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The cytosolic pathogen sensor RIG-I is activated by RNAs with
exposed 50-triphosphate (50-ppp) and terminal double-stranded
structures, such as those that are generated during viral infection.
RIG-I has been shown to translocate on dsRNA in an ATP-
dependent manner. However, the precise role of the ATPase
activity in RIG-I activation remains unclear. Using in vitro-
transcribed Sendai virus defective interfering RNA as a model
ligand, we show that RIG-I oligomerizes on 50-ppp dsRNA in an
ATP hydrolysis-dependent and dsRNA length-dependent manner,
which correlates with the strength of type-I interferon
(IFN-I) activation. These results establish a clear role for the
ligand-induced ATPase activity of RIG-I in the stimulation of
the IFN response.
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INTRODUCTION
Viral infection in a healthy host results in virus-specific adaptive
immune responses and immunological memory preceded by a
general innate immune response. The first step is the detection of
viral infection in cells, which is accomplished by a diverse array of

pattern-recognition receptors that sense non-self molecules [1].
RIG-I belongs to the RIG-I-like helicase group of SF2 family of
helicases that also include MDA5 and LGP2, which function as
viral RNA receptors to modulate antiviral type-I interferon (IFN-I)
responses during RNA virus infections [2]. RIG-I consists of two
amino-terminal caspase activation and recruitment domains
(CARD) in tandem, a helicase and a carboxy-terminal regulatory
domain (RD). RIG-I is activated by binding to a 50-ppp double-
stranded RNA (dsRNA) ligand [3–5], resulting in the release
of CARDs from an inhibitory association with the helicase
domain [6], allowing not only polyubiquitination of CARD2
by an E3 ligase TRIM25 [7], but also binding of unanchored
K63-linked ubiquitin chains [8], forming an activated state
by promoting RIG-I tetramer formation [9]. Activated RIG-I is
able to interact with its adaptor mitochondrial antiviral signal
(MAVS) on mitochondria [10–13], promoting aggregation
of MAVS [14] and redistribution of mitochondria [15]. Active
MAVS–RIG-I signalling culminates in the activation of the antiviral
IFN-I pathway [16–19].

ATP hydrolysis by RIG-I after binding to RNA is critical for
downstream activation [3]. The exact function of the ATPase
activity of RIG-I was not clear until it was reported that after
binding to 50-ppp on RNA, RIG-I is capable of translocating on
dsRNA in an ATP hydrolysis-dependent manner [20]. However, a
role for this ATP-dependent translocation on dsRNA is not clear. In
addition to genomic RNAs [21], defective interfering (DI) RNAs
produced during infection with RNA viruses form effective ligands
for RIG-I [22]. A Sendai virus (SeV) copy-back DI RNA
preferentially associates with RIG-I in SeV-infected cells and
potently activates the IFN-I response [23,24]. We investigated the
process of activation of RIG-I by this ligand. Specifically, we have
uncovered a previously unrecognized role of ATP hydrolysis in
enhancing RIG-I oligomerization on RNA. RIG-I oligomerization
was dependent on ATP concentration, ATP hydrolysis and length
of the dsRNA stem. ATP-driven RIG-I oligomer formation
correlated with the magnitude of IFN-I activation. The data
presented here indicate that RIG-I first forms a small binding unit
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upon recognition of 50-ppp dsRNA, which is independent of ATP
binding. ATP hydrolysis then drives the formation of a dsRNA
length-dependent oligomer of RIG-I.

RESULTS AND DISCUSSION
SeV Cantell strain DI RNA is a 546-nt-long copy-back, non-coding
viral RNA produced during infection of cells and consists of a
predicted stem-loop structure with a 94-bp stem and 358-b loop
(Fig 1A). Compared to other ligands of RIG-I, influenza RNA, short
poly (I:C) and a synthetic 19-mer 50-ppp dsRNA, the in vitro
transcribed (IVT) SeV DI RNA robustly activates IFN-I at the
amount tested (50 ng) (Fig 1B). The remarkably higher stimulation
of IFN-I by this RNA compared to other RIG-I ligands prompted us
to investigate the specific requirements of this RNA to be a potent

