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Abstract

Mediators are intermediate variables in the causal pathway between an exposure and an outcome. 

Mediation analysis investigates the extent to which exposure effects occur through these variables, 

thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation 

effect when the outcome is binary and multiple mediators of different types exist. We give a 

precise definition of the total mediation effect as well as decomposed mediation effects through 

individual or sets of mediators using the potential outcomes framework. We formulate a model of 

joint distribution (probit-normal) using continuous latent variables for any binary mediators to 

account for correlations among multiple mediators. A mediation formula approach is proposed to 

estimate the total mediation effect and decomposed mediation effects based on this parametric 

model. Estimation of mediation effects through individual or subsets of mediators requires an 

assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation 

study that demonstrates low bias of mediation effect estimators for two-mediator models with 

various combinations of mediator types. The results also show that the power to detect a non-zero 

total mediation effect increases as the correlation coefficient between two mediators increases, 

while power for individual mediation effects reaches a maximum when the mediators are 

uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental 

caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to 
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assess the robustness of conclusions regarding mediation effects when the assumption of no 

unmeasured mediator-outcome confounders is violated.

Keywords
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mediation effect; mediation formula; sensitivity analysis

1. INTRODUCTION

Randomized clinical trials and observational studies typically evaluate an overall treatment 

or exposure effect on a response. Of even greater scientific interest may be to explain by 

what means the treatment or exposure effect occurs, a goal that invokes the idea of 

mediation analysis. One way that a researcher can explain the mechanism by which one 

variable affects another is through the identification of mediating intermediate variables (or 

mediators). A well-known example of a mediated relationship in psychology is the effect of 

attitude on behavior which is mediated by intentions [1]. Another example is the mediation 

of the effect of the apoliprotein E ε4 allele on cognitive impairment through an increase in 

the likelihood of chronic cerebral infarction [2, 3].

At least a dozen methods have been proposed for testing the simple mediation hypothesis 

that the effect of an independent variable T on a dependent variable Y is mediated (at least in 

part) by an intermediate variable M [4]. Traditionally, mediation analysis has been 

dominated by linear regression (association) model paradigms, and the mediation effect 

assessed by difference in coefficient [5] or product of coefficient approaches [6]. More 

recently, causal mediation analysis, namely, methods based on a causal model (usually, 

potential outcomes) framework, have been developed [7, 8]. In one such causal model 

approach, Pearl [9] proposed a mediation formula, applicable to nonlinear models for 

discrete or continuous outcome variables, that permits the evaluation of natural direct and 

indirect (or mediation) effects. More generally, mediating processes may include multiple 

mediators. In school-based drug prevention, for example, primary prevention programs 

target multiple mediators such as resistance skills and social norms to reduce drug use [10]. 

Reynolds et al. [11] explored knowledge, availability of fruits and vegetables, and parental 

consumption as mediators of a school-based nutrition intervention to increase healthy food 

consumption in children.

Models with more than one mediator are straightforward extensions of single-mediator 

models in the linear case, and the product of coefficients approach can be used for the 

estimation of multiple mediation effects [12, 13]. With multiple-mediator models, additional 

questions can be raised. For example, one may investigate the total mediation (or indirect) 

effect, that is, the extent to which a set of intermediate variables collectively mediate the 

effect of T to Y. Alternatively, one may wish to assess the extent of mediation through each 

individual mediator. For inference on mediation effects, Preacher and Hayes [13] advocates 

the bootstrap – especially bias-corrected bootstrap – over the multivariate delta method [14], 

since the former provides the most powerful and valid method of obtaining confidence 

intervals (CIs) for specific indirect effect under most conditions.
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For a non-linear response models, a non-standard, for example, mediation formula, approach 

may be needed. However, such approaches have so far focused on a single mediator. An 

extension of the mediation formula approach for multiple, and possibly mixed types of 

mediators, will require modeling of the joint distribution of discrete and continuous 

outcomes. Such modeling includes three main approaches. The first approach is based on a 

conditioning argument that allows the joint distribution to be factorized into a marginal and 

a conditional density [15, 16]. A drawback of the conditioning approach for mixed outcome 

models is that it does not directly lead to marginal inferences [17]. Also, conditional models 

do not easily extend to the settings of three or more outcomes, and the correlations between 

pairs of outcomes cannot be directly estimated. The second approach attempts to specify the 

joint density of two outcomes directly. Multivariate methods are well established for the 

modeling of multivariate normally distributed outcomes [18]. To analyze mixed types of 

outcomes, bivariate (or multivariate) continuous variables are considered with components 

being either explicitly observed or latent continuous variables underlying the discrete 

outcomes [19]. The level of an observed discrete outcome is determined according to 

whether or not the corresponding latent variable exceeds some threshold values. A common 

example is the probit-type model which assumes an unobservable normally distributed 

random variable underlying the binary outcome [20]. Instead of using latent variables, the 

third approach directly specifies the joint distribution via a mixed effects model in which 

each outcome is modeled conditional on a common random effect or correlated random 

effects [21]. In this paper, the second approach, which has the advantage of the direct 

specification of mediator correlation parameters, will be used. This approach is implemented 

for mixed types of mediators by specifying the joint distribution of the continuous mediators 

and continuous latent variables underlying binary mediators.

