Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 12;69(Pt 10):o1531–o1532. doi: 10.1107/S1600536813024598

tert-Butyl N-{[5-(5-oxohexa­namido)­pyridin-2-yl]amino}­carbamate

Luisa Ronga a, Noel Pinaud b, Charlotte Rimbault a, Mathieu Marchivie a, Jean Guillon a,*
PMCID: PMC3790400  PMID: 24098219

Abstract

In the crystal structure of the title compound, C16H24N4O4, mol­ecules are linked by N—H⋯O hydrogen bonds between the carbonyl groups of the carbamoyl and amido functional groups and the amino groups, and by N—H⋯N hydrogen bonds between the amino group and the pyridine ring, forming two-dimensional networks parallel to the ab plane.

Related literature  

For the synthesis, properties and biological activity of 2-hydrazino­pyridine derivatives, see: Ardisson et al. (2005); Jurisson & Lydon (1999); Abrams et al. (1994); Liu et al. (2011); Lu et al. (2011); Schwartz et al. (1990). For the crystal structures of related compounds, see: Banerjee et al. (2005); Rose et al. (1998); Zora et al. (2006). For synthesis, see: Cugola et al. (1995).graphic file with name e-69-o1531-scheme1.jpg

Experimental  

Crystal data  

  • C16H24N4O4

  • M r = 336.39

  • Triclinic, Inline graphic

  • a = 6.2598 (4) Å

  • b = 9.2822 (6) Å

  • c = 16.0437 (12) Å

  • α = 84.387 (6)°

  • β = 88.957 (6)°

  • γ = 79.358 (6)°

  • V = 911.79 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.84 × 0.17 × 0.06 mm

Data collection  

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.928, T max = 0.994

  • 20299 measured reflections

  • 3295 independent reflections

  • 2187 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.147

  • S = 1.04

  • 3295 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813024598/ff2115sup1.cif

e-69-o1531-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024598/ff2115Isup2.hkl

e-69-o1531-Isup2.hkl (180.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024598/ff2115Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.06 2.888 (2) 161
N3—H3⋯N2ii 0.86 2.21 2.957 (3) 145
N4—H4⋯O2iii 0.86 2.06 2.827 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This publication was supported by a grant from the Ligue Nationale contre le Cancer (Comité Aquitaine-Charentes, Bordeaux, France).

supplementary crystallographic information

1. Comment

Radioisotopes conjugated to proteins provide a means for imaging and treatment of disease. The bifunctional 2-hydrazinopyridine derivatives are useful linker molecules for attaching metal ions such as 99mTc to macromolecules (Ardisson et al., 2005; Jurisson & Lydon, 1999). Hence, this 2-hydrazinopyridinyl moiety has previously been used for labeling bioactive molecules (Abrams et al., 1994; Banerjee et al. 2005; Rose et al., 1998; Schwartz et al., 1990). Thus, the use of Tc-labeled hydrazine derivatives continues to undergo further development (Liu et al., 2011; Lu et al., 2011). The wide spectrum of medicinal applications of this class of radiolabeled chelates prompted us to work in this domain and we report herein on the synthesis and crystal structure of the title compound, designed as a potential chelate for 99mTc.

The title compound, C16H24N4O4, has the triclinic (P1) symmetry. It crystalizes with one molecule in the asymmetric unit. In the crystal, the molecules are linked together by N—H···O hydrogen bonding between the carbonyl groups of the carbamoyl and amido functional groups and the amino groups and by N—H···N hydrogen bonding between amino and pyridine moiety leading to a two-dimensional network within the ab plane. The network cohesion in the 3rd direction is assured by Van der Waals interactions and H-bond like interactions between the carbonyl and the BOC group.

