
Systems-level Modeling with Molecular Resolution Elucidates
the Rate-limiting Mechanisms of Cellulose Decomposition by
Cellobiohydrolases*□S

Received for publication, June 26, 2013, and in revised form, August 12, 2013 Published, JBC Papers in Press, August 15, 2013, DOI 10.1074/jbc.M113.497412

Barry Z. Shang‡, Rakwoo Chang§, and Jhih-Wei Chu‡¶�1

From the ‡Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, the
§Department of Chemistry, Kwangwoon University, Seoul 139-701, South Korea, and the ¶Department of Biological Science
and Technology and �Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan

Background: Cellobiohydrolase enzymes processively degrade crystalline cellulose into free sugar molecules.
Results:A spatially resolved kinetic model has been developed to understand the effects of interfacial confinement on cellobio-
hydrolase activity.
Conclusion: Cellobiohydrolase activity is limited by slow rates of complexation with cellulose and traffic jamming among
enzymes on the substrate.
Significance: Identifying kinetic effects imposed by interfacial confinement is crucial for understanding and engineering cel-
lulose bioconversion.

Interprotein and enzyme-substrate couplings in interfacial
biocatalysis induce spatial correlations beyond the capabilities
of classical mass-action principles in modeling reaction kinet-
ics. To understand the impact of spatial constraints on enzyme
kinetics, we developed a computational scheme to simulate the
reaction network of enzymes with the structures of individual
proteins and substrate molecules explicitly resolved in the
three-dimensional space. This methodology was applied to elu-
cidate the rate-limiting mechanisms of crystalline cellulose
decomposition by cellobiohydrolases.We illustrate that the pri-
mary bottlenecks are slow complexation of glucan chains into
the enzyme active site and excessive enzyme jamming along the
crowded substrate. Jamming could be alleviated by increasing
the decomplexation rate constant but at the expense of reduced
processivity.Wedemonstrate that enhancing the apparent reac-
tion rate required a subtle balance between accelerating the
complexation driving force and simultaneously avoiding
enzyme jamming. Via a spatiotemporal systems analysis, we
developed a unified mechanistic framework that delineates the
experimental conditions under which different sets of rate-lim-
iting behaviors emerge.We found that optimization of the com-
plexation-exchange kinetics is critical for overcoming the barri-
ers imposed by interfacial confinement and accelerating the
apparent rate of enzymatic cellulose decomposition.

Unraveling enzyme kinetics under interfacial confinement is
a core problem of in vivo biology (1). Progress in this task is

severely restrained by the limitation in resolving protein behav-
iors and their effects on biochemical reactions in heterogene-
ous environments. Here, we overcame this issue for a very
important biocatalyst in the decomposition of cellulose (2–5).
The enzyme system of our investigation is the most abundant
cellobiohydrolase produced by the Trichoderma reesei fungus,
TrCel7A2 (6). We devised a novel systems-level simulation
method that incorporates molecular scale spatial resolution to
illuminate the non-classical behaviors in enzyme kinetics due
to surface restriction. The capabilities we established for track-
ing single-enzyme movements during the course of the bio-
chemical reaction allow clear elucidation of the molecular ori-
gins that limit the apparent rate of substrate conversion. A
comprehensive understanding of the interfacial biocatalysis of
TrCel7A can help to identify effective engineering strategies for
improving the technologies of cellulose bioconversion (7, 8).
The elementary kinetic reactions performed by TrCel7A are

shown in Fig. 1A (4, 9). The enzymes adsorb onto crystalline
cellulose microfibrils that are composed of linear glucan chains
held tightly together by hydrogen bonding and van der Waals
interactions (3). On the microfibril surface, an adsorbed
enzyme diffuses until it complexeswith the free reducing end of
a glucan chain (6). Complexation involves extraction of the tar-
geted chain from the surface and threading of the linear poly-
mer into the active site tunnel ofTrCel7A (6). Once complexed,
the enzyme can processively hydrolyze the�1,4-glycosidic link-
ages within the captured chain and release a cellobiose mole-
cule into solution after each bond cleavage. The consecutive
hydrolysis along a single chain stops when the enzyme decom-
plexes or becomes blocked by surface obstacles (10–12).
In interfacial biocatalysis, the heterogeneous and crowded