An approach to causal mediation analysis that accommodates multiple mediators is likely to 

provide a more accurate assessment of mediation effects in many research contexts. A 

limitation of standard (such as product of coefficients) approaches for multiple mediator 

analysis is that they rely on linearity of the regression models, a restriction that may be 

difficult to justify unless the response and mediator are normally distributed. However, in 

medical research, the outcome or the mediator is often not normally distributed. The 

mediation formula approach of Albert and Nelson [22] handles sequential mediators, but not 

‘contemporaneous’ mediators, for a discrete (count) outcome. Thus, the problem of causal 

mediation analysis in nonlinear models for multiple (contemporaneous) mediators does not 

appear to have been previously addressed in the literature. For estimation of the total indirect 

effect for a dichotomous outcome with mixed types of mediators, we apply the mediation 

formula approach under a sequential ignorability assumption. In addition, estimation of the 

mediation effect through an individual mediator or a subset of mediators is possible with 

additional identifying assumptions.

The remainder of this work proceeds as follows. In Section 2, we define, for multiple-

mediator models with a dichotomous outcome, the natural direct, (total) indirect effects, and 

decomposed mediation effects through individual or sets of mediators. Section 3 presents a 

mediation formula approach to estimate the total and decomposed mediation effects under 

given identification assumptions. We introduce the association models and the maximum 

likelihood estimation methods for multiple mediator models in Section 4. Section 5 proposes 
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a sensitivity analysis that can be implemented by applied researchers to quantify the 

robustness of their conclusion to the potential violation of sequential ignorability 

assumptions. Simulation studies are used in Section 6 to examine the statistical properties of 

the proposed methods. Section 7 describes the application of the proposed method to a 

dental caries study and presents sensitivity analysis results. Discussion and suggestions for 

further research are presented in Section 8.

2. DEFINING TOTAL AND DECOMPOSITION OF MEDIATION EFFECTS

Consider the general causal model including a binary exposure or treatment indicator (T 

with a specific level represented by t ∈ {0,1}), J mediators (M1, M2, …, MJ) and a 

dichotomous outcome (Y), where T may affect Y directly and/or T may affect any of the Mj, j 

= 1 to J, which then affect Y. Figure 1 shows the path diagram. We can define the causal 

mediation effects of interest using nested potential outcomes [8] within this multiple-

mediator model. The total mediation effect (through the set {Mj, j = 1, …, J}) under 

exposure t is defined as

(1)

Here, Y(t, M1(t′), M2(t′), …, MJ(t′)) denotes the potential outcome that Y would attain if T 

was set to t, and each Mj set to the counterfactual value that would be observed if T was set 

to t′. IE(t) is called the natural indirect effect, and represents the difference between two 

mean potential outcomes that would result under exposure status t, but where all mediators 

takes values that would result under two different exposure statuses. Similarly, we can 

define the natural direct effect and the total causal effect in the potential outcomes 

framework as

(2)

(3)

Thus, the natural indirect effect under one exposure status and the natural direct effect under 

the other exposure status sum to the total causal effect. Here, we consider the decomposition 

involving IE(1) and DE(0) denoted as IE and DE; for the other decomposition (involving 

IE(0) and DE(1)) the method will be similar.

In multiple-mediator models, we can further consider mediation effects through an 

individual mediator or sets of mediators. The total natural indirect effect can be broken into 

J path effects within a J-mediator model; we use ‘IEj (t0, t1, …, tj−1, tj+1, …, tJ)’ to denote 

the path (or mediation) effect through the jth mediator (Figure 1) with exposure set to t0 and 

other mediators except for Mj set to the values attained under exposure levels t1, …, tj−1, 

tj+1, …, tJ respectively. IEj (t0, t1, …, tj−1, tj+1, …, tJ) can be defined as the difference 

between two mean potential outcomes as follows,
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(4)

Mediation effects through sets of mediators can be defined as the sum of mediation effects 

through the component individual mediators. Note that 2J versions of IEj(t0, t1, …, tj−1, tj+1, 

…, tJ = 0 or 1), the indirect effect of Mj, can be formulated corresponding to 2J 

combinations of exposure settings for the outcome and other mediators in a J-mediator 

model. We use only one of them, IEj (t0 = 1, t1 = 0, …, tj−1 = 0, tj+1 = 1, …, tJ = 1), denoted 

as IEj for simplicity; the other possible estimands can be handled similarly and thus are not 

discussed here. Of note, this defined IEj’s provide a proper decomposition of a total 

(indirect) effect among individual mediators as follows,

(5)

3. ANALYSIS OF TOTAL AND DECOMPOSED MEDIATION EFFECTS

3.1. Identification assumptions for causal mediation effects in multiple-mediator models

We present identification results for the (total) indirect and direct effects (defined by (1) and 

(2)) as well as mediation effects through individual mediators (defined by (4)) using the 

potential outcomes framework described above. Under a particular version of the sequential 

ignorability assumption, the mediation effect estimators are identified nonparametrically in 

the multiple-mediator causal model. We first define our identifying assumption which 

extends Imai et al.’s version [23].

Assumption 1 (Sequential Ignorability)

(6)

(7)

for t0, t1, …, tJ = 0, 1, and w ∈ Ω, where Ω denotes the support of the distribution of W.

First, given the observed baseline covariates (W), the exposure or treatment is assumed to be 

statistically independent of potential outcomes and potential mediators. The second part of 

Assumption 1 states that all mediators are independent of potential outcomes given the 

observed exposure or treatment and pretreatment covariates. In addition, we make the 

consistency assumption throughout, namely, Yi(t) = Yi when Ti = t; that is, for any individual 

i the potential outcome of Y setting T = t is equal to the observed outcome if the individual 

happened to receive treatment level t. This assumption provides the connection between 

potential and observed outcomes.