2. Experimental

To a stirred solution of 5-oxohexanoic acid (2.45 mmol) in 15 ml of tetrahydrofurane was added triethylamine (2.45 mmol). After 10 min of stirring at room temperature was added isobutyl chloroformate (2.45 mmol). The reaction mixture was stirred at room temperature for 5 h, then 2-(t-butoxycarbonyl hydrazine)-5-amino-pyridine (2.23 mmol) (Cugola et al.,19955) was added and the reaction stirred for 12 h. The mixture was evaporated to dryness, and the residue was triturated in water. The solid precipitate was filtered off and washed with water then with ethanol, and purified by column chromatography using CHCl3/methanol (9/1, v/v) as eluent to give the title compound as white crystals (Rf = 1/4). Yield is 48%. The single-crystal of the title product was obtained by slow crystallization from a mixture DMSO/methanol (9/1, v/v). M.p. = 219°C. IR (KBr), ν/cm-1: 3270, 3230, 3185, 3082, 2982, 1704, 1662, 1601, 1537, 1276, 1182. 1H NMR (300 MHz, DMSO-d6, 298 K): δ = 1.41 (s, 9H, 3 CH3), 1.75 (qt, 2H, J = 6.10, CH2), 2.09 (s, 3H, CH3), 2.26 (t, 2H, J = 6.10, CH2), 2.48 (t, 2H, J = 6.10, CH2), 6.49 (d, 1H, J = 7.50, H-3), 7.71 (dd, 1H, J = 7.50 and 1.55, H-4), 7.95 (s, 1H, NH), 8.20 (d, 1H, J = 1.55, H-6), 8.75 (s, 1H, NH), 9.70 (s, 1H, NH). Anal. Calcd. for C16H24N4O4: C, 57.13; H, 7.19; N, 16.66 Found: C, 57.26; H, 7.25; N, 16.52.

3. Refinement

Crystallographic data were collected at 293 K on a Brucker nonius k-CCD diffractometer with monochromatic Mo—Kα radiation (λ = 0.71073 Å). At 293 K, the full sphere data collection was performed using φ scans and ω scans. The unit cell determination and data reduction were performed using DIRAX/LSQ (Duisenberg, 1992) and Collect (Nonius, 1998) programs on the full set of data. The crystal structure was solved by direct methods and successive Fourier difference syntheses with SHELXS97 program (Sheldrick, 2008). The refinements of the crystal structure were performed on F2 by weighted anisotropic full-matrix least squares methods using the SHELXL97 program (Sheldrick, 2008). Both pieces of software were used within OLEX2 package (Dolomanov et al., 2009). All the non-H atoms were refined with anisotropic temperature parameters. The positions of the H atoms were deduced from coordinates of the non-H atoms and confirmed by Fourier synthesis and treated according to the riding model during refinement with isotropic displacement parameters, corresponding to the atom they are linked to. H atoms were included for structure factor calculations but not refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed down the a axis. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.

Crystal data

C16H24N4O4 Z = 2
Mr = 336.39 F(000) = 360
Triclinic, P1 Dx = 1.225 Mg m3
a = 6.2598 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2822 (6) Å Cell parameters from 8003 reflections
c = 16.0437 (12) Å θ = 3.2–25.3°
α = 84.387 (6)° µ = 0.09 mm1
β = 88.957 (6)° T = 293 K
γ = 79.358 (6)° Plate, colourless
V = 911.79 (11) Å3 0.84 × 0.17 × 0.06 mm