environments around insoluble substrates can induce complex
protein-protein and protein-biomaterial couplings that are dif-
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ficult to characterize (9, 13). For example, the rate constants of
the complexation-exchange of TrCel7A (4, 9) have not been
measured as stand-alone steps. Furthermore, as a result of the
excluded volume constraints, the displacement of processive
TrCel7A enzymes is sensitive to obstacles on the microfibril
surface that can cause “traffic jams” of proteins (9–12). Similar
issues due to confinement on an extended molecular surface
can be found in other systems like motor proteins (14). In such
scenarios, the classical mass-action principles that assume a
dilute and well mixed reaction medium become inappropriate
(9, 13). For the case of cellulose decomposition by TrCel7A, we
illustrate that spatiotemporal resolution of the enzyme kinetics
is essential for uncovering the rate-limiting mechanisms.

EXPERIMENTAL PROCEDURES

Stochastic Lattice Enzyme (SLATE) Model—To understand
the effect of spatial confinement on cellulase kinetics, we devel-
oped a lattice kineticMonte Carlo (kMC)model to simulate the
elementary kinetic reactions (see Fig. 1A) of individual cellu-
lases on cellulose microfibrils with a molecular scale spatial
resolution. The SLATE model developed here describes the
spatiotemporal enzyme reaction network in three dimensions
and explicitly tracks the locations of individual enzymes and
cellobiose residues. As illustrated in Fig. 1A, each TrCel7A
enzyme in the model can perform the following reactions:
adsorption, desorption, diffusion, complexation, decomplex-
ation, and hydrolysis.
The shapes and sizes of individual TrCel7A enzymes (15, 16)

and microfibril glucan chains were resolved onto a three-di-
mensional lattice with 5-Å cubic grid cells as shown in Fig. 1A
and supplemental Fig. S1. This grid size allowed explicit repre-
sentation of each glucose residue in the glucan chains of a
microfibril (17, 18). Excluded volume constraintswere imposed
between molecules in the system by enforcing that any two
entities could not have common lattice sites. The geometry and
elementary steps of the system are further described in the sup-
plemental data.

According to the structural features of plant cellulose, the
simulationmodel of themicrofibril consists of 36 glucan chains
(17) with a degree of polymerization of 1024 glucose residues
(2) (see supplemental Fig. S1). Formation of the enzyme-sub-
strate complex via the complexation step occurs only at the
reducing end of glucan chains due to the specificity of TrCel7A
(6). The average number of TrCel7A enzymes adsorbed on the
microfibril is 18. This loading corresponds to a cellulose surface
coverage of 25%, which is within the typical range employed in
experiments (19).
Kinetic Rate Constants of Elementary Reactions—The kMC

model requires rate constant data to perform stochastic simu-
lations of the enzyme reaction network. For the steps that have
been characterized experimentally, the values employed in the
simulation model are shown in Fig. 1B. For the complexation
rate constant that is unavailable, the value was calibrated by
reproducing the conversion versus time profile of decomposing
Avicel by TrCel7A measured by Gusakov et al. (20). Details of
the rate constants employed in the simulation model are
described below.

Via this calibration procedure, the desorption rate constant
of TrCel7A was estimated to be in the range 1 � 10�3 to 1 �
10�2 s�1, consistent with the values inferred from the bulk
measurements of reaction kinetics (21–24). The reference
value of the complexation rate constant employed in our
SLATE simulations was set to 1 � 10�3 s�1; using the value of
1 � 10�2 s�1 does not alter the resulting conversion profiles by
�5%.
Next, the adsorption rate constant could be determined by

the equilibrium adsorption constant K and system volume V.
ForTrCel7A adsorbing onAvicel, a representative value forK is
0.28 liters/�mol (2, 25). The volume of the simulation model
was then set by ensuring that the cellulose concentration in the
system is the same as the concentration used by Gusakov et al.
(20), 5 mg/ml. With the values of K and V, the adsorption rate
constant was calculated by converting the phenomenological
bimolecular adsorption rate of kdK to a first-order association
rate constant (26) as ka � kdK/(VNAV10�6) � 8.9 � 10�4 s�1.
The factor ofNAV10�6 was used to convert �mol in K to num-
ber of molecules, and NAV is Avogadro’s number.
The surface diffusion rate constant is related to the self-dif-

fusion coefficient DS from random walk theory as kdiff � 4DS/
lh2, where lh � 1 nm is the hopping distance (27). With the
experimentallymeasured diffusion constant of 1� 10�10 cm2/s
(28), the resulting diffusion rate constant is 1 � 104 s�1.