3.2. Estimation of total and decomposed mediation effects for multiple-mediator models

To demonstrate identifiability of total and decomposed mediation effects for multiple-

mediator models, we will examine the identification of the relevant potential outcome means 
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(of the general form E{Y(t0, M1(t1), …, MJ(tJ))}) given baseline covariate W under 

sequential ignorability (Assumption 1), where conditioning on W is left out of the notation 

for brevity. Under Assumption 1 (along with the consistency assumption) it can be shown 

that,

(8)

A proof of formula (8) is given in Appendix A. Integration can be replaced with summation 

in the case of discrete mediators. Formula (8) shows that under sequential ignorability, the 

expected potential outcomes (left-hand side of the equation), used in the definition of the 

causal mediation effects, can be expressed as a function of association parameters (in a 

model for Y) that are directly estimable from the observed data. Estimability of the expected 

potential outcomes is then attained so long as the joint distribution of the mediator potential 

outcomes (last term in the expression on the right-hand side of (8)) can be estimated.

The total natural indirect effect, direct effect and total causal effect are identifiable from 

formula (8) with known or estimated values for the joint distribution of (M1(0), …, MJ(0)) 

and of (M1(1), …, MJ(1)). However, when assessing mediation effects through individual or 

sets of mediators we require joint distributions of (M1(t1), …, MJ(tJ)) in which the tj’s are 

not all equal; such a joint distribution is not estimable because this joint potential outcome 

cannot be observed for the same subject. For identifiability, we need to make additional 

assumptions regarding the joint distribution of (M1(t1), …, MJ(tJ)). In fact, the marginal 

distribution of Mj(tj), j = 1, …, J, is estimable, and if each correlation coefficient ρkl(tk, tl) 

between Mk(tk) and Ml(tl), k < l, tk ≠ tl is pre-specified, then the mean potential outcome in 

formula (8) is identifiable and therefore so is the decomposed natural indirect effect through 

individual or sets of mediators. We use the simplifying assumption of a common correlation 

for each pair of mediators, that is, ρkl(tk, tl) = ρkl for all tk, tl. In fact, we may allow more 

general models, but generally a full specification is not needed; in particular, the 

identification of any specific individual mediation effect needs only one of the two 

parameters, ρkl(0, 1) and ρkl(1, 0), e. g., the former is needed to identify IEj defined above.

To evaluate the joint integrals, we may also use Monte Carlo integration [24], a numerical 

integration technique that uses pseudo random numbers generated from a joint distribution 

of mediator counterfactuals. Suppose (m1n, …, mJn) and (m1n′, …, mJn′) are drawn from the 

joint distributions fM1(0), …,MJ(0) (m1, …, mJ) and fM1(1), …, MJ(1) (m1′, …, mJ′) respectively. 

Formula (1) can then be approximated by the following (using Monte Carlo approximations 

for formula (8)),

(9)

The indirect effects through individual mediators (the IEj as defined in formula (4)) can be 

expressed in a similar way.
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4. ASSOCIATION MODELS

Estimation of mediation effects proceeds by estimating the association model parameters in 

the mediation formula. In this paper we consider models for the joint distribution of binary 

and normally distributed continuous mediators.

4.1. Regression models

We assume the following regression models for a dichotomous outcome Y and binary and/or 

continuous, and possibly correlated, mediators Mj, j = 1, …, J,

(10)

(11)

If Mj is a binary mediator, Mj
(*) denote  and  is a latent variable underlying Mj, such 

that . In this latent variable model, Var(εj) is not identified, and standard 

practice assumes that Var(εj) = 1 [25, 26]. Otherwise if Mj is a continuous mediator, Mj
(*) 

denotes Mj and Var(εj) is estimable. In addition, as indicated above, we make the potential 

outcomes model assumption of a constant unstructured correlation matrix for the J 

continuous (observed and latent) mediators regardless of the set exposure statuses. The βj′, 

αj0’s and αj1’s are regression parameters, and W is a baseline covariate vector with 

corresponding coefficient vectors β′ and αj′.

4.2. Model of the joint distribution for multiple mediators

We will illustrate our estimation approach by formulating the joint distribution of a single 

continuous mediator and a single binary mediator, which is easily extended to cases with 

multiple continuous mediators or multiple binary mediators. Let M1i and M2i be two 

mediators measured on subject i (i = 1, 2, …, N), where M1 denotes the binary mediator and 

M2 the continuous mediator. Let M1i
* be a latent variable underlying M1i, such that M1i = 

I{M1i
* ≥ 0}. For the bivariate response, we assume that the unobserved latent variable M1i

* 

and the observed continuous mediator M2i for individual i together follow a bivariate normal 

model of the form

where α1 and α2 are fixed effect regression coefficient vectors of the covariate vector Xi for 

the binary and continuous endpoints, respectively, and Xi may include treatment T and 

subsets of baseline covariates W. The variance matrix of the residual (mean zero) error 

vector is assumed to be
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Thus, this model specifies an unstructured correlation matrix for the two mediators. The 

parameter σ1 is not identified as mentioned above and is assumed that σ1 = 1. The 

specification of a common design vector Xi for two mediators is not necessary, though a 

reasonable assumption in our application.

4.3. Maximum likelihood estimation

As standard linear or logistic regression models are employed for the marginal models, 

maximum likelihood estimation for the regression parameters is straightforward. For the 

joint mediator models, continuing our focus on the case of a single continuous and a single 

binary mediator, we note that the joint likelihood for the two mediators of subject i can be 

decomposed as

(12)

The first term above is the marginal normal distribution given previously. The conditional 

density function is given by

Given this formulation, it is easy to then derive the contribution of M1i to the likelihood. 

