses are intended as a practical guide to researchers
planning genetic studies. Deciding among available arrays is often
a delicate balance between scientific aims, monetary resources, and
genotyping timeframe (i.e., which arrays are currently in use). Our
analysis has the advantage of consistently applying the same approach
to evaluate several different arrays from different manufacturers.
There are, however, some limitations to this study design that may
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Figure 5 Genome-wide power estimates for GRR values of 1.2, 1.3, and 1.4, for less common autosomal variants (0.01 < MAF = 0.05). The array
Omni2.5+Exome is not shown in these plots because it is indistinguishable at this resolution from the Omni2.5M array. In the legend, “1000
Genomes" refers to a hypothetical array in which all variants in the 1000 Genomes dataset would be typed.

result in either over- or underestimated genomic coverage. First, the
genomic coverage reported here might be over estimated by imputing
subsets of 1000 Genomes samples using the remaining samples as
reference, as the haplotypes are likely to match better than in real
world applications where the samples to be imputed are likely from
different source populations than the reference. This advantage may
be offset to some degree by using a smaller reference panel than is
available for independent study populations, although this effect is
likely to be small because the reference panel used here is approxi-
mately 90% of the full 1000 Genomes phase 1 reference panel. Second,
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coverage may be underestimated by having pre-phased each batch
separately, as small sample sizes may negatively impact phasing accu-
racy (Browning and Browning 2011). An increased sample size during
pre-phasing may disproportionally improve coverage in situations
where phasing accuracy is already a challenge, such as rare variants
and in samples with high haplotype diversity (e.g., African ancestry).
Finally, some of the arrays assay a substantial number of variants that
are not in the 1000 Genomes phase 1 release (see Table 2). These
omissions would tend to underestimate genomic coverage, although
probably not significantly, since they are expected to consist mainly of
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rare variants due to the 1000 Genomes Project’s identification of 98%
of SNPs with frequency > 0.01 in related populations (Abecasis et al.
2012). Despite these caveats (discussed further in File S1), the 1000
Genomes data set is clearly the best resource available for evaluating
complete genomic coverage in multiple ancestry groups. We expect
the results presented here to be useful in planning studies with the
current generation of human genotyping arrays.
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APPENDIX

Here we show that the effect of imputation uncertainty on the power
to detect a trait association is to increase the required sample size from
n to n/p? where p? is the squared correlation between true and
imputed allelic dosage.

Notation

Suppose a trait locus T has alleles T, t with population frequencies pr,
pr and that variable G represents the contributions of T to the trait.
The values Grr, Grp, and Gy, are the probabilities of an individual
having the disease under study. The mean of G is the population
prevalence of the disease, g, and under Hardy Weinberg equilibrium
(HWE), this is

Mne= P%‘GTT +2p1p:Grr + P?Gtt

Also under HWE, the genetic variance of the G’s can be written as
follows:

Var(G) = 0'1246 + 0'%)[;

where the additive and dominance variance components, o . and

2 . .
o}, > respectively, are given by

U',ZQG: 2pTpr [pT(GTT — GTt) +pt(GTt _ G”)]z
O%C:p%p%(GTT - ZGT[ + Gtt)z

Allelic case-control test

The simplest form of association test is the allelic case-control test
based on the expressions for trait allele frequencies in cases and
controls. The frequency of allele T among cases is as follows:

PriCase = Pr(TT|Case) + 1 Pr(Tt|Case)
= [Pr(TT and Case) + 1 Pr(Tt and Case)|/Pr(Case)

= ﬁ—z (prGrr + p:Grt)

Similarly,
pr
Pricontrol = T [pr(1 = Grr) + pi(1 — Gry)]
Z¢]
so that
PT|Case ~ PT|Control = #ﬁ“«c) [pr(Grr — Gri) + pi(Gri — Gur)]

The square of this allelic frequency difference can be written as

2
PTPtOy,

2
(pricue = pricomm)” = 500

The case-control test uses the sample allele frequencies pyc,, and
ﬁTICOerl taken from independent samples of sizes #cyse and Acontrol-
Still assuming HWE, these two sample values have binomial variances
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. 1
Var <pT|Case> = 2nc PT|Case Pt|Case
aAse
Var <pT|Control> = 2Mcontrol PT|Control Pt|Control
ontro

and a test statistic is constructed under the null hypothesis that
pT|Case = pT|Contr01 =pr
N N 2
<pT\Case - pT\Control)

z
Var (pT\Case - pT\Control)