The hydrolysis rate was determined from the processive
speed of TrCel7A of 7.1 nm/s (12). Because a cellobiose unit is
�1 nm long, the corresponding hydrolysis rate was thus set to
7.1 s�1. The decomplexation rate constant was estimated to be
�1 � 10�3 to 1 � 10�2 s�1 from bulk kinetic measurements
(29–32). In some studies (30–32), this rate is lumped together
with desorption. The reference value for the SLATEmodel was
set to be 1 � 10�3 s�1 and was extensively varied in different
simulations to account for the uncertainty.
As mentioned above, the complexation rate constant is diffi-

cult to measure directly. A common idea obtained based on the
inference from indirect kinetic data is that the value is much
lower than that of the hydrolysis reaction (29, 33, 34). Another
feature of the reference conversion profile (20) that we
employed for calibrating the complexation rate constant is a
rapid decline with time. Therefore, we employed two complex-
ation rate constants in the SLATEmodel to quantitatively cap-
ture this behavior. In the initial microfibril at the start of a
SLATE simulation, we assumed that the glucan chains in the
solvent-exposed surfaces of the top and bottom layers aremore
loosely packed. The complexation rate constant of TrCel7A
with the glucan chains on these surfaces was thus set to be 10
times faster than that of complexation with the originally bur-
ied chains. Recalcitrance of cellulose toward enzymatic decom-
position would then increase with time in the SLATE simula-
tion, leading to rapid retardation in the apparent reaction rate
(9).With a singlemicrofibril in the simulationmodel, this treat-
ment also builds in structural heterogeneity in the material
effectively (2, 9). The best fit values for the fast and slow com-
plexation rates are 5.5 � 10�3 and 5.5 � 10�4 s�1, respectively.
In themain text, the faster value is referenced and shown in Fig.
1B. The mechanistic trends and rate-limiting behaviors identi-
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fied in this work do not depend on whether one or two compl-
exation rate constants were used (data not shown).
Moreover, in the reference kinetic data (20) used to calibrate

the complexation rate constant, the substrate is Avicel, which is
composed of aggregated microfibrils. In contrast, the simula-
tion model contains a single microfibril and hence overesti-
mates the solvent-exposed surface area, i.e. 293 versus 2.38
m2/g (35). As a result, by using an enzyme surface coverage
within the experimental range (19), the enzyme/substrate mass
ratio in the SLATE model is thus higher than those in experi-
ments. To investigate the potential impact on underestimating
the complexation rate constant with a higher enzyme loading,
we performed simulations at lower enzyme loadings and esti-
mated that a 100-fold reduction would yield a best fit complex-
ation rate constant �0.1 s�1. As this value is still �2 orders of
magnitude lower than the rate constant of hydrolysis, the result
of complexation as the rate-limiting step does not depend on
using surface coverage or enzyme loading as the basis to
calibrate the simulation model. Because enzymatic cellulose
decomposition is an interfacial process, we opted to use surface
coverage instead of enzyme loading to connect with experi-
mental results quantitatively.
Lattice kMC Scheme with Molecular Resolution—The simu-

lation engine of the three-dimensional SLATE model for enzy-
matic cellulose decomposition is a lattice kMC scheme (36).
This algorithm was used to simulate the elementary kinetic
reactions listed in Fig. 1A for all enzymes in the system.
kMC-based simulation models have been used to represent