Specifically, we have

(13)

Therefore, we can write the subject-specific contribution to the joint likelihood for (M1i, 

M2i) as the product of the marginal normal likelihood for M2i times either the Bernoulli 

probability (13) or the probability of the complement, depending on whether M1i is 1 or 0 

respectively. The log-likelihood for the data is defined by summing the log of the expression 

in formula (12) over all subjects. Here, model estimation can be implemented in SAS 

(Version 9.2, SAS Institute Inc., Cary, NC, USA) using either the NLMIXED procedure to 

specify the likelihood function manually or the QLIM procedure which constructs the 

likelihood automatically from specified regression models.

5. SENSITIVITY ANALYSIS

Sensitivity analysis explores the impact of departures from untestable assumptions and thus 

is an important component of our approach. Two sensitivity analyses are provided in this 
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section. The first one assesses the effect of the assumed correlation coefficient ρkl(tk, tl) 

between Mk
(*)(tk) and , k < l, tk ≠ tl on the estimation of decomposed mediation 

effects, and the second one evaluates the effect of violation of the no unmeasured mediator-

outcome confounder assumption (7) on mediation effect estimation. For ease of 

presentation, we use a two-mediator model with one binary mediator (M1) and one 

continuous mediator (M2) to illustrate our sensitivity analysis approach in this section. The 

approach described can be easily extended to models with more than two mediators.

5.1. Effect of assumed correlation coefficient on decomposed mediation effect estimation

As stated in Section 3.2, the correlation coefficient ρ′ (indicating ρ12(0, 1)) between 

counterfactuals M1
*(0) and M2(1) needs to be pre-specified for the estimation of 

decomposed mediation effects IE1 and IE2. We may examine the robustness of the IE1 and 

IE2 estimators, thus providing a sensitivity analysis, by varying the specified counterfactual 

correlation ρ′ over the interval −1 to 1.

5.2. Sensitivity analysis for violation of no unmeasured mediator-outcome confounder 
assumption

We propose a sensitivity analysis based on the approach of Albert and Nelson [22] and 

Wang and Albert [27], which applies the Gaussian copula [28], to assess the impact of non-

zero correlations between Y(t0, m1, m2) and Mj(tj) (j = 1, 2) on mediation effect estimates, 

where Y and M1 are binary and M2 is continuous (normally distributed). In order to handle 

binary variables, corresponding continuous latent variables are introduced, such that the 

observed binary event is realized if the latent variable exceeds some threshold. Specifically, 

for the probit-type model, the threshold is 0. Then Y*(t0, m1, m2), M1
*(t1) and M2(t2) are 

assumed to have a trivariate normal distribution with covariance matrix Σ and mean μ. The 

marginal distributions of Y*(t0, m1, m2), M1
*(t1) and M2(t2) are estimable, as is the 

correlation coefficient ρ between M1
*(t1) and M2(t2) under the assumption that the 

correlation between M1
*(t1) and M2(t2) is constant over all t1 and t2. Alternatively, we can 

use any specified value for ρ as considered in the first sensitivity analysis above. The 

correlation between Y*(t0, m1, m2) and M1
*(t1) is denoted as ρ1 and the correlation between 

Y*(t0, m1, m2) and M2(t2) as ρ2. Similarly, we assume that ρ1 and ρ2 are constant over all t0, 

t1, and t2. Nonzero ρ1 (or ρ2) implies that there exists an omitted variable that affects both 

M1 (or M2) and Y. We propose a sensitivity analysis using Monte Carlo approach to estimate 

the conditional probability P{Y(t0, m1, m2) = 1} under the assumed ρ1 and ρ2. This approach 

involves the following algorithm:

1. Sample the pair of mediator values (m1i
*, m2i) ~ fM1*(t1), M2(t2)(m1

*, m2), i = 1, 2, 

…, n. If m1i
* > 0 then m1i = 1, otherwise, m1i = 0.

2. The conditional distribution Y*(t0, m1i, m2i) is obtained based on the trivariate 

normal distribution of Y*(t0, m1i, m2i), M1
*(t1) and M2(t2) with estimated ρ as well 

as pre-specified ρ1 and ρ2.

3. Compute P{Y(t0, m1i, m2i) = 1} as P{Y*(t0, m1i, m2i) > 0} based on the distribution 

in (2).
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4. Repeat steps 1–3 n times and obtain the potential outcome mean E(Y(t0, M1(t1), 

M2(t2))) as .

This algorithm provides an estimation method for the general expected value of potential 

outcome Y(t0, M1(t1), M2(t2)) assuming specified correlations (ρ1 and ρ2) between each 

mediators and the outcome adjusted for the mediators. It thus provides a sensitivity analysis 

of the total and decomposed natural indirect effect for departures from the sequential 

ignorability assumption (7).

6. SIMULATION STUDY

In this section, a simulation study was used to assess the empirical bias, coverage probability 

and power of total and decomposed natural indirect effect estimators from our mediation 

formula approach for a binary outcome in a two-mediator model. In addition, coverage 

probabilities were compared for different confidence interval methods. We used SAS/IML 

for all simulations and statistical analyses.

6.1. Empirical Bias

To assess the empirical bias of mediation effect estimators, we conducted simulations using 

a 3 × 4 × 3 × 3 factorial design. First of all, we consider two-mediator models with three 

different combinations of mediator types, two binary, one binary and one continuous, or two 

continuous mediators. For each two-mediator model, four correlation coefficients values 

(−0.5, 0, 0.5 and 0.9) between the two mediators (or latent variables underlying any binary 

mediators) are assumed. The exposure effect is similar for all scenarios (around 0.2). The 

magnitudes of the total natural indirect effect, IE, (involving parameters β1, β2, α11 and α21) 

and the natural direct effect, DE, (involving β3) are studied under three cases: dominant IE, 

dominant DE, and similar magnitude of IE and DE. The last factor, related to the 

decomposition of the total natural indirect effect, consists of three scenarios: indirect effect 

exclusively through one mediator, similar mediation effect through each mediator, and 

substantial mediation effects through each mediator but with different directions. Sample 

sizes of 200 (100 per exposure group) and 500 (250 per exposure group) were used for each 

scenario.