IFN-I inducer. Using short interfering RNA-mediated knockdown
of RIG-I, we show that IVT DI RNA activates IFN-I in a RIG-I-
dependent manner, whereas a mixture of short and long poly (I:C)
does not depend on RIG-I to activate IFN-I (Fig 1C). Using an RNA
pull-down assay (supplementary Fig S1A online), we show that
this RNA interacts primarily with the RD domain of RIG-I (Fig 1D),
requiring the basic cleft residues K858 and K861 (supplementary
Fig S1B online), which have been implicated in binding to the
50-ppp on RNA ligands of RIG-I [25,26]. To uncover a mechanism
for the high potency of this RNA in RIG-I-mediated IFN-I
stimulation, we first generated structure mutants that either
shield the 50-ppp (50-overhang) or lack terminal base pairing, as
50-ppp and dsRNA have been suggested to be criticial features for
interaction with RIG-I [4,5]. We found that these mutant RNAs do
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Fig 1 | SeV DI RNA is a potent RIG-I-dependent inducer of IFN-I. (A) Graphic illustrates different RNAs produced during infection of SeV. SeV DI

produced from the anti-genomic positive sense (þ ) RNA consists of both negative and positive sense sequences of the genomic and anti-genomic

RNAs resulting in a copy-back structure. The right panel shows the 546-nt SeV DI RNA mapped to the genomic/anti-genomic sequence and a

predicted structure of the RNA (RNAfold). Colours on the DI RNA representations indicate base-pair probability (as indicated, red¼ 1; purple¼ 0).

(B) 293T-IFNb-FF-Luc cells were transfected with 50 ng of indicated RNAs and a luciferase assay was performed 24 h later to measure IFNb promoter-

driven luciferase activity. (C) 293T-IFNb-FF-Luc cells were transfected with control or RIG-I short interfering RNA and 24 h later transfected with 5

and 1 ng of IVT DI RNA and 200 and 40 ng poly (I:C), followed by luciferase assay 24 h later to measure IFNb promoter-driven luciferase activity.

(D) Lysates from 293T cells expressing FL RIG-I or truncated RIG-I Hel, RIG-I C-terminal RD domain or RIG-I Hel-RD were incubated with 0.25 mg

of RNA, RIG-I–RNA complexes were immunoprecipitated, and RNA and protein fractions were isolated. RNA was transfected into 293T-IFNb-FF-Luc

cells and 24 h later IFNb promoter-driven luciferase activity was measured by luciferase assay. Protein fractions were subjected to immunoblotting

using HA antibody to assess pull-down efficiency. Data are representative of at least three independent experiments and error bars indicate mean±s.d.

DI, defective interfering; FL, full length; Hel, Helicase domain; Hel-RD, Helicase regulatory domain; IFN-I, type-I interferon; IVT, in vitro transcribed;

RD, regulatory domain; SeV, Sendai virus.
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not activate IFN-I as well as wild-type (WT) RNA (Fig 2A). They
also do not bind to RIG-I as well as WT RNA (Fig 2B;
supplementary Fig S2A online) and further do not optimally
activate the ATPase of RIG-I, which might explain the defect in
IFN-I activation (Fig 2C). Reducing the size of the loop to half or to
a short loop did not have any impact on IFN-I activation (Fig 2D).
These results indicate that the terminal 50-ppp and dsRNA moieties
but not the loop are critical features of this RNA for interaction with
RIG-I and activation of IFN-I.

Although any RNA sequence with terminal 50-ppp and
panhandle structures should, in theory, induce the same response
as IVT DI RNA, we sought to determine the importance of the
length of the dsRNA stem in the panhandle. Truncating the 94-bp
dsRNA stem from the non-terminal side to 46 and 25 bp drastically
reduced IFN-I activation in an RNA length-dependent manner
(Fig 3A). Compared to WT RNA, the 25- and 46-bp RNAs showed
B100 and B10-fold reduction in IFN-I activation, respectively.
Thus, the length of the dsRNA stem is critical for its potent activity.