the kinetics of surface phenomena in many areas such as heter-
ogeneous catalysis (36) and motor protein transport (14).
Because enzymatic cellulose decomposition occurs at material
surfaces, we adopted kMC to model this process. The kMC
frameworkwas also adopted here to eliminate the limitations of
kinetic modeling of enzymatic cellulose conversion. In this
regard, key assumptions of elementary steps such as the com-
plexation and decomplexation steps occurring instantaneously
are often imposed without careful justification (37). The com-
monly employed strategies of reducing dimensionality and
combining steps such as adsorption and diffusion (38) would
then leave out molecular details on different levels. Therefore,
cross-comparison of the results of different simulation models
and their usage for quantitative reproduction of the measured
conversion profiles are difficult.
In this work, we aimed to overcome these difficulties by

incorporating a full suite of spatiotemporal behaviors in the
three-dimensional space in SLATE.Thehigh resolution of the 5
Å lattice size can capture the evolving microfibril structures
that couple to enzyme kinetics during cellulose decomposition.
To the best of our knowledge, SLATE is the first of its kind that
simultaneously accounts for the molecular structures of the
enzymes and substrates in the three-dimensional space, the
full kinetics of complexation-exchange, enzyme processivity,
and jamming formation in modeling enzymatic cellulose
decomposition.
To simulate the reaction kinetics of cellulose decomposition,

the null-event kMC algorithm, described further in the supple-
mental data, was used (36). A significant increase in computa-
tional speed was achieved by treating diffusion via a stochastic

quasi-equilibrium approximation (39) that is characterized and
justified in the supplemental data. With this method, a 50-fold
increase in computational speed could be achieved. Conversion
profiles up to 200 h of reaction time could be simulated in�5 h
on a single CPU. In this work, the reported quantities were
averaged over a sufficient number of independent trajectories
for the statistical uncertainties to become negligible.
Analysis of Single-enzyme Kinetics—A key feature of the

SLATE model is the ability to track the states of individual
enzymes. As shown in Fig. 1A, a TrCel7A enzyme can be in one
of four states: 1) in solution, 2) uncomplexed, 3) active, and 4)
blocked. Once complexed, a TrCel7A molecule is either active
or blocked. An active enzyme can perform hydrolysis or
decomplex, whereas a blocked enzyme can only decomplex.
The obstacles on themicrofibril surface include (a) uneven sur-
face layers, (b) the nonreducing edge of the microfibril, and (c)
the other surface enzymes. An illustration of each type of obsta-
cle is shown in Fig. 1A. The nonreducing edge of themicrofibril
substrate prevents TrCel7A enzymes from passing over due to
the high affinity of the carbohydrate-binding domain of
TrCel7A for crystalline cellulose (40, 41). Effectively, this block
also represents restrictions due to immobile structural obstruc-
tions such as hemicellulose and lignin (11). Under “Results,” we
analyze the duration of time that an enzyme spends in each of
these states to quantify the kinetic bottlenecks and relate them
to enzyme activity.

RESULTS

Surface Enzymes Are Mostly Inactive Due to Slow Complex-
ation and Excessive Blocking—In Fig. 2A, snapshots from a
SLATE simulation illustrate the gradual erosion of the micro-
fibril substrate by TrCel7A. Because the processive cellulase
decomposes glucan chains starting from their reducing ends
(6), a more drastic thinning of the reducing edge develops with
time as observed in experiments (42–44). Quantitative agree-
ment between the simulated and experimentally measured
conversion (20) profiles is illustrated in Fig. 2B.

Fig. 2B also shows that the conversion profiles of several indi-
vidual microfibrils exhibit substantial deviation from one
another and from the averaged profile. One signature of single-
microfibril kinetics that becomes obscured by averaging over
multiple trajectories is the pattern of flat regions linked
together by steep jumps. The extensive flat periods reflect long
waiting times for uncomplexed enzymes to become active and
are indicative of complexation-limited kinetics. Increasing the
complexation rate constant by 10-fold over the reference rate
constant drastically enhanced the conversion of cellulose
decomposition in Fig. 3A, but the same increase in the hydro-
lysis rate constant hardly resulted in any change in the profile.
To quantitatively dissect the kinetic bottlenecks of cellulose