The bivariate normal distributed error terms for two mediators (or underlying latent 

variables corresponding to binary mediators) were generated using the ‘RANDNORMAL’ 

function in SAS/IML. No baseline covariates were used in our simulation scenarios to 

simplify the calculations. For each given exposure, the mediator variables or corresponding 

latent variables were generated using equation (11) with above produced error terms. The 

response variates were then generated according to the logistic regression model (10) given 

the individual exposure and observed mediators (possibly from corresponding latent 

variables). For each dataset, we estimated the total and decomposed natural indirect effects 

using formulae (1), (4) and (8). The true value is defined by the same function, with true 

coefficients in place of estimates. In addition, in the calculation of both true and estimated 

decomposed mediation effects, we assume that the correlation between M1
(*)(t1) and 

M2
(*)(t2) (which is estimable only for t1 = t2) is constant over all t1 and t2. We performed 
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1000 independent datasets and the following statistics for mediation effects estimators (total 

or individual) were provided: the average estimate; the average percent error (PE, estimate 

minus true value then divided by true value); the SD of the estimate.

We focus on results for the two-mediator model with one binary mediator and one 

continuous mediator; results for two-mediator model with either two binary or continuous 

mediators are similar and therefore not presented. The simulation results are given in Table 

1 with total sample size 200. We see that the mediation formula approach generally 

produces a small bias in its estimation of IE, IE1 and IE2 in most scenarios. However, the 

proposed approach may provide substantial relative biases in some situations (putting aside 

cases where the true mediation effect is very small and thus, the average relative bias is 

unreliable). One such scenario is where the two mediators have mediation effects in 

different directions (the sixth ‘mixed direction’ scenario in each set); the other scenario has 

similar mediation effect magnitudes through either mediator but a correlation coefficient 

between the two mediators of 0.9 (the fifth ‘high mediator correlation’ scenario). In the 

‘mixed direction’ scenario, our approach tends to produce high relative bias for the IE 

(overall) estimator, but low relative bias for the IE1 and IE2 (individual) estimators (less 

than 4%); on the other hand, high relative bias for individual and low relative bias (less than 

2%) for overall mediation effect estimators can be detected in the ‘high mediator 

correlation’ scenario. When the sample size per group is increased to 250, the proposed 

approach shows low relative bias for all scenarios (less than 8.9%, data not shown).

6.2. Coverage probability and power

In a second simulation study, we compared the coverage probability (CP) of 95% CIs 

constructed by different methods. Four such methods were evaluated in this section: 

jackknife [29], percentile bootstrap, bias-corrected bootstrap, and bootstrap-t [30]. The 

second goal was to assess the power to detect non-zero mediation effects under different 

correlation coefficients between two mediators. Four correlation coefficients were chosen as 

before, −0.5, 0, 0.5 and 0.9. For each correlation coefficient, we designed six different 

simulation scenarios: (1) small indirect effects with different signs for the two mediators; (2) 

substantial indirect effects with different signs and magnitudes for the two mediators; (3) 

zero indirect effect through each mediators; (4) zero indirect effect through the binary 

mediator and small indirect effect through the continuous mediator; (5) zero indirect effect 

through the continuous mediator and small indirect effect through the binary mediator; (6) 

small direct effects with the same sign for both mediators. Of note, for power comparison 

purpose, we adjusted the corresponding parameter β1, β2, α11 and α21 to make the true 

mediation estimand almost identical (constant up to the fourth decimal) for different 

specified correlation coefficient values. The CP is calculated as the percent of simulated 

datasets for which the 95% CIs covered the true value, and the power is calculated as the 

proportion of these 1000 replicated CIs that do not include zero. The results are summarized 

in Table 2 and Table 3 respectively.

Table 2 shows the CP of four different methods for total and individual indirect effect 

estimates with sample size 100 per group. The results indicate that the bootstrap percentile 

CIs, for which the CP is within 3% of the nominal level for all scenarios, performs best. The 
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coverage for bias-corrected bootstrap and jackknife CIs is only around 85% for the second 

scenario with correlation coefficient −0.5, and the CP of bootstrap-t CIs for continuous 

mediator indirect effect, IE2, is unstable in most scenarios. We repeated the simulations with 

a sample size of 250 per group (data not shown). With the larger sample size, the CP for 

bootstrap percentile, bias-corrected bootstrap and jackknife CIs gets closer to nominal level 

while problems for bootstrap-t CIs still exist.

We then compared the power of the bootstrap percentile CI to detect non-zero mediation 

effects under different values of the correlation between the two mediators. The results, 

given in Table 3, show that the power to detect non-zero IE increases as the correlation 

coefficient between two mediators increases, and the power to detect non-zero IE1 and IE2 

increases as the absolute value of the correlation coefficient between two mediators gets 

close to zero for most simulation scenarios. When the sample size per group is increased to 

250, the power is larger than that in small sample size scenarios and similar results can be 

observed.

7. STUDY EXAMPLE

The illustrative example considered here comes from a dental caries study measuring the 

number of decayed, filled, or missing teeth (#DMFT) at around age of 14 years for a cohort 

of very low birth weight (VLBW) and a matched group of normal birth weight (NBW) 

children. The exposure variable of interest is the binary variable, socioeconomic status 

(SES), coded as SES = 1 for low SES (‘exposed’), SES = 0, for high SES (‘unexposed’). 