Surprisingly, we found that 46- and 25-bp RNAs bind to RIG-I
and activate its ATPase to the same level as WT RNA (Figs 3B,C).
Thus, to test if smaller stem RNAs have a defect in association
of multiple RIG-I molecules on RNA, we performed a co-
immunoprecipitation experiment of HA and eYFP-tagged RIG-I
expressing cell lysates in the presence of RNA (Fig 3D). We found
that higher levels of HA-RIG-I co-immunoprecipitated with eYFP-
RIG-I in the presence of WT RNA compared to 46- and 25-bp stem
RNAs, suggesting that the long stem of WT RNA allows greater
association of multiple RIG-I molecules. To strengthen our
findings, we analysed RIG-I–RNA complexes by nativePAGE after
incubating RIG-I and RNAs in vitro in the presence of Mg-ATP.
Upon immunoblotting for RIG-I, we discovered that RIG-I is able
to form high-molecular-weight complexes in the presence of WT
RNA (Fig 3E). These oligomers do not appear when no RNA is
added, ruling out non-specific aggregation of the protein. We
found a dramatic reduction in high-molecular-weight oligomers in
the presence of 46- and 25-bp RNAs, which was also RNA-length
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Fig 2 | Exposed 50-ppp and terminal dsRNA, but not loop structure, are important features of SeV DI RNA for RIG-I-mediated IFN-I activation.

(A) 25 fmol and five-fold dilutions of WT, 50 overhang and D terminal base-pairing RNAs were transfected or not into 293T-IFNb-FF-Luc cells and

24 h later IFNb promoter-driven luciferase activity was measured by a luciferase assay. (B) 500 fmol and three-fold dilutions of Biotin-UTP-labelled

WT, 50 overhang and D terminal base-pairing RNAs were immobilized onto NeutrAvidin-coated wells and incubated with lysates from HA-RIG-I-

expressing 293T cells. The levels of bound RIG-I were determined by measuring the absorbance/HRP activity of HA-HRP antibody. (C) 0.5 mg of

purified His-HA-RIG-I was incubated with 100 or 50 fmol of WT, 50 overhang, D terminal base-pairing or no RNA in the presence of 0.5 mM ATP and

2.5 mM Mg2þ at 37 1C for 25 min. Released phosphates were measured using Malachite Green-based reagent at an absorbance of 620 nm. (D) 25 fmol

and five-fold dilutions of WT, half-loop and short loop RNAs were transfected or not into 293T-IFNb-FF-Luc cells and 24 h later IFNb promoter-

driven luciferase activity was measured by a luciferase assay. Data are representative of at least three independent experiments and error bars indicate

mean±s.d. Log10 in Figs 2A and 2D refers to the scale on the x-axis. 50-ppp, 50-triphosphate; DI, defective interfering; dsRNA, double-stranded RNA;

HRP, horseradish peroxidase; IFNb, interferon b; SeV, Sendai virus; WT, wild type.
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dependent. Interestingly, the levels of the minimal binding unit of
RIG-I remained essentially unchanged on the different RNAs, which
confirms the binding data (Fig 3B) and explains the similar overall
ATPase stimulation of RIG-I (Fig 3C). The defective formation of
high-molecular-weight oligomers of RIG-I by shorter stem RNAs
correlates with the levels of IFN-I activation, thereby suggesting
dsRNA length-dependent oligomer formation as a mechanism for
the high immunostimulatory activity of SeV DI RNA.

There is limited evidence in the literature for ligand and co-
factor requirements for RIG-I multimerization. Binder et al [27]
showed some evidence of RIG-I oligomerization on dsRNA by
scanning force microscopy and size-exclusion chromatography.
However, the role of 50-ppp on RNA was not tested and the
experiments were performed in the absence of ATP, which is an
essential co-factor for activation. First, we asked whether the
terminal 50-ppp binding is required for RIG-I oligomerization on
RNA. To this end, we tested RIG-I oligomerization on RNA