conversion at the single-molecule level, the duration that an
enzyme spends in each state (Fig. 1A) during the reaction was
recorded to determine the enzyme occupancy times in different
states; further details of this calculation are described in the
supplemental data. States with a high occupancy time signal the
kinetic traps that prevent TrCel7A enzymes from becoming
active. Fig. 3B plots the occupancy time distribution of the ref-
erence simulation and those from increasing the complexation
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or hydrolysis rate constant by 10-fold over the reference value.
The total reaction time (sum of the occupancy times of all
states) labeled above the bars in Fig. 3B is the duration to reach
60% conversion. The uncomplexed state clearly has the longest
occupancy time in all cases. Fig. 3B also shows that a 10-fold
higher complexation rate constant reduced the uncomplexed
occupancy time by tens of hours. The same increase in the
hydrolysis rate constant only reduced the active state time by
tens of seconds.
By resolving the decomposition of cellulose at the single-

enzyme level, SLATE simulations identify that amajor cause for
the TrCel7A enzymes to be predominantly inactive on the sub-
strate surface is the slowness of extracting glucan chains from
microfibrils and threading them into the active site tunnel. This
finding is consistent with those of several reports that were
inferred from bulk measurements (33, 34). The SLATE-com-
puted complexation time scale on the order of hours is also
in agreement with recent experimental findings (29). The
observed rate-limiting complexation behavior is robust to

assumptions made in the kinetic model, as further discussed in
the supplemental data.
A striking message in Fig. 3B is that even after overcoming

the kinetic barrier to reach the complexed state, the enzymes
spend �99% of their time blocked without performing hydrol-
ysis. Therefore, along with the high free energy barrier in the
complexation step, the excessive blocking experienced by
enzymes on the surface makes the active state of TrCel7A
short-lived. The stalling of TrCel7A molecules on a cellulose
microfibril has been inferred from solution-phase “restart”
experiments (10, 11) and transiently observed via high speed
atomic forcemicroscopy (12). As illustrated below, acceleration
of cellulose conversion can be achieved most effectively by
increasing the complexation rate with coordinated removal of
enzyme blocking.
DecomplexationPlaysOppositeRoles inAffectingProductivity—

Decomplexation is the required step for a blocked enzyme to
escape an obstacle. Fig. 3C plots the different conversion pro-
files fromusing various values for the decomplexation rate con-

FIGURE 1. Illustration of the SLATE model for TrCel7A. A, kinetic reactions (labeled in red) and enzyme states (labeled in blue) in the SLATE model. Cellulase
enzymes can participate in one of the following reactions: adsorption, desorption, diffusion, complexation, decomplexation, and hydrolysis. Only hydrolysis is
treated as an irreversible reaction. With these reaction steps, an enzyme can be in one of the four states: solution, uncomplexed, active, and blocked. These
states are mutually exclusive and completely exhaustive. A blocked enzyme can be stalled by uneven surface layers, the nonreducing edge of the microfibril
substrate, or the other surface enzymes. B, kinetic rates for the reference system. The possible originating states for each reaction is shown under Origin states.

FIGURE 2. Illustration of kMC simulations with the SLATE model. A, snapshots from a simulated trajectory showing the degradation of a microfibril substrate
over time. Only one-quarter of the microfibril length in the model is shown; the nonreducing edge is located on the right side. The processing TrCel7A enzymes
move from left to right after adsorbing onto the hydrophobic (top and bottom) faces of the microfibril (41). B, the averaged substrate conversion over time in
a SLATE simulation (dark red line) and the conversion from the study of Gusakov et al. (20) (blue squares) on the decomposition of Avicel by TrCel7A. The
conversion profile (dark red line) from averaging over eight independent simulations quantitatively agrees with the experimental data (exp.). Each simulation
(sim.) represents the decomposition of an individual microfibril. Four of the eight simulations involved in the average are also shown for comparison as light red
lines. The parameters used in SLATE simulation are listed in Fig. 1B.
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stant kdc in SLATE simulations while fixing the other rate con-
stants at their reference values. It can be seen that a maximum
in conversion occurs at the reference value of 1� 10�3 s�1 that
was inferred from bulk experiments (29–32). The occupancy
time distributions at 40% conversion in Fig. 3D illustrate the
two opposing forces introduced by increasing kdc. A higher
decomplexation rate reduces the occupancy of the blocked
state but also decreases the thermodynamic driving force (kc/
kdc) of complexation.