The outcome considered in this example is the dichotomous DMFT variable, DMFT = 0 

(#DMFT = 0) versus DMFT = 1 (#DMFT > 0). Baseline covariates adjusted for in the model 

include birth group (VLBW vs. NBW), sex and race. We also considered the following 

potential mediators: “Sealant” (a binary variable indicating use of sealants), “AvgOHI” (the 

average oral hygiene index score with higher values indicating worse oral hygiene status), 

and “Visit” (a binary variable indicating whether the child received regular (at least once a 

year) checkups from the dentist or not). We wanted to assess the direct effect of SES on 

DMFT and its indirect effect through Sealant, AvgOHI and Visit.

The dental dataset we used for the analysis included 129 subjects in the exposed group (SES 

= 1) and 74 subjects in the unexposed group (SES = 0). 79/129 (61.2%) of subjects in the 

exposed group and 28/74 (37.8%) of subjects in the unexposed group had at least one 

DMFT indicating that children from families with low SES may have a higher risk of 

developing dental caries compared with those from families with high SES. The system of 

models (including the outcome model (10) and the mediator model (11) for the selected 

mediators, each of which incorporated the three baseline covariates, birth group, sex and 

race), were fitted using maximum likelihood estimation. First, we considered the two-

mediator model including Sealant and AvgOHI. Estimates of TE, DE, IE, IE1 and IE2 using 

the mediation formula approach with ‘exact’ integration (SAS, ‘QUAD’ function), and the 

Monte Carlo approximate integration approach (using 10,000 bivariate samples of M1
*(t1) 

and M2(t2)) are provided in Table 4; 95% CIs for these estimators were computed using 

bootstrap percentile methodology. The ‘exact’ and Monte Carlo approaches provided almost 

identical mediation effect estimates as well as CIs. The results indicate that the total natural 
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indirect effect accounts for approximate 25% of the total exposure effect and the mediation 

effect through AvgOHI predominates among the individual mediation effects. The effect 

estimates are interpreted as follows. Low (versus high) SES increases the probability of 

DMFT = 1 by 0.19 (95% CI: 0.04, 0.34), by an estimated 0.04 (−0.00, 0.09) attributable to 

the two mediators (Sealant and AvgOHI), and an estimated 0.15 (0.00, 0.30) due to the 

direct effect (or other unknown pathways); we let ‘0.00’ indicate a positive value, and 

‘−0.00’ a negative value, less than 0.005 in absolute value. The overall indirect effect 

(attributable to the two mediators together) can be decomposed into mediation effects 

through Sealant (−0.00 (−0.02, 0.02)) and through AvgOHI (0.04 (0.01, 0.09)). In summary, 

we found, using the two-mediator model for the dental data, a significant total exposure 

effect (TE), direct effect (DE), and indirect effect through AvgOHI (IE2), a marginally 

significant total indirect effect estimate (IE) and a non-significant indirect effect through 

Sealant (IE1) (at the 0.05 level based on the CIs). We next included one additional potential 

mediator, Visit, in the model; the analysis results of this model are shown in Table 5. Similar 

conclusions were drawn as above. Low (versus high) SES increases the probability of 

DMFT = 1 by an estimated 0.18 (0.03, 0.34) with an estimated increase of 0.05 (0.00, 0.11) 

attributable to the set of mediators (with the following individual mediation effects: Sealant 

0.00 (−0.02, 0.02), AvgOHI 0.04 (0.00, 0.08) and Visit 0.02 (−0.01, 0.05)) and an estimated 

increase of 0.13 (−0.03, 0.29) due to the direct effect (that is, any other pathways). 

Comparing with the results from Table 4, we may conclude that part of the direct effect in 

the two-mediator model was explained by an indirect effect through the added mediator 

Visit, although the indirect effect through Visit is not statistically significant.

We conducted two sensitivity analyses in the two-mediator model for our dental data. In the 

first sensitivity analysis, we examined the effect on the individual mediation effects, IE1 and 

IE2, of varying the correlation coefficient ρ′ between M1
*(0) and M2(1) from −1 to 1 in 

increments of 0.01. The change in IE1 and IE2 estimates over ρ′ is shown in Figure 2. The 

plots indicate that the IE1 estimate increases (Figure 2A) and the IE2 estimate decreases 

(Figure 2B) as ρ′ increases; the sum of IE1 and IE2 is constant, since ρ′ doesn’t affect the 

total indirect effect estimate. Based on repeated computations of the confidence intervals, 

we found a nonsignificant indirect effect through Sealant and a significant indirect effect 

through AvgOHI over the whole range of ρ′ indicating robustness of the decomposed 

mediation effect estimates to the correlation between counterfactuals M1
*(0) and M2(1).

In the second sensitivity analysis, we assessed the effect on mediation effect estimates (IE, 

IE1 and IE2) of possible violation of the no unmeasured mediator-outcome confounding 

assumption. Since there are two correlation parameters of interest, 3-D graphs (Figure 3) 

were plotted describing the change of mediation effect estimates over the ranges of the two 

correlations. Namely, the correlations are those between each of the two mediators (or 

underlying latent variables) and the latent variable underlying the outcome variable 

adjusting for the mediators. Of note, when assuming no mediator-outcome confounders (ρ1, 

ρ2 = 0), a significant positive indirect effect through AvgOHI (IE2, 0.04 (0.01, 0.09)), a 

positive marginally significant total indirect effect (IE, 0.04 (−0.00, 0.09)) and no significant 

indirect effect through Sealant (IE1, −0.00 (−0.02, 0.02)) were detected. We find that ρ1 (the 

correlation between Y*(t0, m1, m2) and M1
*(t1)) does not substantially affect estimates of the 