Data collection

Bruker–Nonius KappaCCD diffractometer 2187 reflections with I > 2σ(I)
intensities from φ scan and ω scan Rint = 0.038
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) θmax = 25.3°, θmin = 3.2°
Tmin = 0.928, Tmax = 0.994 h = −7→7
20299 measured reflections k = −11→11
3295 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4578P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3295 reflections Δρmax = 0.29 e Å3
221 parameters Δρmin = −0.25 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.2722 (3) 0.91380 (18) 0.96382 (11) 0.0383 (4)
N1 0.8167 (3) 0.79747 (19) 0.88090 (12) 0.0420 (5)
H1 0.8436 0.8828 0.8633 0.050*
C8 0.6222 (4) 0.6875 (2) 0.99807 (14) 0.0452 (6)
H8 0.7405 0.6120 1.0105 0.054*
N3 0.0661 (3) 0.8185 (2) 1.06579 (12) 0.0480 (5)
H3 −0.0492 0.8704 1.0424 0.058*
O4 0.0851 (3) 0.71283 (17) 1.28015 (10) 0.0579 (5)
C10 0.2624 (3) 0.8083 (2) 1.02536 (13) 0.0376 (5)
C11 0.4549 (3) 0.9045 (2) 0.91869 (13) 0.0388 (5)
H11 0.4618 0.9774 0.8752 0.047*
O2 0.9342 (3) 0.55429 (18) 0.87934 (12) 0.0663 (5)
N4 0.0544 (3) 0.7449 (2) 1.14426 (12) 0.0476 (5)
H4 0.0149 0.6605 1.1495 0.057*
C7 0.6329 (3) 0.7943 (2) 0.93254 (13) 0.0369 (5)
O3 0.1590 (3) 0.92288 (18) 1.21135 (11) 0.0640 (5)
C6 0.9535 (4) 0.6804 (2) 0.85656 (14) 0.0439 (6)
C9 0.4362 (4) 0.6941 (2) 1.04441 (14) 0.0462 (6)
H9 0.4260 0.6226 1.0884 0.055*
C12 0.1045 (4) 0.8044 (2) 1.21198 (15) 0.0461 (6)
C5 1.1308 (4) 0.7170 (3) 0.79916 (18) 0.0620 (7)
H5A 1.0644 0.7759 0.7499 0.074*
H5B 1.2121 0.7776 0.8272 0.074*
C2 1.4473 (6) 0.7179 (4) 0.6461 (2) 0.0740 (8)
C13 0.1179 (5) 0.7546 (3) 1.36427 (16) 0.0663 (8)
C4 1.2840 (5) 0.5918 (4) 0.7717 (2) 0.0931 (12)
H4A 1.2109 0.5423 0.7334 0.112*
H4B 1.3307 0.5222 0.8199 0.112*
O1 1.2875 (5) 0.7200 (4) 0.60720 (16) 0.1353 (12)
C15 −0.0383 (7) 0.8914 (4) 1.3805 (2) 0.1030 (13)
H15A 0.0014 0.9742 1.3473 0.154*
H15B −0.0341 0.9063 1.4388 0.154*
H15C −0.1825 0.8815 1.3658 0.154*
C3 1.4820 (5) 0.6376 (5) 0.7287 (2) 0.1002 (13)
H3A 1.5420 0.6983 0.7646 0.120*
H3B 1.5906 0.5497 0.7237 0.120*
C1 1.6198 (8) 0.7953 (5) 0.6113 (3) 0.1350 (18)
H1A 1.6100 0.8071 0.5513 0.203*
H1B 1.7593 0.7387 0.6279 0.203*
H1C 1.6022 0.8903 0.6321 0.203*
C16 0.0675 (7) 0.6234 (4) 1.41952 (19) 0.0943 (11)
H16A −0.0786 0.6116 1.4092 0.142*
H16B 0.0821 0.6391 1.4772 0.142*
H16C 0.1669 0.5363 1.4072 0.142*
C14 0.3522 (7) 0.7691 (5) 1.3740 (2) 0.1111 (13)
H14A 0.4454 0.6793 1.3617 0.167*
H14B 0.3770 0.7881 1.4304 0.167*
H14C 0.3832 0.8491 1.3359 0.167*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0429 (11) 0.0323 (10) 0.0384 (10) −0.0052 (8) 0.0023 (8) −0.0001 (8)
N1 0.0428 (11) 0.0303 (10) 0.0531 (12) −0.0092 (8) 0.0086 (9) −0.0018 (8)
C8 0.0449 (14) 0.0346 (12) 0.0516 (14) 0.0005 (10) 0.0001 (11) 0.0037 (10)
N3 0.0438 (12) 0.0504 (12) 0.0432 (11) −0.0003 (9) 0.0058 (9) 0.0115 (9)
O4 0.0911 (13) 0.0425 (10) 0.0428 (10) −0.0241 (9) 0.0090 (8) 0.0042 (7)
C10 0.0424 (13) 0.0334 (12) 0.0373 (12) −0.0090 (9) 0.0000 (9) −0.0020 (9)
C11 0.0465 (14) 0.0312 (12) 0.0383 (12) −0.0090 (10) 0.0011 (10) 0.0016 (9)
O2 0.0826 (13) 0.0343 (10) 0.0792 (13) −0.0052 (9) 0.0231 (10) −0.0060 (9)
N4 0.0630 (13) 0.0354 (10) 0.0437 (11) −0.0130 (9) 0.0095 (9) 0.0049 (9)
C7 0.0384 (12) 0.0313 (11) 0.0424 (12) −0.0096 (9) 0.0017 (9) −0.0046 (9)
O3 0.0948 (14) 0.0404 (10) 0.0608 (11) −0.0279 (9) 0.0081 (10) 0.0031 (8)
C6 0.0468 (14) 0.0367 (13) 0.0488 (14) −0.0076 (10) 0.0007 (10) −0.0077 (10)
C9 0.0507 (14) 0.0358 (13) 0.0471 (13) −0.0022 (10) 0.0045 (11) 0.0100 (10)
C12 0.0535 (15) 0.0349 (13) 0.0479 (14) −0.0088 (11) 0.0110 (11) 0.0050 (11)
C5 0.0559 (16) 0.0620 (17) 0.0733 (18) −0.0168 (13) 0.0195 (13) −0.0244 (14)
C2 0.073 (2) 0.089 (2) 0.0620 (19) −0.0139 (17) 0.0123 (17) −0.0204 (17)
C13 0.096 (2) 0.0598 (18) 0.0455 (15) −0.0248 (15) 0.0073 (14) 0.0013 (13)
C4 0.089 (2) 0.079 (2) 0.087 (2) 0.0318 (18) 0.0401 (19) 0.0168 (18)
O1 0.112 (2) 0.239 (4) 0.0606 (16) −0.050 (2) −0.0055 (15) −0.0106 (19)
C15 0.154 (4) 0.075 (2) 0.080 (2) −0.018 (2) 0.038 (2) −0.0189 (18)
C3 0.063 (2) 0.147 (3) 0.071 (2) 0.027 (2) 0.0151 (16) 0.000 (2)
C1 0.126 (4) 0.117 (4) 0.169 (5) −0.046 (3) 0.046 (3) −0.009 (3)
C16 0.156 (3) 0.077 (2) 0.0518 (18) −0.037 (2) 0.0132 (19) 0.0112 (16)
C14 0.122 (3) 0.133 (4) 0.086 (3) −0.050 (3) −0.025 (2) 0.011 (2)