To further illustrate the conversionmaximumresulting from
the two competing effects of decomplexation, the fractions of
TrCel7A enzymes in each state were tracked over time during
the simulated courses of cellulose decomposition at different
kdc values. Fig. 4A indicates that at the reference kdc of 1� 10�3

s�1, a large fraction (�95%) of surface enzymes are uncom-
plexed due to the low complexation rate. Decreasing the kdc
from this value lowers the uncomplexed fraction but raises the
fraction of enzymes in blocked states. This increase compen-
sates the effect of having a higher complexation driving force
for the enzymes to be more active (Fig. 4, B–D). To reveal the
molecular origins of these competing trends, the detailed
mechanism of enzyme blocking on the microfibril substrate
was analyzed next.
The fraction of surface layer-blocked enzymes is plotted in

Fig. 4B. When kdc is zero, this fraction is also zero because the
surface is initially smooth, and the TrCel7A enzymes cannot
decomplex to make uneven surface layers. When kdc � 1 �
10�5 s�1, uneven steps start to form on the surface to block
enzymes. Because escaping from the surface layer obstacles

requires tens of hours due to the slow rate of decomplexation, a
large fraction of surface layer-blocked enzymes develops. As kdc
is raised to 1 � 10�3 s�1, the fraction becomes low because
enzymes can decomplex within minutes after encountering
these obstacles.
The edge-blocked fractions of TrCel7A during decomposi-

tion are shown in Fig. 4C. When kdc is below 1 � 10�3 s�1, a
steady occupancy of this state is observed because once the
enzymes become complexed, they likely process all the way to
the nonreducing edge without decomplexation due to the low
value of kdc. The edge-blocked enzymes then nucleate other
lagging enzymes to become blocked and form the head of the
traffic jam. The lagging proteins in the traffic jam are in the
enzyme-blocked state, the fractions of which are shown in Fig.
4D. The traffic jam buildup on the microfibril is illustrated in
Fig. 4E. With the nonreducing edge effectively playing the role
of an immobile obstacle, the blocked enzymes are mostly stuck
in traffic instead of being stalled by uneven surface layers.
The optimal kdc value of 1 � 10�3 s�1, at which the conver-

sion in Fig. 3C reaches amaximum, represents the ideal balance
inmaintaining enzyme processivity while reducing the fraction
of enzyme jamming on the cellulose surface. Fig. 4F shows that
if kdc assumed a higher value, the TrCel7A molecules would
decomplex prematurely and fail to hydrolyze the glycosidic
bonds near the nonreducing edge of the microfibril after each
complexation event. The optimal kdc thus needs to be suffi-
ciently high for the surface enzymes to be free from jamming
but adequately low for them to be as processive as possible. In
this case, the complexation time scale is commensurate with
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the average duration for the enzyme to process through a glu-
can chain on cellulose. In addition to this signature in the time
scale, the optimal kdc can also be characterized via the apparent
processivity, the average number of bonds cleaved per compl-
exation event, Lp (30). Figs. 5A and 3C show that the optimal kdc
corresponds to the value at which Lp begins to level off with
respect to a further increase of the complexation driving force
from reducing kdc.
Kinetic Efficiencies of Enzymes Quantify the Performance of

Interfacial Biocatalysts—The significant impact of TrCel7A
jamming on the apparent kinetics of cellulose decomposition
motivates the development of efficiencymeasures to character-
ize the enzyme performance during interfacial biocatalysis. The
ratio of complexed to surface enzymes is the complexation effi-
ciency, �C, and the ratio of active to complexed enzymes is the
activation efficiency, �A. As such, �C measures the intrinsic
enzyme activity for complexation, whereas the effects of the
structural heterogeneity of the substrate surface, interenzyme
blocking, and enzyme-obstacle exclusion on kinetics are
lumped into �A. Fig. 5A plots �C and �A as a function of kdc for
a 200-h decomposition, and their dependences on the decom-
plexation rate constant are clearly opposite as discussed above.
�C also has a close correspondence with Lp.