treated with a phosphatase. We confirmed that the 50-OH RNA
was not able to bind to RIG-I (supplementary Fig S2B online) or
activate IFN-I (supplementary Fig S2C online). NativePAGE
analyses revealed that the 50-OH RNA is not able to induce
oligomerization of RIG-I like 50-ppp RNA, suggesting that
binding to 50-ppp is critical for formation of RIG-I oligomers
(Fig 4A). In accordance with this data, 50-overhang RNA also did
not allow oligomer formation and neither did the D terminal
base-pairing RNA, confirming that both 50-ppp and dsRNA motifs
are important for oligomerization of RIG-I (Fig 4B). Furthermore,
we found that oligomerization is enhanced at high RIG-I to RNA
ratios (Fig 4C). Utilizing Biotin-labelled RNA in oligomerization
reactions and immunoblotting for Biotin in nativePAGE sepa-
rated RIG-I–RNA complexes, we confirmed the presence of RNA
in the oligomers (Fig 4D). We ensured that Biotin labelling
of RNA had no impact on its immunostimulatory potential
(supplementary Fig S2D online).
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Fig 3 | dsRNA length-dependent oligomerization is a mechanism for the high immunostimulatory activity of SeV DI RNA. (A) 5 ng and five-fold
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protein; HRP, horseradish peroxidase; SeV, Sendai virus; WCL, whole cell lysates; WT, wild type.

ATPase-driven oligomerization of RIG-I on RNA

J.R. Patel et al scientificreport

783&2013 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 14 | NO 9 | 2013



ATP is essential for RIG-I activation. ATP hydrolysis allows
translocation of RIG-I on RNA [20]. However, the outcome
of this ATPase-driven translocase activity is unknown. Using
electrophoretic mobility shift assay and electron microscopy, it
was recently reported that RIG-I is not able to form filaments on
RNA like MDA5 [28]. However, curiously, the authors performed
these experiments using ADP-AlF4, which mimics the ADP-Pi
state. Here, we investigated the role of ATP in the oligomeri-
zation process of RIG-I. We incubated RIG-I and RNA either in
the absence or in the presence of increasing concentrations of
ATP up to 4 mM. We found an ATP-dose-dependent increase in
the formation of RIG-I–RNA oligomers (Fig 4E). A time-course
experiment revealed that the oligomeric complexes of RIG-I–
RNA are formed within 5 min in the presence of ATP (Fig 4F).
Interestingly, in the absence or at lower concentrations of
ATP, only the minimal RNA-binding unit of RIG-I is formed but
not the high-molecular-weight oligomers (Figs 4E,F). Next,
we tested if ATP binding was sufficient for oligomerization
or if ATP hydrolysis was required. To this end, we utilized
a non-hydrolysable analogue of ATP, b,g-methyleneadenosine

50-triphosphate (ADPCP), and the D372N ATPase mutant of
RIG-I. We found that WT RIG-I is not able to form oligomers on
RNA in the presence of ADPCP (Fig 4G) and the D372N RIG-I
is not able to form oligomers on RNA in the presence of ATP
(Fig 4H). Thus, formation of an initial binding unit of RIG-I on
RNA does not require ATP, but ATP hydrolysis by RIG-I is crucial
for formation of higher-order structures on RNA. This is in
contrast to MDA5, where ATP hydrolysis drives dissociation of
MDA5 oligomers on dsRNA [28,29]. Post-treatment with dsRNA-
specific RNAse V1 disrupted RIG-I oligomers on RNA, suggesting
that the oligomers are dynamic and transient in nature and the
dsRNA is exposed enough to be vulnerable to an endonuclease
(Fig 4I). Jiang et al [9] have recently shown that RIG-I tetramer
formation on RNA is driven by binding of N-terminal CARDs to
polyubiquitin chains. As we used purified components in our
analysis of native RIG-I/RNA complexes, oligomerization of
RIG-I was detected in the absence of polyubiquitin binding
or supplementation. However, it is likely that binding to
polyubiquitin or other co-factors further stabilizes and promotes
the formation of RIG-I multimers in vivo.
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In order to understand the mechanism of oligomerization, we
investigated the requirement for loading of an additional unit of
RIG-I on preformed minimal RNA-binding units of RIG-I by
utilizing differentially tagged RIG-I proteins in an RNA-binding
experiment either in the presence or in the absence of ATP.
NeutrAvidin-immobilized Biotin-RNA was first saturated with
eYFP-RIG-I, followed by addition of limited amounts of HA-RIG-I
either in the presence or in the absence of ATP (Fig 5A). We found
that addition of ATP enhances binding of HA-RIG-I to eYFP-RIG-I–
RNA complexes (Fig 5B), suggesting that ATP hydrolysis exposes
the 50-ppp to allow the additional unit of RIG-I to bind to the same
RNA. Importantly, we found that a K858A-K861A 50-ppp-binding