Wang et al. Page 13

Stat Med. Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



overall indirect effect (IE), and as ρ2 (the correlation between Y*(t0, m1, m2) and M2(t2)) 

increases, the IE estimate significantly decreases (Figure 3A). Furthermore, the IE estimate 

is contained in the bounded interval [−0.14, 0.16], and when ρ2 is greater than 0.56, we find 

significant negative IE estimate. For the IE1 estimate, it is stable and trivial (bounded by 

[−0.01, 0.00]) over the range of ρ1 and ρ2 (Figure 3B). The fact that the 95% CIs 

recalculated over the full bivariate range for the two correlation coefficients always contain 

zero indicates the robustness of the original conclusion (that there is no evidence for a 

mediation effect through Sealant). The pattern of the change in the IE2 estimate (over the 

ranges of ρ1 and ρ2) is similar with that of IE estimate (Figure 3C); IE2 is close to IE in this 

example since the estimate of IE1 is approximate zero. This result indicates that our original 

conclusion regarding the significant positive indirect effect through AvgOHI may not hold if 

unmeasured confounders (explaining a correlation of greater than 0.5) between the mediator 

and outcome exist.

8. DISCUSSION

In this article, we consider multiple-mediator models with binary or continuous mediators 

and a binary outcome. We model the joint distribution assuming multivariate normality 

among the latent (if binary) and observed (if continuous) mediators, with marginal probit 

models for binary mediators and linear models for continuous mediators. Our approach thus 

accommodates correlations among multiple contemporaneous mediators of different types. 

The total and individual mediation effects are estimated with a mediation formula approach 

and proposed sensitivity analyses allow an assessment of the robustness of the results. 

Mediation effects estimation for two-mediator and three-mediator models described in this 

paper has been encoded in a SAS macro which is available for downloading from the 

webpage http://epbiwww.case.edu/index.php/people/faculty/53-albert.

Our simulation study showed good properties (low bias and close-to-nominal confidence 

interval coverage rates) for the proposed estimators under most scenarios. For the estimation 

of individual natural indirect effects, there appears to be some bias when there are 

substantial mediation effects through each mediator and the correlation coefficient between 

the two mediators is high. This bias, which occurs for n = 200, suggests that our method 

may have difficulty dissecting the total natural indirect effect accurately in some scenarios 

when the two mediators are highly correlated and the sample size relatively small. However, 

in most scenarios low bias for individual mediator indirect effect was obtained even in this 

case. In addition, we found that our estimators of the total natural indirect effect had low 

bias in most scenarios, and high mediator correlation appears to be a favorable condition for 

this estimand.

Based on our simulation study of coverage probabilities from four methods of constructing 

CIs, we recommend that CIs for mediation effects in our multiple-mediator model context 

be obtained using the bootstrap percentile method. Preacher and Hayes [13] advocate the 

bias-corrected bootstrap for CIs of mediation effects estimated with the product of 

coefficients approach in linear multiple-mediator models. However, we found that CIs from 

the bias-corrected bootstrap may be biased when there are substantial unbalanced indirect 

effects through both mediators with different signs and the sample size is 200. An interesting 
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finding is that the power for detecting a total indirect effect increases as the correlation 

between two mediators increases and the power for individual-mediator indirect effects is 

maximized when the two mediators are uncorrelated. Therefore it is relatively easy to detect 

a total mediation effect when the two mediators are highly correlated, whereas individual 

mediation effects are most easily detected with uncorrelated mediators.

Multiple-mediator models allow us to dissect the total mediation effect and estimate 

mediation effects through individual or sets of mediators under additional assumptions. 

Estimation of the decomposed mediation effects involves the joint distribution of 

counterfactuals that cannot be observed at the same time (namely, M1(0) and M2(1) in our 

data example). This problem, which may occur when there are more than two stages of 

mediation, was recognized previously in the literature [22, 27, 31]. The simple identifying 

assumption of a constant correlation coefficient between counterfactuals M1
*(t1) and M2(t2) 

for all t1, t2 may not always be plausible. Therefore, it may be sensible to make use of 

bounds for the decomposed mediation effect estimate by considering ρ′ over a plausible 

range, or even over the entire interval, [−1, 1].

To assess the effect on mediation effect estimates of violations of the no unmeasured 

mediator-outcome confounders assumption, we use the correlation coefficients between 

each mediator (or underlying latent variables) and the latent variable underlying the outcome 

variable (adjusting for the mediators), denoted as ρ1 and ρ2, as our sensitivity analysis 

parameters. Alternatively, Imai et al. [23] expressed the correlation coefficient between the 

mediator and the outcome as a function of the coefficients of determination (i.e. R2, which 

represent the proportion of previously unexplained variance either in the mediator or 

outcome that is explained by the unobserved confounders), allowing for the sensitivity 

analysis to be based on the magnitudes of an effect of the omitted confounder. Imai et al. 

[32] also extended this approach to the case of a binary mediator and/or binary outcome 

using the pseudo-R2 of McKelvey and Zavoina [33]. This approach may possibly be applied 

to our model. Although R2 as a sensitivity parameter has an advantage of interpretability, a 

disadvantage of this approach is that it requires two such R2s instead of a single parameter 

(ρ). One consequence is that the graphical presentation of the sensitivity analysis results is 

more difficult, especially for our multiple-mediator models. Imai and Yamamoto [34] (a 

paper to which an anonymous referee called our attention) also addressed a multiple 

mediator problem, but where a causal direction between the mediators is specified. They 

provide an alternative set of identifying assumptions developed for the situation where there 

is a single mediator of interest that may be causally affected by other mediators.