The overall conversion can be quantitatively related to the
efficiencies through a performance metric. As derived in the
supplemental data, the conversion XT after reaction time T is
proportional to the enzyme performance, �C�A. The XT �
�C�A correspondence is clearly seen in Fig. 5B. The interplay
between processivity and jamming of TrCel7A in affecting the
apparent rate of cellulose decomposition also depends on the

degree of polymerization of glucan chains and the boundary
condition at the microfibril edge. These details are discussed in
the supplemental data.

FIGURE 4. Fraction of each surface enzyme spent in different states over time if the decomplexation rate constant kdc (s�1) is 0 (green), 10�5 (blue), and
10�3 (light red) while the other rate constants remain at the reference values of Fig. 1B. A, profiles of the fraction of uncomplexed enzymes. B, profiles of
the fraction of enzymes blocked by uneven surface layers of glucan chains on the microfibril surface. C, profiles of the fraction of enzymes blocked by the
nonreducing edge of the microfibril. D, profiles of the fraction of enzymes blocked by the other enzymes on the substrate surface. E, illustration of a traffic jam
developed at the nonreducing edge of the microfibril (right side) when the decomplexation rate constant is low. Blocked enzymes are colored in orange. Only
one-quarter of the microfibril length is plotted with the nonreducing edge located on the right side. F, illustration of the interplay between enzyme blocking
and processivity in affecting the reactivity of cellulose decomposition. A less processive enzyme tends to decomplex prematurely, and the glycosidic bonds
near the nonreducing ends of glucan chains in the substrate cannot be cleaved effectively. An overly processive enzyme cleaves the entire glucan chain after
each complexation event but decomplexes very slowly and tends to be blocked at the nonreducing edge.
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FIGURE 5. Efficiency measures, processive length, performance, and
apparent activity of TrCel7A in cellulose decomposition as a function of
the decomplexation rate constant kdc. A, profiles of the complexation and
activation efficiencies, �C and �A, respectively (red), and processive length, Lp
(purple). The maximal processive length is 512, which is set by the averaged
degree of polymerization of 1024 glucose residues per glucan chain. B, pro-
files of performance (blue) and 200-h conversion (green).
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Unified Mechanistic Framework of Cellulose Decomposition
via the Productivity Map—Because the surface inactivity of
TrCel7A is predominantly due to slow complexation and exces-
sive blocking, enhancement of cellulose decomposition likely
requires simultaneous consideration of these two factors.
SLATE simulations can be used to answer the following ques-
tions. If kc and kdc could be varied independently via protein
engineering or substrate pretreatment while keeping the other
rate constants unchanged, to what extent can the cellulose
decomposition rate be increased? How do the optimal kc and
kdc differ from those of native TrCel7A?
Fig. 6 (A–E) plots the fractional occupancy times in different

enzyme states for 100 hof conversion by varying both kc and kdc.
The competition between increasing the complexation driving
force and reducing the fractions of blocked enzymes in maxi-
mizing the final conversion (productivity) is shown. The region
of elevated occupancy in the active state in Fig. 6B can be
reached via high complexation and intermediate decomplex-
ation rates. In this scenario, the enzymes complex relatively
quickly and process entire glucan chains on cellulose per com-
plexation event without causing traffic jams. In this high activ-
ity region, the enzymes have a moderate occupancy fraction in
the edge-blocked state but a minimal fraction in the enzyme-
blocked state. Due to theXT � �C�A correspondence discussed
above, the contour of the enzyme fraction in the active state in
Fig. 6B follows that of the 100-h conversion shown in Fig. 6F.

The productivity map in Fig. 6F not only reveals the rich
behaviors of cellulase enzymes on the cellulose surfaces but can

also be used to unify a diverse range of experimental observa-
tions. In Region 1 of Fig. 6F, conversion is limited by excessive
jamming rather than slow complexation (30–32). This situa-
tion is analogous to experiments with amorphous cellulose, on
which complexation occurs more quickly than on a crystalline
substrate but enzyme jamming would be more prevalent (30–
32, 45). In Region 2, both slow complexation and jamming are
rate-limiting as seen in the decomposition of crystalline cellu-
lose (12, 34). In Region 3, conversion is limited by complexation
and low processivity, as in experiments withmutated cellulases
on crystalline cellulose (45). To arrive at the high productivity
of Region 4, enhancement of the complexation driving force
must be simultaneously balanced with the competing require-
ment of having low jamming.
Because biomass feedstocks inevitably contain defects and