mutant is not able to bind to eYFP–RIG-I–RNA complexes both in
the presence and in the absence of ATP, confirming that 50-ppp
exposure by bound RIG-I and 50-ppp binding by incoming RIG-I
molecules are required for recruitment of additional molecules of
RIG-I. Additionally, we show that substituting WT RIG-I with
D372N ATPase mutant prevents loading of additional molecules
of RIG-I in the presence of ATP. Based on other studies and the
data presented here, we propose a model of RIG-I oligomerization
where each RIG-I molecule binds to 50-ppp and, using ATP
hydrolysis, enters the RNA probably by translocation. As multiple
RIG-I molecules enter the RNA in this manner, the result is
formation of an oligomer. These large oligomers of RIG-I on RNA
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possibly induce more robust aggregation of MAVS, which was
recently shown to produce prion-like fibrils in the presence of
strong RIG-I ligands such as SeV RNA [14], thereby leading to a
robust activation of IFN-I (Fig 5C).

METHODS
ATPase activity assay. Purified RIG-I was incubated in 50-ml
reactions with RNAs in the presence of 0.5 mM ATP and 2.5 mM
MgCl2 in 50 mM Tris, 150 mM NaCl and 1 mM DTT (protein
buffer) at 37 1C for 20 min. Released phosphates were measured
using a Malachite green-based colorimetric assay (Novus Bio-
logicals) at 620 nm using a plate reader (Biotek), following the
manufacturer’s instructions. RNA-induced ATPase activity for WT
and D372N RIG-I was confirmed (supplementary Fig S3C online).
NativePAGE of RIG-I–RNA complexes. Purified RIG-I was
incubated with RNA in amounts as indicated in the presence of
given ATP concentrations with 2.5 mM MgCl2 in protein buffer at
37 1C for 25 min in 50-ml reactions, unless otherwise indicated.
Reactions were stopped using 4�NativePAGE sample buffer
and analysed by NativePAGE on a 3–12% Bis-Tris gel (Life),
transferred onto PVDF membranes (Life), fixed with 8% acetic
acid in H2O, and immunoblotting was performed using anti-Biotin
HRP (Abcam) or RIG-I antibodies.
RNA ELISA for RIG-I binding. RNA preparation is described in
supplementary information online. Eighty nanograms of Biotin-
UTP-labelled RNAs was added to NeutrAvidin-coated wells
(supplementary Fig S2A online). Following RNA immobilization,
wells were washed and incubated with lysates from cells
expressing HA-RIG-I or 0.2 mg of purified HA-RIG-I. The washing
buffer comprised 50 mM Tris, pH 7.5, 150 mM NaCl, 1 mM MgCl2
and 0.05% NP-40, and the binding buffer consisted of washing
buffer supplemented with RNase inhibitor (Ambion) and 1 mM
DTT. Bound RIG-I was detected using HA-HRP antibody (Cell
Signaling) and TMB (Pierce) by measuring absorbance at 450 nm
(Biotek) after stopping the reactions with 0.5 M HCl. In a modified
protocol using differentially tagged RIG-I to understand the
mechanism of formation of RIG-I oligomers on RNA, 80 ng of
Biotin-RNA was first immobilized as given above, followed by
addition of 1 mg of purified eYFP-RIG-I to saturate the bound RNA.
Following washes, 0.20mg of HA-RIG-I was added with or without
1 mM ATP, incubated at 37 1C for 20 min, washed and binding
was measured as described above. Protein purification is
described in supplementary information online. To test the
RNA-binding ability of purified proteins, a monoclonal RIG-I
antibody was used to determine protein bound to RNA by
ELISA (supplementary Fig S3A online). The purity of proteins
was checked by Coomassie Brilliant Blue (EZBlue, SIGMA)
staining (supplementary Fig S3B online). Additional methods are
described in supplementary information online.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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