In conclusion, we have proposed a mediation formula approach for mediation analysis of 

multiple-mediator models with a dichotomous outcome that allows estimation of the total 

indirect effect, as well as further decomposition of the total indirect effect through individual 

mediators. This approach can be easily extended to other types of discrete outcomes (such as 

a count response). One limitation of the proposed mediation analysis approach is that 

unbiased mediation effect estimation requires correct specifications of the parametric 

models for both the mediators and the outcome. This assumption may be violated, for 

example, if nonzero quadratic terms or treatment-mediator interactions are excluded from 

the model. However, standard model assessment techniques may be used to test and 
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formulate reasonably correct association models. In addition, the use of the mediation 

formula (8) involves integration for continuous mediators. Due to the extensive 

computations required for multivariate integration, the proposed approach may not be 

feasible with more than three continuous mediators. In such cases, some sort of 

dimensionality reduction (for example, reducing the number of mediators or using linear 

combinations) may still allow use of this approach. Future research is needed to find more 

efficient computational techniques that will allow a larger number of mediators.
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APPENDIX A: PROOF OF FORMULA (8)

In this proof we assume sequential ignorability (6) and (7) and consistency. Note that, the 

potential outcomes for J mediators in Y(t0, M1(t1), …, MJ(tJ)) are random variables, 

therefore, to obtain the marginal expected value of Y(t0, M1(t1), …, MJ(tJ)) requires that we 

integrate over these variables, comprising the endogenous (random) explanatory variables in 

the model of Y [22], as follows,
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So formula (8) holds.
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Figure 1. 
Path diagram for a multiple-mediator model with J mediators. T = exposure or treatment; Mj 

= mediator j, j = 1, …, J; Y = outcome; U = set of unobserved confounders of associations 

among mediators. T may exert indirect effects on Y through M1, M2, …, MJ, or affect Y 

directly.
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Figure 2. 
Sensitivity analysis for overall indirect effect decomposition of dental data involving binary 

‘Sealant’ and continuous ‘AvgOHI’ mediators. Panels A and B show the estimated indirect 

effect through ‘Sealant’ and ‘AvgOHI’, respectively, for varying correlation ρ′ between 

M1
*(0) and M2(1). The areas between dotted lines represent the 95% CIs for the 

decomposed natural indirect effect estimator at each value of ρ′.
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Figure 3. 
Sensitivity analysis for overall indirect effect estimation and indirect effect decomposition of 

dental data involving binary ‘Sealant’ (M1) and continuous ‘AvgOHI’ (M2) mediators. Panel 

A shows the estimated overall indirect effect for varying correlations ρ1 (between Y*(t0, m1, 

m2) and M1
*(t1)) and ρ2 (between Y*(t0, m1, m2) and M2(t2)). Panel B shows indirect effect 

estimation through ‘Sealant’, and Panel C shows indirect effect estimation through 

‘AvgOHI’. Red surface shows the mediation effect estimate, the space between the two 

green surfaces represents the 95% CIs, and the black surface indicates zero mediation effect 

reference.
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Table 4

Estimated causal effects (and 95% bootstrap percentile CIs) based on the mediation formula approach with 

‘exact’ integration and Monte Carlo integration in the two-mediator model using dental data.

Mediation Formula

‘Exact’ Integration Monte Carlo Integration#

Sealant (binary) and AvgOHI (continuous)

Total TE 0.19 (0.04, 0.34) 0.19 (0.04, 0.33)

Direct DE 0.15 (0.00$, 0.30) 0.15 (0.00, 0.30)

Indirect IE 0.04 (−0.00$, 0.09) 0.04 (−0.00, 0.09)

 Through Sealant (IE1)* −0.00 (−0.02, 0.02) −0.00 (−0.02, 0.02)

 Through AvgOHI (IE2)* 0.04 (0.01, 0.09) 0.04 (0.01, 0.09)

#
Monte Carlo integration with 10,000 samples was used for estimation of causal effects.

*
Assumes correlation coefficient (ρ′) between unobserved counterfactual values M1*(0) and M2(1) the same as that between M1*(0) and M2(0) 

and M1*(1) and M2(1).

$
‘0.00’ indicates a positive value, and ‘−0.00’ a negative value, less than 0.005 in absolute value.
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Table 5

Estimated causal effects (and 95% bootstrap percentile CIs) based on the mediation formula approach with 

‘exact’ integration and Monte Carlo integration in a three-mediator model using dental data.

Mediation Formula

‘Exact’ Integration Monte Carlo Integration#

Sealant (binary), AvgOHI (continuous), and 
Visit (binary)

Total TE 0.18 (0.03, 0.34) 0.18 (0.03, 0.34)

Direct DE 0.13 (−0.03, 0.29) 0.13 (−0.03, 0.29)

Indirect IE 0.05 (0.00$, 0.11) 0.05 (0.00, 0.11)

 Through Sealant (IE1)* 0.00 (−0.02, 0.02) 0.00 (−0.02, 0.02)

 Through AvgOHI and Visit (IE23)* 0.05 (0.01, 0.11) 0.05 (0.01, 0.11)

 Through AvgOHI (IE2)* 0.04 (0.00, 0.08) 0.04 (0.00, 0.08)

 Through Sealant and Visit (IE13)* 0.02 (−0.02, 0.05) 0.02 (−0.02, 0.05)

 Through Visit (IE3)* 0.02 (−0.01, 0.05) 0.02 (−0.01, 0.05)

 Through Sealant and AvgOHI (IE12)* 0.04 (−0.00, 0.08) 0.04 (−0.00$, 0.08)

#
Monte Carlo integration with 1,000,000 samples was used for estimation of causal effects.

*
Assumes correlation between  is constant over all ti and tj.

$
‘0.00’ indicates a positive value, and ‘−0.00’ a negative value, less than 0.005 in absolute value.
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