obstacles originating from the high contents of hemicellulose
and lignin (2, 11), the kinetic behaviors of TrCel7A enzymes on
lignocellulosic substrates likely fall within Region 2 of Fig. 6F. A
high density of surface obstacles ismechanistically analogous to
a lower decomplexation rate constant in the SLATE model. In
this regime, enhancing complexation and removing surface
obstacles both need to be considered for increasing the appar-
ent productivity. In addition to protein engineering, these
objectives highlight the importance of pretreatment strategies
for decrystallizing cellulose and/or removing surface obstacles
(46).
Therefore, resolving the shift of enzymatic behaviors on the

productivity map would be an informative way to assess the

FIGURE 6. Maps of fractional occupancy times (A–E) and productivity of conversion (F) in the complexation-decomplexation (kc � kdc) plane. The
fractional occupancy time for a state is its occupancy time divided by the total reaction time. Four kinetics regions are identified in the productivity map of F,
and a representative snapshot from a SLATE simulation is shown for each region. Enzymes in the blocked state are colored orange. The kinetic characteristics
of each region are also described.
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success of biomass pretreatment as well as cellulase engineer-
ing. In this regard, the occupancy time distributions of individ-
ual enzymes may be quantified in different scenarios via
spatially resolved modeling of enzyme kinetics. Using the pro-
ductivity map to reveal the effects of molecular configuration
on enzyme kinetics can provide a general framework for uncov-
ering the specific rate-limiting mechanisms of cellulose
decomposition.

DISCUSSION

Kinetic simulations with the SLATE model at a molecular
resolution elucidate the significant impact of interfacial con-
finement on cellulose decomposition by TrCel7A. The rate-
limiting mechanisms were identified to be slow complexation
of glucan chains and excessive enzyme jamming. Although
complexation restrains the apparent rate of substrate conver-
sion throughout the entire process, enzyme jamming develops
with time and becomes more important and even dominant in
slowing down the apparent rate as the reaction proceeds. The
possibility of decomplexation-limiting kinetics on the substrate
surface was inferred from bulk experiments (30–32), and spa-
tially resolved simulations delineate the quantitative bounds
and molecular origins of its occurrence. The ability to track
individual enzymes and the structural evolution of the sub-
strate at the same time also unifies the diverse kinetic behaviors
of cellulose decomposition observed in different experiments.
An emergent message is that a one-cause, time-independent
explanation of enzyme inefficiency provides an oversimplified
and incomplete view. Single-faceted approaches are also likely
to be insufficient for understanding other processes of interfa-
cial biocatalysis.
The passing flows of processive cellulases along microfibrils

(12) as well as motor proteins along filaments (14) resemble in
many respects vehicular travel along a highway. The reducing
ends of glucan chains are analogous to the narrow ramps
restricting the entrance of processing enzymes onto the micro-
fibril. The nonreducing edge of the microfibril acts as a “road-
block” that stops the flow of forward-moving enzymes and
causes traffic jams. These conditions can be avoided by intro-
ducing exit ramps via decomplexation.However, too high a rate
constant of decomplexation for the enzyme would lead to
excessive detouring off the highway traffic and reduction of the
processive enzyme flows that decomposes the substrate. There-
fore, a balanced optimization of the complexation-exchange
kinetics ofTrCel7A is required to enhance the travel conditions
of enzymes along microfibrils and hence accelerate the overall
rate of cellulose decomposition.
The presence of structural heterogeneity in interfacial bioca-

talysis demands a spatially resolved approach to describe
enzyme kinetics. For the case of enzymatic cellulose decompo-
sition, the SLATE model illustrates that accounting for molec-
ular scale resolution under surface restriction is indispensable
for uncovering the kinetic bottlenecks. Because heterogeneous
and crowded environments are ubiquitous in biological sys-
tems, the development of SLATE represents an important step
toward a systems-level analysis of the spatiotemporal behaviors
of enzyme reaction networks.
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