2
1

2
2nCaseMControl <pT\Case - PT\Control)

(nCase + Ncontrol )ﬁTﬁt

where p;. is an appropriate estimate of the population allele fre-
quency pr . This estimate could be the pooled sample value:

Bp = "Case PT|Case + NControl PT|Control
r=

Ncase + NControl

or pooled according to disease prevalence

ﬁT = /"LGﬁT‘Case + (1 - /'LG)IN)T|Control

Power calculations do not assume the null hypothesis, and the
parametric form of the test statistic cannot assume pyicase = P1iControl =
pr- As an approximation, however, this assumption could be
retained in the denominator of the statisticc which then has
noncentrality

2
21 CaseNControl (pT\Case - pT\Control)
pr(1=pr)

A=
(nCase + NControl )

_ ng(1— ¢)os.
[ne(1— pe)

It is usual to use [(nCasepT|Case + nContro]pT|Control)/(nCase + nControl)]
for the population allele frequency pr in the denominator, even
though it is [UgPricase + (1 — MG)Priconwol] that is equal to pr, and
the latter is the approach used in the present power calculations. Also,
Ncase = PN, Neontrol = (1 — ¢p)n for a total sample size of n.

The test statistic z7 is distributed as x2 with 1 df under the as-
sumption of normally-distributed sample allele frequencies. This as-
sumption will break down as frequencies become close to zero or one.
We used simulation to assess the accuracy of power estimation at low
MAF. Empirical power was estimated from 1,000,000 replicate simu-
lations of data for each of several parameter sets, using the z? test and
a = 5% 1078, whereas theoretical power was estimated using A,. The
parameter sets consist of all combinations of GRR € {1.1,1.2, 1.3, 1.4},
Neases = Neontrots € {1000, 5000, 10000}, allelic frequency € {0.005, 0.01,
0.02, 0.03, 0.04, 0.05}, and population prevalence of 0.05. Figure S10
shows that the two power estimates are very similar down to MAF of
0.02, but the theoretical calculations underestimate power at lower
MAF. However, both power estimates are very small with the range
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of realistic parameter sets used here, so that this difference is probably
not of practical importance in designing experiments.

Allelic dosage test

Now suppose that each individual has an imputed genotype: the
probabilities of it being imputed as TT, Tt, and t are Qrp, Qrp and Qy,
and the imputed allelic dosage is gr = Qrr+ Qr/2. An association test
with the trait can be constructed with sample allelic dosages in place of
sample allelic frequencies:

2
<qT\Case - qT\Control)

2 =
Var (éT\Case

Z

qr)| Control)

There is no reason to assume the imputed genotypes should follow
HWE or that they depend in any specific way on the actual genotypes.
For variants for which both observed genotypes and imputed allelic
dosages are available, and assuming a linear relationship, imputed
dosage can be regressed on observed allelic dosage. If the estimated
regression coefficient 3 is then assumed to hold for subsequent sam-
ples of cases and controls:

<71T|case - ZIT|Control) =B (ﬁT\case - ﬁT\ControI)
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Keeping the earlier assumptions about the variances of the allelic
dosages being the same in cases and controls, and invoking the
relations among regression coefficient Byx, correlation coefficient pxy,
covariance oy and variances o'g(, (r%, for two variables X, Y it follows
that

2 2.2 2
g Oy 0
o2 = Ixv  9x%v 2 _ Pwx . 2
Y 4 2 X 2 X
Ox Oxy Pxy

so that

_ _ B (- -
Var <qT\Case - qT\Control) = Evar(pT\Case - pT\Control)

The noncentrality parameter for the test statistic becomes

2
2
B (pT\Case - pT\Control)

B (_1 1
0 \Zncwe T Zcom )PP

= Pz/\l

A =

where p is the correlation of observed and imputed allelic dosage.
The effect of imputation is to decrease the total sample size by p2.
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