Geometric parameters (Å, º)

N2—C10 1.330 (3) C5—C4 1.462 (4)
N2—C11 1.336 (3) C2—O1 1.185 (4)
N1—H1 0.8600 C2—C3 1.454 (4)
N1—C7 1.409 (3) C2—C1 1.476 (5)
N1—C6 1.339 (3) C13—C15 1.494 (4)
C8—H8 0.9300 C13—C16 1.513 (4)
C8—C7 1.382 (3) C13—C14 1.510 (5)
C8—C9 1.365 (3) C4—H4A 0.9700
N3—H3 0.8600 C4—H4B 0.9700
N3—C10 1.372 (3) C4—C3 1.517 (4)
N3—N4 1.380 (2) C15—H15A 0.9600
O4—C12 1.336 (3) C15—H15B 0.9600
O4—C13 1.468 (3) C15—H15C 0.9600
C10—C9 1.386 (3) C3—H3A 0.9700
C11—H11 0.9300 C3—H3B 0.9700
C11—C7 1.372 (3) C1—H1A 0.9600
O2—C6 1.219 (3) C1—H1B 0.9600
N4—H4 0.8600 C1—H1C 0.9600
N4—C12 1.333 (3) C16—H16A 0.9600
O3—C12 1.209 (3) C16—H16B 0.9600
C6—C5 1.495 (3) C16—H16C 0.9600
C9—H9 0.9300 C14—H14A 0.9600
C5—H5A 0.9700 C14—H14B 0.9600
C5—H5B 0.9700 C14—H14C 0.9600
C10—N2—C11 117.63 (18) O4—C13—C16 101.9 (2)
C7—N1—H1 116.9 O4—C13—C14 109.3 (3)
C6—N1—H1 116.9 C15—C13—C16 110.7 (3)
C6—N1—C7 126.27 (18) C15—C13—C14 112.9 (3)
C7—C8—H8 120.4 C14—C13—C16 110.8 (3)
C9—C8—H8 120.4 C5—C4—H4A 109.1
C9—C8—C7 119.3 (2) C5—C4—H4B 109.1
C10—N3—H3 120.2 C5—C4—C3 112.4 (3)
C10—N3—N4 119.59 (18) H4A—C4—H4B 107.8
N4—N3—H3 120.2 C3—C4—H4A 109.1
C12—O4—C13 121.02 (19) C3—C4—H4B 109.1
N2—C10—N3 114.92 (18) C13—C15—H15A 109.5
N2—C10—C9 122.0 (2) C13—C15—H15B 109.5
N3—C10—C9 123.07 (19) C13—C15—H15C 109.5
N2—C11—H11 117.9 H15A—C15—H15B 109.5
N2—C11—C7 124.12 (19) H15A—C15—H15C 109.5
C7—C11—H11 117.9 H15B—C15—H15C 109.5
N3—N4—H4 120.0 C2—C3—C4 116.5 (3)
C12—N4—N3 120.07 (19) C2—C3—H3A 108.2
C12—N4—H4 120.0 C2—C3—H3B 108.2
C8—C7—N1 123.77 (19) C4—C3—H3A 108.2
C11—C7—N1 118.68 (19) C4—C3—H3B 108.2
C11—C7—C8 117.5 (2) H3A—C3—H3B 107.3
N1—C6—C5 114.7 (2) C2—C1—H1A 109.5
O2—C6—N1 122.5 (2) C2—C1—H1B 109.5
O2—C6—C5 122.8 (2) C2—C1—H1C 109.5
C8—C9—C10 119.5 (2) H1A—C1—H1B 109.5
C8—C9—H9 120.3 H1A—C1—H1C 109.5
C10—C9—H9 120.3 H1B—C1—H1C 109.5
N4—C12—O4 109.39 (19) C13—C16—H16A 109.5
O3—C12—O4 125.6 (2) C13—C16—H16B 109.5
O3—C12—N4 125.0 (2) C13—C16—H16C 109.5
C6—C5—H5A 108.3 H16A—C16—H16B 109.5
C6—C5—H5B 108.3 H16A—C16—H16C 109.5
H5A—C5—H5B 107.4 H16B—C16—H16C 109.5
C4—C5—C6 116.1 (2) C13—C14—H14A 109.5
C4—C5—H5A 108.3 C13—C14—H14B 109.5
C4—C5—H5B 108.3 C13—C14—H14C 109.5
O1—C2—C3 121.4 (3) H14A—C14—H14B 109.5
O1—C2—C1 120.7 (4) H14A—C14—H14C 109.5
C3—C2—C1 117.8 (4) H14B—C14—H14C 109.5
O4—C13—C15 110.7 (3)
N2—C10—C9—C8 −1.1 (3) C7—N1—C6—C5 178.0 (2)
N2—C11—C7—N1 −179.53 (19) C7—C8—C9—C10 −0.6 (4)
N2—C11—C7—C8 −0.9 (3) C6—N1—C7—C8 34.9 (3)
N1—C6—C5—C4 179.6 (3) C6—N1—C7—C11 −146.5 (2)
N3—C10—C9—C8 176.3 (2) C6—C5—C4—C3 −168.4 (3)
N3—N4—C12—O4 −178.94 (18) C9—C8—C7—N1 −179.9 (2)
N3—N4—C12—O3 1.0 (4) C9—C8—C7—C11 1.5 (3)
C10—N2—C11—C7 −0.7 (3) C12—O4—C13—C15 59.1 (3)
C10—N3—N4—C12 82.6 (3) C12—O4—C13—C16 176.9 (2)
C11—N2—C10—N3 −175.89 (18) C12—O4—C13—C14 −65.8 (3)
C11—N2—C10—C9 1.7 (3) C5—C4—C3—C2 −70.8 (4)
O2—C6—C5—C4 −0.5 (4) C13—O4—C12—N4 −176.3 (2)
N4—N3—C10—N2 −160.78 (19) C13—O4—C12—O3 3.8 (4)
N4—N3—C10—C9 21.6 (3) O1—C2—C3—C4 −15.7 (5)
C7—N1—C6—O2 −1.8 (4) C1—C2—C3—C4 165.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.86 2.06 2.888 (2) 161
N3—H3···N2ii 0.86 2.21 2.957 (3) 145
N4—H4···O2iii 0.86 2.06 2.827 (3) 149

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2115).

References

  1. Abrams, M. J., Bridger, G. J., Schwartz, D. A., Padmanabhan, S. & Ultee, M. E. (1994). World Patent WO 94/10149.
  2. Ardisson, V., Mathieu, J. P., Ghezzi, C. & Fagret, D. (2005). Med. Nucl. 29, 168–178.
  3. Banerjee, S. R., Schaffer, P., Babich, J. W., Valliant, J. F. & Zubieta, J. (2005). Dalton Trans. pp. 3886–3897. [DOI] [PubMed]
  4. Cugola, A., Di Fabio, R. & Pentasuglia, G. (1995). World Patent WO 95/10517.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
  7. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
  8. Jurisson, S. S. & Lydon, J. D. (1999). Chem. Rev. 99, 2205–2218. [DOI] [PubMed]
  9. Liu, L., Zhang, M., Zhong, G. & Wang, X. (2011). J. Radioanal. Nucl. Chem. 287, 847–852.
  10. Lu, J., Pang, Y., Xie, F., Guo, H.-J., Li, Y., Yang, Z. & Wang, X.-B. (2011). Nucl. Med. Biol. 38, 557–565. [DOI] [PubMed]
  11. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  12. Rose, D. J., Maresca, K. P., Nicholson, T., Davison, A., Jones, A. G., Babich, J., Fischman, A., Graham, W., DeBord, J. R. D. & Zubieta, J. (1998). Inorg. Chem. 37, 2701–2716. [DOI] [PubMed]
  13. Schwartz, D. A., Abrams, M. J., Giandomenico, C. M. & Zubieta, J. A. (1990). Eur. Patent EP 384769.
  14. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Zora, M., Turgut, G., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2677–o2679.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813024598/ff2115sup1.cif

e-69-o1531-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024598/ff2115Isup2.hkl

e-69-o1531-Isup2.hkl (180.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024598/ff2115Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES